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This paper proposes Discrete Cosine Transform (DCT) based speech enhancement algorithms. These algo-
rithms utilize minimum mean square error (MMSE) estimator of clean short-time spectral amplitude,
which respectively uses Gaussian, Laplace and Gamma probability density functions (PDF) as speech pri-
ors. We consider the noise process is additive and Gaussian. The proposed estimators are closed-form
solutions, whereas the conventional Discrete Fourier Transform (DFT) based estimators derived under
super-Gaussian speech priors have no closed-form solutions. We also examine the estimators with the
Speech Presence Uncertainty (SPU) that addresses the speech or silence problem with probability.
Compared to the alternative approaches, such as the Ephraim and Malah or the Erkelens et.al MMSE-
STSA estimators, the proposed methods demonstrate superior performance in terms of Segmental SNR
(SegSNR), Perceptual Evaluation of Speech Quality (PESQ), short-time objective intelligibility measure
(STOI), and mean subjective preference score, while exhibiting an equal or lower complexity.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Single-channel speech enhancement algorithms aim to improve
the quality, and preferably intelligibility of corrupted speech sig-
nals [1]. They can therefore be used to reduce listener fatigue
and to improve the performance of speech processing systems
such as cochlear implants or speech recognition systems. This
paper focuses on the minimummean square error (MMSE) estima-
tors of short-time spectral amplitude (STSA) due to its low compu-
tational complexity and good performance in various noise
conditions [2]. The proposed algorithms are formulated in the
short-time Discrete Cosine Transform (DCT) [3] domain and imple-
mented under the Analysis-Modification-Synthesis (AMS) frame-
work [4].

In a standard AMS framework, the noisy speech is processed
within short-time segments, which typically are 20 to 40 ms in
duration due to the non-stationary nature of speech signals. An
orthogonal transform, e.g., the DCT or the Discrete Fourier Trans-
form (DFT), is applied to decompose the framed noisy speech into
its spectral components, i.e., transform expansion coefficients. Due
to the major importance of spectral amplitude in both speech
quality and intelligibility relative to the spectral phase [5], the
majority of DFT-based algorithms aim to enhance the magnitude
spectrum (MS) but not the phase spectrum (PhS) of corrupted
speech, e.g., [6–9]. The enhanced signal is then synthesized by
means of inverse transform and overlap adding. In this paper the
short-time modifier is implied when referring to the spectral
domain, DFT, DCT, and their corresponding spectra unless other-
wise stated.

Although DFT is the most commonly used transform for speech
enhancement, it is not necessarily optimal. Studies show that DCT
is closer to the optimal Karhunen–Loeveis Transform (KLT) and
offers a higher effectiveness in decorrelating signals compared to
the DFT [21]. Since the DCT is a closer approximate of the KLT than
the DFT, it is extensively used for data compression. Its outstanding
energy compaction property is very useful for speech enhancement
as well. For example, most of the speech energy is concentrated in
only a few transform coefficients, whilst the noise energy is typi-
cally evenly distributed over the whole domain. This makes it
easier to separate the noise energy from the noisy speech. DCT also
produces about twice the independent spectral components of
DFT, as half of the DFT coefficients are complex conjugates. Hence,
the feasibility of using DCT for speech enhancement have been
examined through methods such as the Wiener filter [11,12], the
dual-gain Wiener (DGW) filter [13] and the dual-MMSE (DMMSE)
[16] estimator. The latter two methods use bilateral gains that deal
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with the constructive and destructive interference of the speech
and noise DCT coefficients, respectively. Nonetheless, all dual gain
estimators require a separate polarity algorithm [13] to determine
the state of interference, and yet erroneous polarity estimation
introduces undesirable artifacts [16]. These studies assume the
speech and noise DCT coefficients are statistically independent
Gaussian random variables. However, it has been remarked that
clean speech components in the decorrelated domains are more
accurately described by super-Gaussian distributions such as
Laplacian (double-sided Exponential) or double-sided Gamma dis-
tributions, and noise components can be appropriately modeled by
Gaussian distributions [7,22,23]. Thus, improved MMSE spectral
estimators have been derived by assuming that DCT speech coeffi-
cients are super-Gaussian distributed and noise coefficients are
either Gaussian distributed, i.e., [18–20], or Laplacian distributed,
i.e., [17]. Methods introduced in [19,20] utilize Hidden Markov
Model (HMM) parameter estimation and multivariate distribution
for signal modeling. Here, we focus on uni-variate distributions,
the derived closed-form solutions can be easily extended to a mul-
tivariate model. Notably, the estimators with DCT speech coeffi-
cients modeled as super-Gaussian distribution yields better
performance than Gaussian model based estimators. Hitherto
DCT-based speech enhancement algorithms concentrate on
enhancing each spectral coefficients, and therefore they are not
optimal for enhancing the STSA (refer to Table 1).

Despite theoretical advantages of the DCT, most speech
enhancement methods still prefer the DFT, which has readily avail-
able STSA estimators [24]. Related work initialized by Ephraim and
Malah [6] models the speech and noise DFT coefficients as inde-
pendent circular-complex Gaussian random variables, partially
due to mathematical convenience. The assumption of Gaussian pri-
ors implies the amplitudes and phases of DFT coefficients are sta-
tistically independent. Consequently, the STSA estimator can be
elegantly reduced to a closed-form expression. It also takes into
account the Speech Presence Uncertainty (SPU) in the noisy obser-
vations and further reduced residual noise [6]. Later, many STSA
estimators have been proposed incorporating super-Gaussian pri-
ors for speech [8,9,15]. However, utilizing super-Gaussian speech
models complicates the derivation of the estimators since the
amplitudes and phases of the DFT coefficients are no longer inde-
pendent. Some approximations for the conditional distribution of
the clean speech amplitude and the Bessel function must be made
due to the intractability of the closed-form solution [8,9]. This
paper will show that this issue can be resolved by using a real-
valued transform such as DCT. On the other hand, most STSA-
estimation-based estimators use noisy phase for speech recon-
struction thereby introducing an upper bound on the maximum
improvement in speech quality [25]. Several methods have incor-
porated the phase estimation to alleviate this issue, but the perfor-
mance of these methods remains sub-optimal [26–28]. A joint
MMSE estimator of clean speech amplitude and phase was derived
in [27] using the harmonic model-based method in [26] as prior
phase information. It shows improved PESQ scores at the expense
Table 1
Classification of the MMSE estimators with respect to transform domain. The noise is assum
solutions exist.

Complex DFT

Coefficient Spectral Amplitude

Wiener filter [10] GEM , complex Gaussian [6]
super-Gaussian prior [7] complex Laplacian prior [8]⁄

generalized Gamma [14] GL�FSA , generalized Gamma [9]⁄,[15]⁄ du
NBLG

2

of degraded speech intelligibility [27,29]. This is due to the buzzi-
ness in the phase-enhanced signal as reported in [26,28–30]. These
artifacts mainly stem from the spurious harmonics introduced par-
ticularly at high frequencies [26,30]. Consequently, speech distor-
tion outweighs the achievable noise suppression especially at
high SNRs leads to limitations on the effectiveness of this method
[30]. Later, [28] derived an improved phase-aware MMSE STSA
estimator where the cost function includes both a weighting factor
and a power law. Unlike [27], it has been suggested in [28] using
the maximum a posteriori phase estimator (MAP) [31] or the
geometry-based method [32] to obtain the prior phase informa-
tion. When compared to the phase-unaware STSA-estimation solu-
tions, although [28] improves the perceived quality in terms of
PESQ measure, it degrades speech intelligibility considerably in
low SNRs in terms of STOI (Fig. 8, [28]).

Recently, the use of DCT Polarity Spectrum (PoS) in the context
of STSA-estimation-based speech enhancement has been explored
in [33]. For this, a theoretical analysis showed that the optimal
estimate of the clean PoS is the noisy PoS under the Gaussian dis-
tribution assumptions and the constrained MMSE criterion. To ver-
ify this result experimentally, the effect of using the noisy PoS for
signal resynthesis as compared to using the noisy PhS is evaluated
through objective measures (i.e., PESQ [34]) and human listening
tests. In these experiments, clean speech corpora were degraded
with Gaussian white noise, at different segmental SNRs. The noisy
speech corpora were modified and reconstructed in two transform
domains separately: for DCT, the ideally filtered amplitudes were
combined with the noisy sign components and similarly for DFT,
the ideally filtered DFT amplitudes were combined with the noisy
DFT phases. Thus the effects on the perceived speech quality are a
result from the changes in PoS or PhS only. Results show the DCT
PoS is better able to conserve the speech quality than the DFT
PhS for the same level of global distortion. To examine this, we
conduct both objective and subjective listening tests and discuss
the results in Section 2.

In this paper, we derive DCT-based MMSE STSA estimators
assuming that speech and noise coefficients are modeled by
super-Gaussian and Gaussian distributions, respectively. They are
MMSE estimators of the spectral amplitudes, rather than the
MMSE estimators of the spectral coefficients (already reported
previously, see Table 1), and these estimators were derived in
closed-form without making any approximations. We also derive
the estimators under the speech presence uncertainty. To deter-
mine the variance of the noise, we modified the noise estimator
presented in [35], so that it can be used in combination with the
DCT-based algorithms (see Appendix D). We chose this noise esti-
mator due to its popularity as a baseline method at this present
time. Moreover, the a priori SNR is estimated using the Decision-
Directed (DD) [6] approach. The performance of our new estima-
tors are compared to other DCT-based approaches such as
[11,18,13,17], as well as some of the well known DFT-based MMSE
STSA estimators, e.g., [6,9]. Additionally, it is investigated how the
proposed system performs compared to the State-Of-The-Art
ed to be additive and Gaussian. ⁄ indicate estimators for which no exact closed-form

DCT

Coefficient Spectral Amplitude (proposed)

GW , Wiener filter [11,12] GN , Gaussian, refer to (15)
DGW, dual-gain Wiener [13] GL , Laplacian, refer to (22)

al-gain MMSE, Gaussian prior [16] GG , Gamma, refer to (27)
, dual-gain MMSE, Laplacian prior [17]

GL�CSC , super-Gaussian [18]
multivariate Laplacian [19,20]
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(SOTA) DFT-based phase-aware systems. This is of interest since
the proposed STSA estimators rely on no prior knowledge of the
DCT polarity compared to phase-aware STSA estimators, which
rely on prior knowledge of the DFT phase.

This paper is organized as follows. In Section 2, the effect of
using noisy polarity spectrum for signal resynthesis is analysed
through objective and subjective measures. In Section 3, we
explain the statistical models and assumptions used. Section 4
derives the optimal MMSE estimators of DCT spectral amplitudes,
while Section 5 examines the new estimators under speech pres-
ence uncertainty. Section 6 evaluates the proposed estimators in
various noise conditions, showing similar or improved perfor-
mance in enhancing speech compared to competing algorithms.
Finally, in Section 8, we discuss the results and draw conclusions.

2. The effect of using noisy polarity spectrum for speech
resynthesis

In this section we explore the relevance of DCT polarity spec-
trum in the context of STSA-estimation-based speech enhance-
ment. To achieve this, we use the approach described in [Sec.III,
B-(b)] [33] to create polarity-only (PO) and phase-only (PhO) stim-
uli. The PO (or PhO) stimuli was generated by adding a controlled
level of distortion into the polarity spectrum (or the phase spec-
trum), while keeping its spectral amplitudes fixed from the clean
input. Thus the effects on the perceived speech quality are a result
from the changes in PoS (or PhS) only. The distortion was added
with respect to the Segmental SNR [SegSNR, as defined in Sec-
tion 6.3, (41)].

The Perceptual Estimation of the Speech Quality (PESQ) [34]
metric was employed as an objective speech quality measure.
The results of testing using the modified signals with specified
SegSNR, are shown in Fig. 1. It exhibits that for both PO and PhO
Fig. 1. Perceived quality estimation for Polarity-Only (PO, solid line), Phase-Only (P

3

stimuli the quality measure declines linearly as the distortion
increases; however, it graded higher for the PO stimuli than the
PhO stimuli at all given SegSNR values.

For a more reliable indication of the stimuli quality, we further
conducted three subjective tests, at three distinct SegSNR values:
�5, 0, and 5 dB. Themean subjective preference (%) scores was used
as the subjective quality measure. Mean subjective preference (%)
scores were determined from a series of AB listening test [36].
Details about the subjective testing procedure are given inAppendix
A. The results alongwith standard error bars are illustrated in Fig. 2.
As expected, the clean speech stimuli achieved the highest subjec-
tive preference, while noisy speech stimuli were never preferred
amongother stimuli types. Explicitly, the POstimuli achievedhigher
preference score compared to the PhO stimuli for all three tests.

Experimental results suggest that the DCT polarity spectrum is
more capable of conserving the speech quality than the DFT phase
spectrum for the same level of global distortion. Since unless the
noise energy is greater than the speech energy at a particular fre-
quency bin, the PoS will not be corrupted [33]. This allows PoS to
have a higher degree of distortion tolerance than the PhS. Hence,
the approximation of the clean PoS by its noisy counterpart can
be considered superior, with a significantly lower SNR when com-
pared to DFT-based methods. Therefore, speech enhancement can
be achieved by combining the noisy polarity spectrum with accu-
rately estimated DCT spectral amplitudes. In the successive three
sections, we will develop optimal MMSE estimators of DCT spectral
amplitudes.

3. Signal Models in the DCT domain

Let the clean speech signal, noisy speech signal and noise signal
be denoted by x nð Þ, y nð Þ and d nð Þ, respectively. The additive noise
model can be expressed as:
hO, dashed line) and noisy (dotted line) stimuli as a function Segmental SNR.
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Fig. 2. Mean preference scores (with standard error bars) for four stimuli types at: (a) �5 dB, (b) 0 dB, and (c) 5 dB Segmental SNR (SegSNR).
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y nð Þ ¼ x nð Þ þ d nð Þ; 0 6 n 6 N � 1 ð1Þ
The short-time DCT analysis of the observed speech signal, y nð Þ, is
given by

Y i; kð Þ ¼ mk

XNw�1

n¼0

y nþ iNsð Þw nð Þ cos 2nþ 1ð Þkp
2L

� �
ð2Þ

where 0 6 k 6 L� 1 and:

cmk ¼

ffiffi
1
L

q
for k ¼ 0ffiffi

2
L

q
for k– 0

8><>: ð3Þ

n, k and i are the discrete time, frequency and frame index, respec-
tively. w nð Þ is the analysis window function of length Nw. Ns and L
are the length of the frame shift and frequency analysis,
respectively.

Let Y i; kð Þ , /Y i; kð ÞjY i; kð Þj, X i; kð Þ, D i; kð Þ denote the DCT spec-
tral coefficients of the noisy y nð Þ, the clean speech x nð Þ, and the
noise signal d nð Þ, respectively. We assume that X i; kð Þ and D i; kð Þ
are statistically independent with zero mean. For better readabil-
ity, the frame index i and the frequency index k are subsequently
omitted and consider a single-DCT coefficient at a given time–fre-
quency instant. Equation (1) can be represented in the DCT domain
as:

/Y jY j ¼ /X jXj þ /DjDj ð4Þ
with Y given by (2). For this study, we denote the modulus, jYj, and
signs of the DCT spectral coefficients, /Y ¼ sgn Yð Þ, as the Absolute
Spectrum (AS) and Polarity Spectrum (PoS) of the DCT spectral coef-
ficients Y , respectively (and similarly with X and D). Our task is to
estimate the modulus jXj from the degraded signal Y . The optimal
solution can be computed as a gain function multiplied by the noisy
DCT STSA:

jbX j , G �; �ð ÞjYj ð5Þ

We use capital letters and its corresponding lower case letters to
denote the random variable (R.V.) and its realization, respectively,

and a hat symbol to denote its estimate, i.e.,jbX j. It has been shown
that in [33], the noisy PoS is the best estimate of the original PoS
under the constrained MMSE criterion. Therefore, we combine the

enhanced AS, jbX j, with the noisy PoS, /Y , to get the final estimate
of the spectral componentbX ffi /Y jbX j , G �; �ð ÞY ð6Þ
The Gaussian assumption holds for the distribution of the noise
coefficients:
4

p Dð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
rD

exp � D2

2r2
D

 !
ð7Þ

where p �ð Þ denotes the probability density function (PDF) and r2
D

denotes the variance of the noise spectral coefficients. Then, the
Gaussian, the Laplacian, and the Gamma priors for the clean speech
coefficients are defined as follows [37,18]:

� Gaussian speech prior
p Xð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
rX

exp � X2

2r2
X

 !
ð8Þ
� Laplacian speech prior
p Xð Þ ¼ 1ffiffiffi
2

p
rX

exp �
ffiffiffi
2

p
jXj

rX

 !
ð9Þ
� Double-sided Gamma speech prior
p Xð Þ ¼
ffiffiffi
34

p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2prX

p jXj�1
2 exp �

ffiffiffi
3

p
jXj

2rX

 !
ð10Þ

ere rX and r2
X are the standard deviation and variance of the

an DCT coefficients, respectively. Note that the speech PDFs
d in our paper are different from [7], despite of using the same
ation of [37]. The PDFs of the imaginary and real parts of the DFT
fficient as listed in [7], use the variance of the complex DFT
fficient in the expression.
4. MMSE Estimation of DCT Spectral Amplitude

This section derives MMSE estimators of clean DCT STSA when
the speech prior is modeled by a Gaussian, Laplacian or Gamma
PDF, and the noise is Gaussian distributed. With the assumption
that the DCT spectral coefficients are statistically independent,
the MMSE estimator is obtained by computing the conditional
expectation [6,9,15]:

jbX j ¼ E jXj jYf g ¼
Z 1

0
jxjp jxj jYð Þdjxj ð11Þ

where E �f g denotes the expectation operator. Since jXj is a two-to-
one function of X in that both þx and �xmap to jxj, the probabilistic
relationship between X and jXj can be expressed as:

p jXj ¼ xð Þ ¼ p X ¼ jxjð Þ þ p X ¼ �jxjð Þ ð12Þ
Utilizing this property, we can evaluate the expectation integral in
(11) directly from the PDF of p X jYð Þ:
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jbX j ¼ Z 1

�1
jxjp xjYð Þdx ð13aÞ

¼
R1
�1 jxjp Yjxð Þp xð ÞdxR1
�1 p Y jxð Þp xð Þdx ð13bÞ

As given by (4), the noisy coefficient Y is the sum of two indepen-
dent random variables, which imply that the conditional PDF of Y
given X is

p YjXð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
rD

exp
� Y � Xð Þ2

2r2
D

" #
ð14Þ
4.1. MMSE STSA estimator for Gaussian speech Prior

For the Gaussian speech prior, the MMSE estimator of the clean
speech spectral amplitudes is given by (the derivation is compar-
able with [6], see Appendix B)

jbxj ¼ n
1þ n

ffiffiffiffiffiffiffi
2
pv

r
exp �v

2

� �
þ erf

ffiffiffiffi
v
2

r� �( )
jY j

, GN n; cð Þ jY j ð15Þ
where erf �ð Þ denotes the error function [eq.8.250.1][38] and v is
defined by

v , n
1þ n

c ð16Þ

where n and c are the a priori and a posteriori signal-to-noise (SNR),
respectively and are defined by [6]

n ,
E jXj2
n o

E jD2
n o

j
¼ kX

kD
¼ r2

X

r2
D

ð17Þ

c , jYj2

E jDj2
n o ¼ jYj2

r2
D

ð18Þ

It is interesting to note that for high a priori SNR, i.e., n � 1, the gain
function in (15) approximates the Wiener filter gain function which
is given by [39]

GW ¼ n
1þ n

ð19Þ

and it is independent of the a posteriori SNR, c. Therefore, GN can be
interpreted as the Wiener filter gain multiplied by a modification
factor. Moreover, the estimator (15) is derived based on the
assumption that the speech and noise variance are known. As these
values are in general not known a priori, they have to be estimated
from the noisy observations as well. We employ a MMSE-based
noise power estimator (see Appendix D) to determine the variance
of the noise samples and a ”decision-directed” (DD) approach [6] to
estimate the a priori SNR of the speech samples on a frame-to-frame
basis:

bn ið Þ ¼ max an
jbX i� 1ð Þj2br2

D i� 1ð Þ þ 1� anð Þ max c ið Þ � 1 ; 0½ � ; nmin

( )
ð20Þ

where jbX i� 1ð Þj and br2
D i� 1ð Þ are the estimates of the spectral

amplitude and the noise variance in the past frame, respectively.
The max �f g operator denotes the maximum function to ensure
the positiveness of the estimator, while an ¼ 0:98 (was determined
by simulations and informal listening tests in [6]) is the smoothing
factor and nmin ¼ �25dB is the SNR floor value for eliminating low-
level musical noise [40].
5

The relation between GN and GEM [6] can be observed from their
respective gain curves. The closeness of the gain curves, which cor-
respond to the same value of n, implies that GN and GEM are nearly
equivalent (Fig. 3). However, despite their similarity in behavior,
GN may yield better perceived speech quality than GEM . Because
GN or GEM only enhances the STSA of the noisy observation and
leaves its polarity or phase spectrum unmodified; and using the
noisy polarity spectrum for signal resynthesis has fewer conse-
quences than using noisy phase spectrum (Section 2). On the other
hand, we can also observe that both GN and GEM converges to the
Wiener filter gain GW (19) at high SNRs, however, GW may result
in over-attenuation of the weak signals in low SNR conditions.

4.2. MMSE STSA estimator for Laplacian speech Prior

Now we consider the DCT coefficients of the clean speech obey
a Laplacian distribution. In analogy to the derivation developed in
[7], we designate the following shorthand notations:

Lþ ¼ rD

rX
þ jyjffiffiffi

2
p

rD

¼ 1
n0
þ

ffiffiffi
c
2

r
ð21aÞ

L� ¼ rD

rX
� jyjffiffiffi

2
p

rD

¼ 1
n0
�

ffiffiffi
c
2

r
ð21bÞ

Mþ ¼ exp Lþ2
	 
 � erfc Lþð Þ ð21cÞ

M� ¼ exp L�2	 
 � erfc L�ð Þ ð21dÞ
where erfc �ð Þ denotes the complementary error function
[eq.8.250.4] [38]. After substituting (9) and (14) into (13b) and
using [eq.3.322.2,3.462.1] [38], we obtain the optimal estimator:

jbX j ¼
2ffiffiffiffi
p

p � LþMþ þ L�M�ð Þ
Mþ þM�

ffiffiffi
2

p
rD

¼
2ffiffiffiffi
p

p � LþMþ þ L�M�ð Þ
Mþ þM�ð Þ

ffiffiffi
2
c

s8>><>>:
9>>=>>; jYj

, GL n0; cð Þ jY j ð22Þ
and the DD approach is used to estimate n0:

bn0 ið Þ ¼ max al
jbX i� 1ð ÞjbrD i� 1ð Þ þ 1� alð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max c ið Þ � 1 ; 0½ �

q
; n0min

( )
ð23Þ

with constant weighting factor al ¼ 0:91 and SNR floor value
n0min ¼ �12:5 dB. These values were determined empirically via

simulations and informal listening tests. Noting that jbX j is an even
symmetric function of Y , enables us to interchange ywith jyj in (21).

Note that the equivalent of GL in the DFT domain has no closed-
form solutions [8,9,15]. To solve this problem, the authors in [8]
approximated the join PDF of the DFT spectral amplitudes and
phase with a simplified expression. Alternatively, [9] combined
two kinds of approximations for the modified Bessel function of
the first kind to obtain numerically stable results, for a desirable
range of SNRs. Finally, numerical integration was resorted in [15]
to compute (11). Fig. 4 shows the resulting gain curve of the DFT
MMSE spectral amplitude estimator [9] GL�FSA matches closely to
the DCT estimator GL for low a priori SNRs (-20 dB 6 n 6-10 dB).
As n increases, the value of GL�FSA is up to 5 dB greater than GL

(-10 dB 6 n 65 dB). However, GL�FSA no longer offers any noise
attenuation when n is higher than 5 dB. This disadvantage is likely
a consequence of using the approximations for the Bessel
functions. Moreover, the DCT MMSE spectral coefficient estimator
with Laplacian prior [18] GL�CSC is almost identical to its DFT coun-
terpart [14] GL�FSC , for all SNR conditions. It can be seen that, the



Fig. 3. Gain curves (with n ¼ c� 1) describing: DCT MMSE spectral amplitude estimator with Gaussian prior GN n; cð Þ defined by (15), indicated with solid line; the Ephraim
and Malah solution [6] GEM (complex Gaussian speech prior), indicated with dashed line; Wiener filter solution GW defined by (19) (Gaussian speech prior, linear filter),
indicated with dash-dotted line.
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spectral coefficient estimators always suppress more noise than
the corresponding spectral amplitude estimators.

4.3. MMSE STSA estimator for double-sided Gamma speech Prior

Analogous to the Laplacian case and the derivation given in [7],
we define

Aþ ¼
ffiffiffi
3

p
rD

2rX
þ jyj
rD

¼
ffiffiffi
3

p

2n0
þ ffiffiffi

c
p ð24aÞ

A� ¼
ffiffiffi
3

p
rD

2rX
� jyj
rD

¼
ffiffiffi
3

p

2n0
� ffiffiffi

c
p ð24bÞ

and obtain the MMSE STSA estimator for Gamma speech prior by
substituting (10) and (14) into (13b) [eq.3.462.1] [38]:

jbX j ¼ rD

2

exp A2
þ
4

� �
D�3

2
Aþð Þ þ exp A2

�
4

� �
D�3

2
A�ð Þ

exp A2
þ
4

� �
D�1

2
Aþð Þ þ exp A2

�
4

� �
D�1

2
A�ð Þ

8><>:
9>=>; ð25Þ

where Dp zð Þ denotes the parabolic cylinder function defined as
[Th.9.240] [38]

Dp zð Þ ¼ 2
p
2e�

z2
4

( ffiffiffiffi
p

p

C 1�p
2

	 
U � p
2
;
1
2
;
z2

2

� �
�

ffiffiffiffiffiffiffi
2p

p
z

C � p
2

	 
U 1� p
2

;
3
2
;
z2

2

� �)
ð26Þ

where C zð Þ denotes the gamma function [Th.8.310.1] [38] and
U a; c; zð Þ is the confluent hypergeometric function [Th.9.210.1]
[38]. We again interchange y with jyj in (24) due to even symmetry
of (25) and use the same approach as given in (23) to estimate n0.
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Nevertheless, the computation of (25) for a wide dynamic range is
not trivial, and numerical problems may result when the arguments
are large. To improve numerical stability, we rewrite (25) in terms
of the modified Bessel functions (see Appendix C)

jbX j ¼ 2
ffiffiffi
c

pð Þ�1
exp A2

þ
4

� �
Sþ exp A2�

4

� �
U

exp A2
þ
4

� �
T þ exp A2�

4

� �
V

8><>:
9>=>; jYj

, GG n0; cð Þ jYj ð27Þ
where

S ¼ A
3
2þ K3

4

A2
þ
4

 !
� K1

4

A2
þ
4

 !" #
ð28aÞ

T ¼ A
1
2þK1

4

A2
þ
4

 !
ð28bÞ

U ¼ pffiffiffi
2

p jA�j
3
2 I�3

4

A2
�
4

 !
þ I1

4

A2
�
4

 !(
�/A� I3

4

A2
�
4

 !
þ I�1

4

A2
�
4

 !" #)
ð28cÞ

V ¼ pffiffiffi
2

p jA�j
1
2 I�1

4

A2
�
4

 !
� /A� I14

A2
�
4

 !" #
ð28dÞ

where /A� , sgn A�ð Þ, I�v zð Þ and Kv zð Þ denote the modified Bessel
functions of the first and second kind, respectively [eq.9.6.1] [42].

Similar to the Laplacian case, there is no closed-form solution
for the equivalent DFT-based MMSE spectral amplitude estimator
when the Gamma PDF is used [9,15]. Fig. 5 illustrates the gain



Fig. 4. Gain curves (with n ¼ c� 1) describing: DCT MMSE spectral amplitude estimator with Laplacian prior GL defined by (22), indicated with solid line; DFT MMSE spectral
amplitude estimator [9] GL�FSA with m ¼ 1 and K ¼ 20 (i.e., the Taylor series of the modified Bessel function was truncated after 20 terms), indicated with dashed line; DCT
MMSE spectral coefficient estimator with Laplacian speech prior [18] GL�CSC , indicated with dashed-dotted line; DFT MMSE spectral coefficient estimator [14] GL�FSC with m ¼ 1
and K ¼ 20, indicated with dotted line. MATLAB implementations of the algorithms presented in [9,14] are available at [41].
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characteristics for the Gamma speech model. We find a behaviour
similar to the case of Laplacian speech prior. Due to inaccurate
approximations, GG�FSA saturates at around 7 dB a priori SNR and
thus, no longer provides any noise attenuation. It is worth noting
that the difference in attenuation between the exact DCT spectral
amplitude estimator GG and the approximated DFT spectral ampli-
tude estimator [9] GG�FSA is generally small (within 1 dB) for low a
priori SNRs. This suggests that GG (or GL) can be used as a compu-
tationally simpler alternative to the DFT MMSE estimator GG�FSA (or
GL�FSA) without introducing the saturation problem at high a priori
SNRs.

4.4. Gain characteristics of the proposed MMSE STSA estimators

Gain curves for the proposed MMSE STSA estimators are shown
in Fig. 6, along with the respective curves of the well-known
Ephraim and Malah (EM) algorithm [6] as a comparison. The gain
functions are plotted against the a priori SNR, n, and the instanta-
neous SNR (ISNR), c� 1, to describe the whole variations of the
gain characteristics. Note that the relationship between n and n0

can be easily obtained as

n0 ¼
ffiffiffi
n

p
ð29Þ

As can be observed in Fig. 6, the gain curves of GN are almost iden-
tical with those obtained by the Ephraim and Malah solution. The
coinciding of the gain curves indicates that (15) and the EM MMSE
STSA estimator are nearly equivalent.

Fig. 7 illustrates the gain curves for various a priori SNR values:
n ¼ �5, 5, 10, and 15 dB. The Wiener filter gain given by (19) and
the EM solution are included for reference. For desirable acoustic
7

conditions (e.g., n ¼ 15 or 5 dB), it demonstrates the new estima-
tors converge to the Wiener filter for large values of ISNR. The gain
curves of GN follows those of GEM closely while maintain slightly
higher attenuation. It is interesting to note the dissimilarities in
behavior between the GN and GG (or GL) when the ISNR is small.
The latter delivers more attenuation than the Wiener filter. This
is due to the narrow peak of the a priori speech distribution, which
shifts spectral estimates downward. On the other hand, for unde-
sirable acoustic conditions (e.g., n ¼ �15 or �5 dB), the estimators
generally provide decreased attenuation than the Wiener filter
when the ISNR decreases. This counter-intuitive behaviour was
shown in [43] to help reduce the musical noise effect. Furthermore,
when the ISNR is large, GG (or GL) provides significantly less
attenuation than the Wiener filter. Due to the the leptokurtic (e.
g., heavy-tailed) speech prior, it is highly likely that speech is pre-
sent in this case. As a result, the estimators gain more success in
recovering the speech spectral peaks and thus, reduce the amount
of the perceived speech distortion.
5. Speech Presence Uncertainty Weighting

The above estimators were derived under the assumption that
the speech is surely present in the noisy observation. However,
speech is frequently absent during portions of silence and in voiced
speech when most speech energy concentrated in multiples of the
fundamental frequency. Therefore, improved speech enhancement
was found when the estimators utilize the uncertainty of signal
presence in the noisy spectral components [10,6,11,7,8]. Under this
model, the appearance of the signal in the noisy spectral compo-
nents is assumed to be statistically independent, along with the



Fig. 5. Gain curves (with n ¼ c� 1) describing: DCT MMSE spectral amplitude estimator with Gamma prior GG defined by (27), indicated with solid line; DFT MMSE spectral
amplitude estimator [9] GG�FSA with m ¼ 0:6 and K ¼ 20 (i.e., the Taylor series of the modified Bessel function was truncated after 20 terms), indicated with dashed line; DCT
MMSE spectral coefficient estimator with Gamma speech prior [18] GG�CSC , indicated with dashed-dotted line; DFT MMSE spectral coefficient estimator [14] GG�FSC with
m ¼ 0:6 and K ¼ 20, indicated with dotted line. MATLAB implementations of the algorithms presented in [9,14] are available at [41].
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statistical independence assumption of the spectral components in
Section 3, the MMSE estimator that incorporates speech presence
uncertainty (SPU) is given by [44,45]

jbX j ¼ E jXj jY;H1f gp H1jYð Þ ð30Þ
The a posteriori speech presence probability (SPP) can be obtained
using Bayes’ rule [44,6]

p H1jYð Þ ¼ K
Kþ 1

ð31Þ

where K denotes the generalized likelihood ratio

K ¼ p Y jH1ð Þ
p Y jH0ð Þ l ð32Þ

with l , 1� qð Þ=q, and q ¼ p H0ð Þ is the a priori probability for
speech absence. H1 and H0 represent the hypotheses of speech pre-
sence and absence, respectively. E jXj jY;H1f g is the MMSE STSA
estimator as given in (15), (22) or (27) when the speech signal is
present in the noisy spectral component. Under hypothesis H0,
Y ¼ D, and since the noise is Gaussian with zero mean and variance
r2

D, it follows that

p Y jH0ð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
rD

exp � Y2

2r2
D

 !
ð33Þ

Under hypothesis H1, Y ¼ X þ D, we have
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p Y jH1ð Þ ¼
Z 1

�1
p Y jxð Þp xð Þdx ð34Þ

Depending on the model for the speech PDF, we substitute one of
(8), (9) or (10) in conjunction with (14) into the above equation
to obtain the likelihood for speech activity. On substituting (33)
and (34) into (32), we get an expression for the likelihood ratio. Spe-
cifically, using the Gaussian speech model for the spectral compo-
nent we find

KN n; cð Þ ¼ exp v=2ð Þffiffiffiffiffiffiffiffiffiffiffiffi
1þ n

p l ð35Þ

Therefore, The amplitude estimator (30) can be written as

jbX j ¼ KN n; cð Þ
KN n; cð Þ þ 1

GN n; cð Þ jYj

, GSPU
N n; cð Þ jYj

ð36Þ

where GN �; �ð Þ is defined by (15). Similarly, for the Laplacian speech
model

jbX j ¼ KL n0; cð Þ
KL n0; cð Þ þ 1

GL n0; cð Þ jY j

, GSPU
L n0; cð Þ jY j

ð37Þ

where GL �; �ð Þ is defined by (22) and



Fig. 6. Gain curves plotted against the a priori SNR n and the instantaneous SNR c� 1 for the MMSE STSA estimators: (a) GN (Gaussian speech prior) defined by (15), (b) GL

(Laplacian speech prior) defined by (22), (c) GG (Gamma speech prior) defined by (27), and (d) the Ephraim and Malah solution GEM (complex Gaussian speech prior), as seen
in [(14)] [6].
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KL n0; cð Þ ¼
ffiffiffiffi
p

p
2n0

Mþ þM�ð Þl ð38Þ

For the Gamma speech model

jbX j ¼ KG n0; cð Þ
KG n0; cð Þ þ 1

GG n0; cð Þ jY j

, GSPU
G n0; cð Þ jY j

ð39Þ

where GG �; �ð Þ is defined by (27) and

KG n0; cð Þ ¼
ffiffiffi
34

p

4
ffiffiffiffiffiffiffiffi
pn0

p exp
A2
þ
4

 !
T þ exp

A2
�
4

 !
V

( )
l ð40Þ

Note that the original definition of n or n0 was unconditional,
whereas n or n0 now provides the conditional SNR of the spectral
component, assuming that speech is present. Nevertheless, we use
the same estimate as in (20) or (23) for the resulting estimator as
it is preferable in practice [46].
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Gain curves which result from GSPU
N , GSPU

L and GSPU
G are illustrated

in Fig. 8, along with the corresponding curves of the Ephraim and
Malah MMSE STSA estimator with SPU weighting [(30)] [6] GSPU

EM ,
as a comparison. The gain functions for q ¼ 0:2 are plotted against
the a priori SNR and the ISNR. It shows GSPU

N of (36), follows the
Ephraim and Marlah solution closely and consistently, with
slightly less attenuation in regions of high a priori SNR. Fig. 9 shows
the gain curves for different a priori SNR values: n ¼ �15,�5, 5, and
15 dB. The respective curves of Wiener filter with SPU weighting
[11] and of GSPU

EM are included for reference. It can be seen that

GSPU
EM yields around 5 dB higher attenuation than GSPU

N as ISNR
decreases and a priori SNR is high (i.e., n ¼ 15 dB). It is interesting
to compare these gain curves with those gain curves corresponding
to the same n value as depicted in Fig. 7. We found that the estima-
tors with SPU weighting generally provide more attenuation than
the MMSE STSA estimators given in Section 4. For favorable acous-
tic conditions (i.e., n ¼ 5, 15 dB), again the new estimators con-
verges to the Wiener filter as ISNR increase. As ISNR decreases,
GSPU

N gives increased attenuation for which case q ¼ 0:2, whereas
GN has decreased attenuation for which case q ¼ 0. For unfavorable



Fig. 7. Gain curves comparison for the proposed MMSE STSA estimators for (a) n ¼ �15 dB, (b) n ¼ �5 dB, (c) n ¼ 5 dB and (d) n ¼ 15 dB. The solid, dashed and dotted lines
correspond to GN (Gaussian speech prior), GL (Laplacian speech prior) and GG (Gamma speech prior), respectively. The corresponding Wiener filter solution given by (19)
(Gaussian speech prior, linear filter), and the Ephraim and Malah solution [(14)] [6] GEM (complex Gaussian speech prior), are respectively plotted with dash-dotted and
loosely dotted lines for comparison.
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acoustic conditions (i.e., n ¼ �5, �15 dB), the gain curves of GSPU
L

shows increased attenuation compared with those of GL. These
variations in gain are a result of favoring the hypothesis of signal
absence in such situations.
6. Implementation and Performance Evaluation

6.1. Test set

For the evaluation of our approach, we used 40 gender-balanced
utterances from the TSP speech database [47]. These recordings
were filtered with a linear phase, low-pass FIR filter and down-
sampled to 16 kHz. 7 kinds of additive noise sources were applied
to simulate noisy conditions. They were white noise, pink noise,
speech noise, voice babble noise, F-16 noise, car factory noise
and car Volvo-340 noise from the RSG-10 database [48], the last
five being real-world non-stationary noise types. After combina-
tion with the clean speech utterances from above, 40	 7 ¼ 280
noisy speech utterances were obtained. Each evaluation was
repeated for 0, 5, 10, 15 dB SNR conditions, respectively. The
10
results were first averaged across all the utterances for a compact
and general comparison as seen in Section 6.7 and 6.8. The objec-
tive and subjective test results for two non-stationary noise condi-
tions (i.e., voice babble noise and F-16 noise) are reported in
Section 6.9 and 6.11, respectively. The enhanced speech spectro-
grams produced by various speech enhancement algorithms are
also analyzed in Section 6.10.
6.2. Experiment setup

For spectral analysis and synthesis, we employed a Hamming
window of duration 20 ms with a 75% overlap between successive
frames, corresponding to a window length of Nw ¼ 320 and a win-
dow shift of Ns ¼ 80. The frequency analysis length was
L ¼ 2Nw ¼ 640. In implementing the new MMSE STSA estimators
(given in Section 4 and 5), the gain value can be obtained by exact
calculation or by using look up tables indexed by the a priori and
the posteriori SNR values. The completed scripts for implementing
the new estimators, as well as the enhanced utterances are avail-
able at https://github.com/SisiShi18/DCT_MMSE_STSA_EST.



Fig. 8. Gain curves for the MMSE STSA estimators incorporating speech presence uncertainty (SPU) with q ¼ 0:2. (a) GSPU
N (Gaussian speech prior) defined by (36), (b) GSPU

L

(Laplacian speech prior) defined by (37), (c) GSPU
G (Gamma speech prior) defined by ()39, and (d) the respective Ephraim and Malah solution GSPU

EM (complex Gaussian speech
prior), as seen in [(30)] [6].
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6.3. Objective quality and intelligibility measures

The performance was measured in terms of: (i) the average seg-
mental SNR (SegSNR), which is a local SNR computed over short
segments; (ii) wideband perceptual evaluation of speech quality
(PESQ) [49], which is an objective score for assessing speech qual-
ity in wideband telecommunication networks; and (iii) the short-
time objective intelligibility (STOI) improvements [50], which has
been shown to highly correlate with the intelligibility scores
obtained through listening tests [50].

The SegSNR is defined as

SegSNR ¼ 10
M

XM�1

i¼0

log10

Xi�NwþNw�1

n¼i�Nw

x2 nð Þ

Xi�NwþNw�1

n¼i�Nw

x nð Þ � x̂ nð Þ½ �2
ð41Þ

where M is the number of signal segments that contain speech. x nð Þ
and x̂ nð Þ are the clean and the enhanced speech signal, respectively.
11
Speech pauses were excluded for summation in (41) by taking only
frames with �10dB < SegSNR < 35dB.

6.4. Subjective evaluation

The objective measures predict the speech quality without
assessing the phase distortion presented in the enhanced speech
signal. In Section 2, we demonstrate that the DCT polarity spec-
trum is more capable of conserving the speech quality than the
DFT phase spectrum giving the same amount of global distortion.
Therefore, subjective evaluation was carried out through a series
of blind AB listening tests [36] to obtain an accurate estimate of
the perceived speech quality. The same subjective testing proce-
dure described in Appendix A was used. Two utterances from the
test set are used as the clean speech stimuli: sentence 9 from list
62, as uttered by male speaker MK, and sentence 9 from list 7, as
uttered by female speaker FB. To produce the noisy speech stimuli,
F-16 and voice babble noise were mixed with the clean speech sti-
muli from speaker MK and FB, respectively, at an SNR level of 5 dB.
The enhanced speech stimuli for each of the speech enhancement



Fig. 9. Gain curves for the proposed MMSE STSA estimators under speech presence uncertainty (SPU) for (a) n ¼ �15 dB, (b) n ¼ �5 dB, (c) n ¼ 5 dB and (d) n ¼ 15 dB, with
q ¼ 0:2. The solid, dashed and dotted lines correspond to GSPU

N (Gaussian speech prior) defined by (36), GSPU
L (Laplacian speech prior) defined by (37), and GSPU

G (Gamma speech
prior) defined by (39), respectively. The corresponding curves for the modified Wiener filter [11] (Gaussian speech prior, linear filter), and the Ephraim and Malah solution
[(30)] [6] GSPU

EM (complex Gaussian speech prior), are respectively indicated with dash-dotted and loosely dotted line for reference.
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methods was produced from the noisy speech stimuli. For each
utterance, all possible stimuli pair combinations were presented
to the listener. Each participant listened to a total of 220 stimuli
pair combinations. A total of five English-speaking listeners (with
normal hearing capability) participated. The average of the scores
given by the listeners, termed as mean subjective preference (%)
score, was used as an indicator for the perceived speech quality.
6.5. Specifications of the competitive methods

For benchmarking, we included the following algorithms (refer
to Table 1) in our evaluation: the Wiener filter in DCT domain
without and with SPU (case GW and GSPU

W , respectively) [11]; the
Laplacian-based MMSE DCT spectral coefficient estimator [18]
implemented without and with SPU (cases GL�CSC and GSPU

L�CSC ,
respectively); dual gain Wiener filter (case DGW) [13]; non-
linear bilateral Laplacian gain (case NBLG) estimator [17]; the
Ephraim and Malah estimator [6] without and with SPU (cases
12
GEM and GSPU
EM , respectively); MMSE DFT spectral amplitude estima-

tor [9,41], with v ¼ 1 (case GL�FSA).
6.6. Oracle and blind noise PSD estimates

To examine the influence of noise estimation accuracy on the
performance of the proposed estimators, we first run a set of
experiments using an oracle noise estimator, which is computed as

br2
D ¼ jDj2 ð42Þ

where jDj2 is the periodogram of the noise signal. The above noise
estimator was used to isolate the effect of a noise estimation algo-
rithm. We run the second set of experiments using the noise esti-
mator proposed in Appendix D and in [35] for the DCT-based
algorithms and the DFT-based algorithms, respectively. We report
the improvement (or gain) over the noisy input instead of the abso-
lute value for all the measures.



Fig. 10. Performance comparison among various estimators tested using the oracle noise estimator (left column) and blind noise estimation given the noisy speech (right
column). Results are shown in terms of PESQ, STOI and Segmental SNR improvements and averaged over seven noise types (white noise, pink noise, speech noise, voice babble
noise, F-16 noise, car factory noise and car Volvo-340 noise).
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6.7. Objective test results without SPU

Fig. 10 shows the performance of different algorithms without
SPU weighting. With the oracle noise estimator (left column),
GL�CSC , GL and GG yield the highest PESQ, STOI and SegSNR gains.
On the contrary, with the nominated noise estimators (right col-
umn) the proposed estimators outperform the benchmark algo-
rithms for all SNRs. In particular, the PESQ gain is maximum for
GL, closely followed by GG, GN , and GW . As compared to the oracle
case, GL result in significant higher PESQ scores than GL�CSC (about
0.2 higher for input SNRs above 5 dB). As the input SNR increases,
the margin of improvement offered by the proposed estimators
over the DFT-based algorithms (i.e., GEM and GL�FSA) increases.
Moreover, GL, GG and GN result in higher STOI gain than the other
algorithms for input SNR in the range 0 dB to 15 dB. Contrarily
to the PESQ scenario, the margin of improvement in case of STOI
decreases with increase in input SNR. GL and GN give about 1%
and 2% higher STOI gain over GL�CSC for SNRs less than 10 dB,
respectively. Finally, GL and GG yield the highest SegSNR gain for
all SNRs. GL gives about 1 dB higher SegSNR gain than GL�CSC for
all SNRs.

6.8. Objective test results with SPU

Fig. 11 compares the performance of various algorithmswith the
SPU weighting. For the oracle case, we found that the SPU approach
13
improves the PESQ, STOI, and SegSNR especially in low SNR condi-
tions as compared to the results in Fig. 10. Listening tests confirm
that better perceived quality is achieved during speech pauses.
When the blind noise estimate is used, the proposed estimators
consistently yield a higher PESQ, STOI and SegSNR gain than other
methods. Especially, the STOI and SegSNR score predict intelligibil-
ity and quality improvement for GSPU

L and GSPU
G over GL and GG for

input SNR in the range 0 dB to 5 dB. Whereas an intelligibility drop
is suggested for GSPU

EM as compared to GEM within the SNR range 10 to
15 dB. It implies the DCT based proposed estimators are less
affected by the signal distortions than the benchmark methods.
6.9. Objective test results for real world non-stationary noises

The objective perceived quality scores attained by each speech
enhancement algorithms over two non-stationary noise conditions
are given in Table 2 and 3. It can be seen that the proposed method
GL (Laplacian PDF), is able to produce enhanced speech at a higher
quality than other methods for coloured F-16 noise at all SNR levels
[except for SNR at 0 dB, where the proposed GG (Gamma PDF) per-
forms best]. For the voice babble noise, the proposed GN (Gaussian
PDF) and GL obtained the highest PESQ and SegSNR scores, respec-
tively. The objective intelligibility scores attained by each method
are given in Table 4. The proposed GL is able to produce more intel-
ligible enhanced speech than other methods for all conditions



Fig. 11. Performance comparison among various estimators with speech presence uncertainty (SPU) tested using the oracle noise estimator (left column) and blind noise
estimation given the noisy speech (right column). Results are shown in terms of PESQ, STOI and Segmental SNR improvements and averaged over seven noise types (white
noise, pink noise, speech noise, voice babble noise, F-16 noise, car factory noise and car Volvo-340 noise).

Table 2
Performance comparison, in terms of PESQ score gains, between various estimators
tested using the nominated MMSE noise estimator.

Noise Method 0 dB 5 dB 10 dB 15 dB

F-16 two seat GEM 0.071 0.212 0.567 0.770
GL�FSA 0.084 0.228 0.575 0.709
GW 0.121 0.375 0.689 0.990

GL�CSC 0.069 0.278 0.537 0.896
DGW 0.071 0.282 0.545 0.923
NBLG 0.098 0.315 0.628 0.989
GN 0.123 0.377 0.694 1.076
GL 0.152 0.402 0.723 1.108
GG 0.140 0.385 0.696 1.086

Voice babble GEM 0.039 0.150 0.383 0.377
GL�FSA 0.026 0.110 0.285 0.188
GW 0.044 0.161 0.271 0.259

GL�CSC 0.024 0.117 0.211 0.295
DGW 0.054 0.162 0.336 0.438
NBLG 0.067 0.208 0.452 0.528
GN 0.075 0.244 0.465 0.627
GL 0.063 0.219 0.372 0.546
GG 0.052 0.191 0.306 0.498

Table 3
Performance comparison, in terms of Segmental SNR gains, between various
estimators tested using the nominated MMSE noise estimator.

Noise Method 0 dB 5 dB 10 dB 15 dB

F-16 two seat GEM 3.974 4.333 2.184 0.917
GL�FSA 4.012 4.385 2.229 0.861
GW 5.258 4.997 3.558 1.901

GL�CSC 5.278 5.408 4.327 2.687
DGW 4.843 4.609 3.172 1.282
NBLG 4.945 4.608 3.044 0.725
GN 5.584 5.473 4.516 3.052
GL 5.980 5.750 4.779 3.135
GG 6.009 5.743 4.751 3.132

Voice babble GEM 3.433 2.342 1.595 0.640
GL�FSA 3.508 2.395 1.642 0.716
GW 4.179 2.931 2.860 1.465

GL�CSC 4.086 3.050 2.394 2.034
DGW 3.942 2.801 1.868 1.194
NBLG 4.066 2.892 1.962 1.506
GN 4.330 3.292 2.787 2.090
GL 4.558 3.399 2.878 2.236
GG 4.516 3.360 2.863 2.229
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Table 4
Performance comparison, in terms of STOI score gains, between various estimators
tested using the nominated MMSE noise estimator.

Noise Method 0 dB 5 dB 10 dB 15 dB

F-16 two seat GEM 0.096 0.086 0.063 0.043
GL�FSA 0.083 0.091 0.067 0.049
GW 0.120 0.129 0.092 0.078

GL�CSC 0.118 0.128 0.096 0.085
DGW 0.114 0.124 0.092 0.080
NBLG 0.121 0.126 0.093 0.079
GN 0.139 0.131 0.101 0.086
GL 0.146 0.143 0.107 0.089
GG 0.143 0.142 0.106 0.089

Voice babble GEM 0.014 0.035 0.059 0.046
GL�FSA 0.012 0.041 0.061 0.049
GW 0.044 0.077 0.074 0.062

GL�CSC 0.046 0.084 0.087 0.067
DGW 0.049 0.079 0.082 0.065
NBLG 0.051 0.079 0.079 0.063
GN 0.054 0.085 0.082 0.079
GL 0.049 0.089 0.087 0.081
GG 0.046 0.090 0.086 0.080

Fig. 12. Spectrograms of (a) the clean sentence, (b) the sentence corrupted by non-stat
speech enhancement algorithm (see Table 1). The sentence ’Pitch the straw through the
[47]. The nominated MMSE noise estimator introduced in Appendix D and in [35] were u
directed approach [6] was used for the a priori SNR estimation.
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(except for voice babble at 0 dB and 5 dB, where the proposed GN

and GG gives the best scores, respectively).

6.10. Spectrogram analysis

This section analyzes the enhanced speech spectrograms pro-
duced by each of the speech enhancement algorithms for the sti-
muli set described in Section 6.4. Specifically, Fig. 12 (a) shows
the spectrogram of the clean speech (male utterance, MK62_09).
F-16 noise at an SNR level of 0 dB is used to create the noisy speech
in Fig. 12 (b). The enhanced speech produced by the proposed
methods are shown in Fig. 12 (h)-(j). It can be seen that the
enhanced speech produced by GL and GG contains the least amount
of residual background noise than the other methods.

The spectrogram of the clean speech (female utterance,
FB07_09) is shown in Fig. 13 (a). The clean speech is corrupted
by voice babble noise at an SNR level of 0 dB to generate the noisy
speech shown in Fig. 13 (b). This is a particularly tough condition
for speech enhancement since the background noise exhibits char-
acteristics similar to the speech produced by the target speaker.
ionary F-16 noise at 0 dB, and (c)-(j) enhanced speech produced by corresponding
door of the stable’ (utterance MK62_09), was taken from the TSP speech database
sed for the DCT-based methods and DFT-based methods, respectively. The decision-



Fig. 13. Spectrograms of (a) the clean sentence, (b) the sentence corrupted by voice babble noise at 0 dB, and (c)-(j) enhanced speech produced by corresponding speech
enhancement algorithm (see Table 1). The sentence ’The dune rose from the edge of the water’ (utterance FB07_09), was taken from the TSP speech database [47]. The
nominated MMSE noise estimator introduced in Appendix D and in [35] were used for the DCT-based methods and DFT-based methods, respectively. The decision-directed
approach [6] was used for the a priori SNR estimation.
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Moreover, the background noise is more predominant than the tar-
get speech in the band from 0 to 4 kHz. The proposed estimators
utilising the Laplacian and Gamma PDF (case GL and GG, respec-
tively), are able to reduce most of the residual noise with less or
equal amount of speech distortion [Fig. 13 (i) and (j)]. Note that
Fig. 12 and 13 are representative images for most utterances,
which show similar characteristics. In both of the noise conditions,
GL (or sometimes GG) gives best results, when compare to other
approaches.

The objective measures and the spectrogram analysis predict
the speech quality without assessing the phase distortion pre-
sented in the enhanced speech signal. Prior work presented in Sec-
tion 2 indicates that the DCT polarity spectrum is more robust to
noise distortion than the DFT phase spectrum. Thus, in the next
section, we carry out human listening tests [36] to obtain an accu-
rate estimate of the perceived speech quality.

6.11. Subjective test results

The mean subjective preference scores (%) for each algorithm
are shown in Fig. 14 and 15. The F-16 noise experiment in Fig. 14
reveals that the proposed method GG, utilising the Gamma PDF,
16
was widely preferred (85%) by the listeners over the competing
methods, apart from the clean speech (100%). GL, utilising the
Laplacian PDF, is found to be the next most preferred method
(75%), following by GN (62.5%) and DGW (57.5%). These results sup-
port the objective quality scores as seen in Table 2–4, even though
GL obtained marginal higher objective scores than GG.

The subjective listening test results for the voice babble noise
condition is shown in Fig. 15. It shows that the proposed method
utilising the Laplacian PDF GL, achieves a better preference score
(77.5%) than other methods, except for the clean speech (100%).
As contrary to the previous experiment, GG was the next most pre-
ferred method (67.5%), followed by DGW (65.5%) and GL�CSC

(62.5%). These results indicate the enhanced speech generated by
the proposed methods, GL and GG, exhibits better perceived speech
quality among all other methods for two real world noise sources.

From previous results, it can be seen that the proposed methods
outperformed their DFT-based counterparts. As shown in Section 2,
this is mainly because the consequences of using noisy DCT polar-
ity spectrum is less severe than using DFT noisy phase spectrum for
signal reconstruction. Nonetheless, previous evaluations were
made within the class of methods which essentially rely on no
prior knowledge of phase or polarity. In the next section we inves-



Fig. 14. The mean subjective preference score (%) comparison for each speech enhancement method. The male utterance (MK62_09) corrupted with 5 dB non-stationary F-16
noise was used for the subjective tests. The error bars indicated the standard deviation of the scores.

Fig. 15. The mean subjective preference score (%) comparison for each speech enhancement method. The female utterance (FB07_09) corrupted with 5 dB voice babble noise
was used for the subjective tests. The error bars indicated the standard deviation of the scores.
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tigate how the proposed methods performs compared to the State-
Of-The-Art (SOTA) phase-aware STSA estimators, which rely on
prior knowledge of the DFT phase.

6.12. Compare to SOTA Phase-aware STSA estimators

Phase-aware STSA estimators have shown the potential to
improve the speech enhancement (SE) performance given that
the phase spectrum is accurately estimated [27,28,30]. Neverthe-
less, phase estimation is still a challenging task mainly due to the
unavailability of a useful DFT phase structure [29]. The model-
based method, e.g., [26,27], requires an extra fundamental fre-
quency estimator together with a voice activity detector. An erro-
17
neous signal defection leads to buzzyness and reduced quality
compared to the level of the input noisy phase [26,27,29]. The
MAP phase estimator [31] doesn’t require a voice activity detector
but suffers from spectral leakage due to inaccurate fundamental
frequency estimations [29]. Moreover, the complexity associated
with DFT phase-aware SE systems is much larger than that asso-
ciated with the proposed DCT-based SE system. Both phase-
aware STSA estimators in [27,28] have no closed-form solutions
and thus numerical integration was required.

Given the difficulty of accurate phase estimation and complex-
ity associated with DFT phase-aware SE systems, it is of interest to
understand the performance gain of this type of systems as com-
pared to the simpler proposed system. For this, we compare the



Fig. 16. Performance comparison between the state of the art phase-aware estimators (i.e., ADP [51], AUP [27], and MAUP [28]) and the propose estimators [i.e., GN (15), GL

(22), and GG (27)] using blind a prior SNR and noise PSD estimation. The clean speech and noisy (unprocessed) speech are also included as the upper bound and lower bound
of the performance, respectively. Results are shown in terms of conventional (i.e., PESQ, STOI and Segmental SNR) and phase-aware (i.e., PD, UnRMSE, and UnHPSNR)
instrumental metrics. Scores of the metrics were averaged over seven noise types (white noise, pink noise, speech noise, voice babble noise, F-16 noise, car factory noise and
car Volvo-340 noise).

Fig. 17. The mean subjective preference score (%) comparison for each speech
enhancement method. The female utterance (FF36_08) corrupted with 5 dB voice
babble noise was used for the subjective tests. The error bars indicated the standard
deviation of the scores.
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proposed estimators with three SOTA phase-aware STSA estima-
tors: the speech amplitude estimator given deterministic phase
information (ADP) [51], the speech amplitude estimator given
uncertain phase information (AUP) [27] with b ¼ l ¼ 0:5, and the
modified AUP (MAUP) where the cost function includes both a
power law and a weighting factor [28]. We also include the clean
speech and noisy (unprocessed) speech as the upper bound and
lower bound of the performance, respectively. Along with the con-
ventional metrics such as PESQ, STOI, and SegSNR, three new
phase-aware speech quality metrics are added to further evaluate
the impact of phase modification: the phase deviation (PD), which
is a distortion metric between the noisy phase and clean phase
[52]; the unwrapped root mean square estimation error (UnRMSE)
and unwrapped harmonic phase SNR (UnHPSNR), which both mea-
sured in decibels and focused on qualifying the estimation error of
harmonic phase [53]. All the comparative estimators use the same
or equivalent basic setup, meaning that the AMS setup, the a prior
SNR estimation, and the noise PSD estimation are equal for all
methods. For the ADP or the AUP estimator, the phase information
was obtained by the model-based phase estimator [26], and for the
MAUP estimator, the MAP phase estimator [31] was used. The
Matlab implementations of above phase estimators are provided
by PhaseLab toolbox [54].
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The results obtained from the objective (Fig. 16) and and human
listening tests (Fig. 17) show that the proposed estimators are pro-
viding better performance than the SOTA phase-aware estimators.
The human listening tests can reliably quantify the character of
speech quality, or estimate the speech quality achievable by an
algorithm. It was reported that the phase-aware enhanced speech
suffer from some buzzyness (Fig. 17). As a result, the utterance
modified by the phase-aware methods (GADP %21.4, GAUP %21.4,
and GMAUP %44.6) were much less preferred by the listeners than
those enhanced by the proposed methods (GG %75, GL %73.2 and
GN %64.3). This buzzy quality was caused by the artifacts in the
harmonic structure of the resultant speech, which reported earlier
in [26,27,29]. These artifacts can be predicated as a degraded per-
ceived speech quality (e.g., PESQ, SegSNR and PD) or intelligibility
score (e.g., STOI, UnRMSE and UnHPSNR) (Fig. 16). The following
observations can also be made:

� For high SNRs, the phase estimation is even disadvantageous as
the required accuracy is very high. PD or SegSNR predicts high-
est perceived quality scores for the clean and lowest for the
noisy at low SNRs, e.g., 0 and 5 SNRs; however, at high SNRs,
e.g., 10 and 15 SNRs, it predicts the lowest for ADP and AUP
(Fig. 16). Note that, PD (or UnRMSE) penalizes the harmoniza-
tion artifacts by predicting a worse quality and thus the lower
the score the better estimated quality.

� The phase-aware measure, UnRMSE, predicts the worst quality
for AUP, where the phase structure and estimates are distorted.
Despite that both ADP and AUP use the same model-based
phase estimator, ADP obtained better UnRMSE scores than
AUP. UnHPSNR predicts the worst results for both ADP and
AUP, however, it predicts high quality for MAUP at high SNRs,
e.g., 10 and 15 dB. It is important to note that the noisy phase
at strong signal components, which mostly occur at low fre-
quencies, is still similar to the clean phase. Therefore a reason-
able value is predicted for the unprocessed speech, still lower
than the clean speech as the upper bound.

Both subjective and objective results reveal that an accurate phase
estimate is indispensable in order to benefit from the additional
phase information. Incorporating an erroneous phase estimate
strongly influence the performance of phase-aware estimators. On
the other hand, Vary [25] derived the maximum phase deviation
(defined as the difference between the clean and noisy spectral
phase), /̂dev ;max 
 0.679 radians, roughly corresponding to the
threshold of perception in phase distortion for an instantaneous
SNR (ISNR) of 6 dB. Markedly, it was demonstrated that this critical
threshold in DCT polarity spectrum is 0 dB ISNR [33], which is about
6 dB lower than the threshold in DFT phase spectrum. This means
when the ISNR is above 0 dB, leaving the DCT polarity unmodified
hasnoeffect onperceived speechquality, and theeffects solely come
from modifying the DCT amplitude; however, modifying the DFT
amplitude alonemight not achieve the same improvement and thus,
an accurate DFT phase estimation might be required.
7. Directions for future research

After many years in the shadow of DFT-based speech enhance-
ment, the DCT STSA-estimation based approach is now burgeon-
ing: with still many aspects to explore, it is an exciting research
area that is likely to lead to breakthroughs and push speech
enhancement forward. In our opinion, three main directions to fol-
low are:
19
� employing perceptually motivated optimization criteria: such
as the mean-square error of the log STSA [55], the weighted
euclidean distortion measure [56], and the b-order distortion
measure [57];

� developing a more precise a prior SNR estimator: although the
presented SE methods all strongly depend on the reliability of
the a priori SNR estimate, to the authors’ best knowledge, all
of the advanced a priori SNR estimators are formulated in the
DFT domain [2];

� incorporating polarity information for DCT STSA estimation:
since DCT coefficient is real, the issue caused by phase wrapping
in the complex DFT analysis doesn’t apply. Moreover, the DCT
polarity components have only two possible states and thus,
are mathematically easier to model and calculate than the
DFT phases.

8. Conclusions

In this paper, we have derived estimators for single-channel
speech enhancement in the DCT domain. Our approach is to opti-
mally estimate the short-time spectral amplitude (STSA) of the
DCT coefficients due to its major importance in speech perception.
To achieve this, we have derived the MMSE STSA estimators, which
are based on super-Gaussian speech priors and Gaussian noise
model. The optimal STSA estimators were fine-tuned by incorpor-
ating speech presence uncertainty in the noisy spectral compo-
nents. Moreover, we have derived the optimal MMSE estimator
of the DCT noise PSD, to be used in conjunction with the new esti-
mators. When applied to the TSP speech database [47] and simu-
lated on a wide range of noisy conditions, both objective scores
and subjective listening tests show that the proposed estimators
not only provide better perceptual quality, but also introduce less
distortions in the enhanced speech signal, relative to alternative
methods. We found that the DCT-based MMSE algorithms gener-
ally perform better than their DFT counterparts, especially when
blind noise estimation is used. Specifically, although having almost
identical gain curves as described in Section 4.4, the proposed GN

(Gaussian PDF) outperformed GEM ([6], complex Gaussian PDF) in
both the objective and subjective tests. Similar to the Gaussian
prior scenario, the objective and subjective scores suggests that
the proposed GL (Laplacian PDF) achieves a higher perceptual qual-
ity than GL�FSA ([9], for c ¼ 1, complex Laplacian PDF). Subjective
listening tests reveal that the residual noise level in the GN and
GL estimation is lower than that in the GEM and GL�FSA, respectively.
Prior work presented in Section 2 indicates that this is due to the
DCT PoS, which is more capable of conserving the speech quality
than the DFT PhS for the same level of global distortion. It is worth
noting that, the proposed estimator, GN (or GL), and the DFT-based
approach, GEM (or GL�FSA), are directly comparable techniques, with
DCT and DFT the only difference and all other factors being equiva-
lent. Consequently, the premise that the DCT can provide superior
performance is justified. Undoubtedly, there are more advanced
techniques for estimating the DFT noise PSD or the a priori SNR
but this comparison shows that the DCT has potential for better
performance overall if those techniques are adapted to it.

Regarding the priors we note that Laplacian and Gamma priors
achieve much higher SegSNR scores, mainly due to better preserva-
tion of speech spectral components. As could be judged by subjec-
tive listening, GL or GG clearly gives better enhanced speech quality
than GN and GEM . Listening results also reveal that the performance
of GL and GG are comparable. Among the algorithms based on the
Laplacian prior, GL gives similar or better noise attenuation but less
speech distortions than GL�CSC and GL�FSA. Note that the perceivable
differences between the various estimators are generally small,
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since the maximum suppression was limited to 0.1 for all methods.
Comparing the outcome of the blind experiments to the results of
the oracle experiments, we observe that the proposed estimators
are more robust to errors in practical scenarios (i.e., the noise
PSD must be estimated from the given noisy signal). Nevertheless,
the oracle information about the noise PSD results in considerable
improvements relative to the blind case. Thus, the algorithms can
still benefit from more precise noise estimates.

Finally, when compared to phase-aware DFT-based STSA esti-
mators, it was found that the proposed estimators offer better per-
ceived speech quality and were widely preferred by the listeners.
Future work will be towards on examining other optimization cri-
teria, developing a more precise a prior SNR estimator, and incor-
porating DCT polarity information to exploit the full potential of
DCT-based STSA estimation.
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Appendix A. Subjective testing procedure

In this appendix, we describe the procedure used to obtain the sub-
jective quality scores in Fig. 2. These tests were done in the form of
AB listening tests [36], in which listeners were asked to select a
preferred stimulus for each stimuli pair. The listeners were pre-
sented with three labeled options after listening to each stimuli
pair. The first and second options were used to indicate a prefer-
ence for the corresponding stimulus, while the third option was
used to indicate that the stimuli sounded the same. Pair-wise scor-
ing was employed, with a score of + 1 awarded to the preferred
version and + 0 to the other. For a similar preference response both
were awarded a score of +0.5. The participants were allowed to re-
listen to stimuli if required. Five English speakers participated in all
the subjective experiments.

In the main listening tests, one clean stimulus was always
paired with a modified stimulus. Each stimuli pair occurred twice
in the play list as the order of the stimuli pair was switched. This
avoided any bias associated with listening order. In each test, sti-
muli pairs were played back to the participants in randomized
order.

Since use of the entire corpus was not feasible for human listen-
ing tests, two utterances (one from a male speaker and one from a
female speaker) from the test set described in Section 6 were used.
Each utterance was modified as described in [Sec. III, B-(b)] [33] for
each value of SegSNR. Thus, a total of 18 modified utterances were
generated for the subjective test, and since each stimuli pair was
also played in reverse order, each participant scored 36 stimuli
pairs. Each listening test is conducted in a separated session, in a
quiet room using closed circumaural headphones at a comfortable
listening level.
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Appendix B. Derivation of (15)

Assuming Gaussian distributions for speech and noise spectral
components, it follows that the PDF of Y is also a Gaussian and
r2

Y ¼ r2
X þ r2

D. Upon substituting (8) and (14) into (13b) we obtain
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By using [eq.2.33.1,2.33.6][38] we get from (B.1)
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The equivalent form of jbX j as given in (15) is obtained from (B.2) by
using (16), (17) and (18).

Appendix C. Derivation of (27)

Using the expression for the parabolic cylinder function from
(26) and the relations [Th.9.212.2,9.212.3][38] yields
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After substituting (C.1) and (C.2) into (25), and using
[eq.9.6.2,13.6.3] [42], we obtain (27).

Appendix D. MMSE-based Noise Power Estimation

The DFT-based MMSE noise estimator proposed in [35] is com-
monly used as a baseline method for estimating the DFT noise
power spectral density (PSD). It was derived under complex Gaus-
sian distributions. It’s important to use the same noise estimation
approach when comparing the performance among different
speech enhancement algorithms. As DCT is a real-valued trans-
form, we cannot simply carry it over to the DCT domain, so an
equivalent estimator must be developed. In this section, we derive
the MMSE estimator of DCT noise PSD, to be comparable to the
method proposed in [35]. The differences between the two noise
estimators are summarised in D.3, Table 5.

The noise and speech DCT spectral coefficients are assumed to
have a Gaussian distribution. Under SPU, the optimal MMSE esti-
mation of the noise PSD is given by

E jDj2jY
n o

¼ E jDj2jY;H0

n o
p H0jYð Þ þ E jDj2jY;H1

n o
p H1jYð Þ ðD:1Þ

where p H1jYð Þ denotes the a posteriori SPP as in (31) and here
p H0jYð Þ ¼ 1� p H1jYð Þ. The conditional probability terms can be
interpreted as the smoothing factors between two estimators. In
Section D.1, we will estimate the SPP with a fixed a priori SNR,
nH1, which is optimal in terms of the total probability error. Under
hypothesis H0, jYj ¼ jDj, we can approximate the preceding estima-



Table 5
Noise estimator comparisons.

DCT Domain (proposed) DFT Domain (as given in [35])
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tor, E jDj2jY;H0

n o
, with the periodogram of the noisy speech jYj2.

Furthermore, P jYjjH0ð Þ has the folded-normal PDF [37]

P jYjjH0ð Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
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" #
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Under hypothesis H1, jYj ¼ jX þ Dj, and since Y is a Gaussian variate
with variance, r2

Y ¼ r2
X þ r2

D, the PDF for P jY jjH1ð Þ is
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where n is the a priori SNR. We can compute the optimal estimator
for speech presence as

E jDj2jY;H1

n o
¼
R1
�1 jdj2p Y jdð Þp dð ÞddR1

�1 p Yjdð Þp dð Þdd ðD:4Þ

From (8) and the additive and independence assumption of the
speech and noise, it follows that the conditional PDF p Y jDð Þ is given
by

p YjDð Þ ¼ 1ffiffiffiffiffiffiffi
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Substituting (D.5) and (7) into (D.4) and using [eq.3.46.8] [38], we
find

E jDj2jY; bn;H1

n o
¼

bnbn þ 1
br2

D þ jYj2bn þ 1
� �2 ðD:6Þ

Note that evaluation of (D.6) requires the estimates bn and brD of the
a priori SNR and noise variance, respectively. As suggested in [35],
we use the noise power estimate of the previous frame, i.e.,br2

D ¼ br2
D l� 1ð Þ, and the maximum-likelihood (ML) estimate of the

a priori SNR, i.e.,

bnml ¼ bc � 1 ¼ jYj2br2
D l� 1ð Þ � 1 ðD:7Þ

for (D.6) and attain

E jDj2jY; bn;H1

n o
¼ br2

D l� 1ð Þ ðD:8Þ

After making these approximations, the noise estimate in (D.1)
takes the form

E jDj2jY
n o

¼ p H0jYð ÞjYj2 þ p H1jYð Þbr2
D l� 1ð Þ ðD:9Þ

Therefore, when the probability of speech being present in the noisy
input is extremely low, i.e., p H1jYð Þ 
 0, the noise estimate will fol-

low the noisy speech periodogram, jY j2. Conversely, when
21
p H1jYð Þ 
 1, the noise update will cease and the noise estimate will
remain the same as the previous frame’s estimate. Following the

preceding computation of E jDj2jY
n o

, the long-term noise PSD was

then obtained via recursive smoothing with b ¼ 0:95

br2
D lð Þ ¼ b br2

D l� 1ð Þ þ 1� bð ÞE jDj2jY
n o

ðD:10Þ
D.1. a posteriori SPP estimation

The smoothing factor p H1jYð Þis a function of the likelihood ratio,
K, as in (31). Under the Gaussian assumption, we get an expression
for the conditional SPP

p H1jYð Þ ¼ 1þ p H0ð Þ
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which follows from substitution of (35) into (31). Where nH1
is a

fixed model parameter for speech presence and is used to guarantee
a desired performance in terms of false alarms and missed detec-
tions [10]. The idea of optimizing nH1

for SPP estimation has been
proposed the first time in [58]. In the next section we determine
the optimal value of nH1

.

D.2. Optimal nH1
estimation

The optimal nH1
is found by minimising the total probability of

error [59]

P� , p H0ð ÞPf þ p H1ð ÞPm ðD:12Þ
where Pf and Pm denote the probabilities of false-alarm and missed-
hit, respectively. Assuming that the two hypotheses are equally
likely (a worst case assumption [10]), P H1ð Þ ¼ P H0ð Þ ¼ 1

2. We specify
Pf as the probability that p H1jyð Þ > 1

2 when speech is absent, and Pm

as the probability that p H1jyð Þ < 1
2 when speech is present. To eval-

uate (D.12) numerically, we can express Pf and Pm in terms of
p jY jjH0ð Þ and p jYjjH1ð Þ, respectively

Pf nH1

	 
 ¼ Z 1

jy�j
p jyjjH0ð Þdjyj ¼ erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l nH1

	 
q� �
ðD:13Þ

Pm nH1
; n

	 
 ¼ Z jy�j

0
p jyjjH1ð Þdjyj ¼ erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l nH1

	 

1þ n

s0@ 1A ðD:14Þ

where jy � j is the point corresponding to p H1jyð Þ ¼ 0:5 and results
from (D.11)

jy � j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

D

nH1
þ 1

nH1

� �
ln nH1

þ 1
	 
 P H0ð Þ

P H1ð Þ
� �2( )vuut ðD:15Þ



Fig. 18. The total probability of error as a function of enH1.
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and l nH1

	 

is defined by

l nH1

	 

, jy � j2

2r2
D

¼ 1
2

nH1
þ 1

nH1

� �
ln nH1

þ 1
	 
 ðD:16Þ

The optimal nH1
is found by minimizing the total probability of error

when n is uniformly distributed between nlow ¼ 0 and nup ¼ 100,

nH1
¼ min

~nH1

Z nup

nlow

p H0ð ÞPf
enH1

� �
þ p H1ð ÞPm

enH1 ; n
� �

dn ðD:17Þ

Using [eq.4.1.1,4.1.2] [60], (D.17) can be expressed as shown in
(D.18). The lower bound 10 log nlowð Þ ¼ �1 dB and upper bound
10 log nup

	 
 ¼ 20 dB are considered appropriate for a noise reduction
application [35]. The expression given in (D.18) is plotted againstenH1 in Fig. 18. The minimum is at 10 log nH1

	 
 ¼ 15:6 dB. This is
the point of interest at which minimum P� is the criterion. There-
fore, we use 10 log nH1

	 
 ¼ 15:6 dB for (D.11), and throughout the
algorithm.

nH1
¼ min

~nH1

1
2
fnupPf

enH1

� �
þ ½ 2l enH1

� �
þ nup þ 1

� �
Pm

enH1 ; nup
� �

� 2l enH1

� �
þ 1

� �
1� Pf

enH1

� �� �

þ 2ffiffiffiffi
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l enH1

� �
nup þ 1
	 
r

exp �
l enH1

� �
nup þ 1

24 350@
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l enH1

� �r
exp �l enH1

� �h i��
ðD:18Þ
D.3. Noise estimator comparisons

The differences between the complex DFT noise estimator given
in [35] and the noise estimator proposed in D are summarized in
Table 5.
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