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Abstract

In this paper we propose two new methods of improving the ro-
bustness of Automatic Speaker Identification systems. These
methods rely on using long-term information in the speech
signal to improve the robustness of the features. The first
method involves averaging filterbank parameters from consec-
utive short-time frames over a longer window. The second
method investigates the use of frame lengths longer than gen-
erally assumed stationary. We show that these two methods re-
sult in an improvement over standard Mel Frequency Cepstral
Coefficients in the presence of additive white Gaussian noise in
speaker identification applications. Furthermore, additional im-
provements are observed at mid-range SNR when the proposed
methods are used in combination.

Index Terms: Feature averaging, analysis window duration,
long window, speaker recognition, automatic speaker identifi-
cation

1. Introduction

Automatic speech recognition (ASR) and automatic speaker
identification (ASI) have opposing goals: the former attempts
to identify the speech content within a signal independent of
the speaker-specific vocal tract characteristics, while the latter
ultimately attempts to identify the speaker independent of the
speech content. Interestingly, modern ASR and ASI systems
use the same base features, usually mel-frequency cepstral co-
efficents (MFCC), derived from the short-time magnitude spec-
trum to achieve these opposing goals.

The estimation of the magnitude spectrum using the short-
time Fourier transform (STFT) is performed due to the non-
stationary nature of the speech signal. Since the vocal tract ar-
ticulatory structures can only move at a finite speed, it is as-
sumed that at sufficiently small time periods the speech signal
can be considered stationary. For this reason, frames of 20-
30ms in length are typically chosen [1].

This short-term analysis is important in ASR, where fea-
tures in the speech signal may persist for only short periods
of time. In ASI, however, the speaker’s identity is constant
throughout the utterance. While short frames will capture the
dynamics of an individual’s vocal tract, it will also make the
model more susceptible to noise than a longer term analysis or
ensemble average.

Huang et al. proposed averaging STFT, MFCC-based
feature vectors over an extended window, which they enti-
tled short-time frequency with long-time window (SFLW), and
showed that this increased robustness to additive white Gaus-
sian noise (AWGN) in an automatic speaker verification (ASV)
application [2]. This study aims to expand on this by propos-

ing two further methods for improving the robustness of ASI.
The first method is a modification to that proposed by Huang
et al. [2], and averages short-time filterbank parameters over
longer windows. The second method investigates the use of
STFT frame lengths generally assumed non-stationary, which
we will refer to as long-time Fourier transform (LTFT) analy-
sis. Both of these methods are tested in the presence of AWGN
at several SNR.

The remainder of the paper investigates the possibility of
improving robustness through the fusion of methods using a
combination of log-likelihoods from each method, and the ef-
fective class separability provided by each method.

2. Experiment

2.1. Database

This study employed the TIMIT database, consisting of spoken
sentences sampled at 16kHz with 10 utterances each from 630
speakers [3]. The si* and sx* utterances for each speaker were
used for training (8 utterances per speaker), while the sa* utter-
ances were used for testing (2 utterances per speaker). For test-
ing purposes, the utterances were degraded by AWGN at several
SNR. Speakers from the test subset of TIMIT (168 speakers)
were used for training and testing.

2.2. Feature Generation

Two feature generation methods are proposed in this study. In
the first method, the LTFT is used to obtain spectral estimates of
the framed, pre-emphasised speech signal. The discrete LTFT
of a signal is given by:

Xk =
N−1
X

n=0

ωnxne
−

j2πkn
N , 0 ≤ k < N − 1 (1)

where ωn is an analysis window function. This is, of course,
identical to that normally employed to calculate the STFT.
However, the LTFT uses frame lengths that exceed that typi-
cally assumed stationary for speech signals. From the LTFT
spectral analysis, 12 MFCC are generated from the estimated
magnitude spectrum. To this, some combination of delta, accel-
eration and energy coefficients can be appended to generate the
final features.

In the second method, the SFLW method employed by [2]
is used. Instead of averaging the final MFCC features, however,
the Mel-filterbank parameters (prior to taking the logarithm) are
averaged across frames within the window, and the MFCC gen-
erated from these band averages: the FAVG, or filterbank aver-
aging method. Once again, some combination of delta, accel-
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Figure 1: Magnitude response of a 72ms window (16ms frames

with 8ms overlap) FAVG system.

eration and energy coefficients can be appended to generate the
final feature vector for the window.

The optimal SFLW system employed by Huang et al. in-
corporated non-overlapping windows of 72ms duration, broke
each window into 8 frames of 16ms duration with 8ms shift,
and averaged the MFCC features from those frames to produce
a feature-vector for each window [2]. The 2006 NIST Speaker
Recognition Evaluation (SRE) core tests used to evaluate their
system contains approximately 5 minutes of training conversa-
tion per speaker, and a further five minutes of test conversa-
tion [4]. In comparison, TIMIT has an average utterance length
of 3.08s. Given that 8 utterances are used to train each speaker,
an average of 24.6s of training data is available per speaker. As a
result, window overlapping was employed in this study to pro-
vide a sufficient number of features to accurately estimate the
GMM. In addition, 16ms frames with 8ms shift were employed
to allow direct comparison to the SFLW method in [2].

Huang et al. appended delta and acceleration coefficients to
the averaged MFCC features [2]. The use of overlapping win-
dows in this study, however, results in high correlation between
features from window to window; using a 256ms window with
8ms shift results in adjacent windows having 96.9% of their
data in common. This high correlation between features has the
effect of reducing the significance of the delta and acceleration
coefficients in classification for the proposed methods, although
it doesn’t affect the SFLW method.

Like the SFLW system, the FAVG method shares similar-
ities with RASTA processing of speech; in which a bandpass
filter is applied to frequency channel trajectories [5]. A 72ms
FAVG window incorporating 16ms frames with 8ms overlap,
for example, effectively applies an FIR low-pass filter with a
9.5Hz cut-off to the filterbank trajectories. Fig. 1 shows the
magnitude response (the phase response is linear) of the afore-
mentioned FAVG system.

The two proposed methods will be compared against the
optimal SFLW method from [2], and against a baseline STFT,
MFCC-based method.

2.3. Speaker Identification

A Gaussian mixture model (GMM) classifier, trained using the
expectation maximisation (EM) algorithm, was used in this
study for speaker identification [6]. A GMM classifier consists
of a linear combination of multivariate Gaussian distributions:

p(x|λ) =

K
X

k=1

PkN (x|µk, Σk), (2)
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(a) 16/8ms

(b) 200/8ms

(c) SFLW 72ms

(d) FAVG 72ms

Figure 2: ASI accuracy with MFCC features. (a) STFT with

16ms frame and 8ms frame-shift; (b) LTFT with 200ms frame

and 8ms frame-shift; (c) SFLW with 16ms frame, 8ms frame-

shift, averaged over a 72ms window; (d) FAVG with 16ms

frame, 8ms frame-shift, averaged over a 72ms window.

where K is the number of Gaussian components, Pk is the mix-
ing weight of the kth Gaussian component, and:

N (x|µk, Σk) =
1

(2π)d/2
p

|Σ|
e[−

1

2
(x−µ)T Σ−1(x−µ)], (3)

where µk and Σk are the mean vector and the covariance ma-
trix, respectively, of the kth Gaussian component. In this study,
32 mixtures with diagonal covariance matrices were used. The
speaker identification system was implemented using HTK [7],
with only clean utterances used for training. The systems were
tested on both clean utterances, and utterances degraded by
AWGN at several SNR.

2.4. System Fusion

In order to improve ASI robustness in noisy conditions whilst
still retaining high-performance in clean conditions, a fusion of
methods was used:

Λs =

M
X

m=1

αmΛm(s), (4)

where Λm(s) is the log-likelihood of speaker s using method
m, and αm is the weighting assigned to method m. In this
study, each method was given equal weighting αm.

3. Results and Discussion

3.1. Performance

The proposed methods were compared to two baselines: the op-
timal SFLW system proposed by Huang et al. [2], and a baseline
MFCC system. The baseline MFCC system and FAVG method
incorporate 16ms frames with 8ms overlap – chosen for compa-
rability as it is the base frame size used in the SFLW system.

As previously mentioned, Huang et al. [2] included delta
and acceleration coefficients in the feature vector. Their method
provides a feature vector for each 16ms frame so, given the
8ms frame overlap, 50% of the speech signal is shared between
feature vectors, allowing delta and acceleration coefficients to



Table 1: ASI accuracy (%) for the various methods using MFCC features. (a) STFT with 16ms frame and 8ms frame-shift; (b) LTFT

with 96ms frame and 8ms frame-shift; (c) LTFT with 200ms frame and 8ms frame-shift; (d) SFLW with 16ms frame, 8ms frame-shift,

averaged over a 72ms window; (e) SFLW with 16ms frame, 8ms frame-shift, averaged over a 72ms window with delta and accelaration

coefficients appended. Please note the inclusion here of the delta and acceleration parameters, as compared to the basic MFCC

parameters employed in all other methods. This was included as it was the top-performing method in [2]; (f) FAVG with 16ms frame,

8ms frame-shift, averaged over a 72ms window; (g) FAVG with 128ms frame, 8ms frame-shift, averaged over a 72ms window.

Method
SNR

∞ 40 35 30 25 20 15

(a) 16ms frame, 8ms shift 99.70 98.21 89.58 62.80 34.52 16.07 7.74

(b) 96ms frame, 8ms shift 98.81 97.02 91.67 73.51 47.92 27.68 11.90

(c) 200ms frame, 8ms shift 91.96 91.37 86.90 73.21 52.98 38.10 21.13

(d) SFLW 72ms 99.70 97.02 91.07 66.67 39.29 20.83 9.23

(e) SFLW 72ms (MFCC DA) 99.70 98.51 92.26 71.43 42.86 19.35 9.82

(f) FAVG 72ms 99.40 98.21 92.56 75.00 49.11 30.36 12.50

(g) FAVG 128ms 93.45 91.96 86.31 73.21 51.79 33.04 16.96

Table 2: ASI accuracy (%) for various fusions using MFCC features. (a) Fusion of STFT and LTFT with 16ms and 256ms frames

with 8ms frame-shift; (b) Fusion of FAVG 16ms frame / 8ms frame-shift, averaged over a 72ms window and LTFT with 200ms frame /

8ms frame-shift; (c) Fusion of FAVG 16ms frame / 8ms frame-shift, averaged over a 72ms window and LTFT with 256ms frame / 8ms

frame-shift; (d) Fusion of STFT and LTFT with 16ms, 128ms and 256ms frames with 8ms frame-shift; (e) Fusion of STFT and LTFT

with 32ms, 64ms, 128ms and 256ms frames with 8ms frame-shift.

Method
SNR

∞ 40 35 30 25 20 15

(a) [16+256]/8ms 97.92 95.54 90.77 73.51 51.79 32.14 17.26

(b) FAVG 72ms + 200/8ms 98.21 96.73 92.86 77.98 56.85 34.82 18.75

(c) FAVG 72ms + 256/8ms 97.02 95.54 91.67 80.06 58.33 36.61 19.64

(d) [16+128+256]/8ms 97.92 95.24 92.56 78.27 55.36 33.33 18.75

(e) [32+64+128+256]/8ms 99.11 96.73 93.45 76.79 54.76 32.44 16.07

provide additional separability. Using LTFT or FAVG, though,
results in a single feature vector sharing 96% (given a 200ms
frame with 8ms overlap) of the speech signal with adjacent fea-
tures, reducing the effectiveness of the delta and acceleration
coefficients. To allow a fair comparison between methods, both
the MFCC and MFCC with delta and acceleration coefficients
appended (MFCC DA) were investigated. Table 1 and Fig. 2
contain the results.

The LTFT and FAVGmethods outperform both baselines in
low SNR conditions. FAVG outperforms LTFT for 30dB SNR
and above, and vice-versa for lower SNR. LTFT outperforms
the baseline systems below 35dB – at 20dB SNR, it improves
on the baseline MFCC (16/8ms) accuracy by 22.03% (137%
relative improvement) and the SFLW system by 17.27% (83%
relative improvement). At 15dB SNR, the relative improvement
of LTFT over the baseline MFCC and SFLW systems increases
to 173% and 129% respectively.

The FAVG method is comparable above 40dB to the base-
line systems, with a maximum discrepancy of 0.3%. The FAVG
system shows improvement (up to 89% relative) over the MFCC
baseline in all but clean conditions, and outperforms the SFLW
method below 40dB by a relative improvement of up to 46%.

3.2. Model Variance

The periodogram estimate in Eq. (1) suffers from variance from
the ideal spectrum. Bartlett’s method, in which spectral esti-
mates from L consecutive segments within a frame are aver-
aged, reduces the variance by a factor of 1

L
at the expense of

spectral resolution [8, p. 974]. Welch’s method improves further

on this by overlapping the segments [8, pp. 974-977]. In speech
processing, spectral estimate variance is generally reduced by
combining frequency bins from the same frame according to the
Mel-scale, rather than applying Bartlett’s or Welch’s methods;
so, for example, a spectral estimate containing 512 frequency
bins might be reduced to 24 Mel-frequency bank parameters.
Reduced variance in the spectral estimate should result in re-
duced variance within the GMM. Given this reduction and since
the means of the GMM clusters are unlikely to change signifi-
cantly, the ratio of inter-speaker to intra-speaker variance should
increase.

The inter-class to intra-class variance ratio is a widely used
quantitative measure of the discriminability between classes.
One such variance ratio metric proposed by Theodoridis and
Koutroumbus [9, pp. 280-281] is:

J =
|Sw + Sb|

|Sw|
, (5)

where Sb is the between-class scatter matrix, and Sw is the
within-class scatter matrix. The between-class scatter matrix
Sb is defined as:

Sb =
C

X

c=1

Pc (µc − µ) (µc − µ)t
, (6)

where C is the total number of classes, µc is the mean for class
c, µ is the global mean, and Pc is the a priori probability of
class c. The within-class scatter matrix, Sw from Eq. (5), is



defined as:

Sw =
C

X

c=1

Pc

`

E
ˆ

(x− µc)(x− µc)
t˜´

, (7)

where x is a feature vector in class c.

As previously mentioned, it is expected that smaller vari-
ance within the model should result in wider margins between
speakers; thus a second measure, the mean difference in nor-
malised log-likelihood (LLH) between the first and second
most-likely speakers, was also included. The log-likelihoods
were calculated using 32-mixture GMM trained and tested over
the full TIMIT database. The variance ratio metric was cal-
culated using the raw feature vectors from the full TIMIT
database.

Table 3: Model separability by method. (a) SFLW with 16ms

frame, 8ms frame-shift, averaged over a 72ms window; (b)

FAVG with 16ms frame, 8ms frame-shift, averaged over a 72ms

window; (c) LTFT with 96ms frame and 8ms frame-shift; (b)

STFT with 16ms frame and 8ms frame-shift.

Method Variance ratio LLH
metric margin

(a) SFLW 72ms 8.66 × 105 1.650

(b) FAVG 72ms 8.01 × 105 1.617

(c) 96/8ms 4.14 × 105 1.506

(d) 16/8ms 2.65 × 105 1.265

The calculated measures are shown in Table 3. The longer
frame (96ms frame, 8ms shift) shows an increase in separability
over the baseline 16/8ms system. This is due to greater numbers
of frequency bins averaged in each Mel-frequency bank reduc-
ing the spectral estimate variance. By averaging the filter-banks,
the FAVG method shows further separability. The greatest sep-
arability is evident in the SFLW system. This is to be expected,
as the SFLW system averages the final feature vector – rather
than an intermediary step in production of the feature vector as
does FAVG – which is used directly to estimate the GMM. In
addition, a clear increase in mean LLH differences between the
two most likely speakers is evident as separability increases.

3.3. Fusion

Table 2 shows ASI accuracy for fusion of various methods,
while Fig. 3 compares a FAVG+LTFT fusion with the baseline
MFCC system and the top-performing methods described pre-
viously in the paper. Fusion (e) in Table 2 performs best for
SNR of 35dB and above. It only improves on the other pro-
posed methods, however, at 35dB, while being comparable at
higher SNR. Fusion (c) in Table 2 outperforms all other meth-
ods examined in this study by approximately 5% for SNR of 25
to 30dB, but is slightly outperformed by the LTFT method with
a 200ms window for SNR of 20dB and below.

4. Conclusions

The proposed LTFT and FAVG features show improved robust-
ness to additive white-gaussian noise in automatic speaker iden-
tification accuracy, over both baseline MFCC and SFLW fea-
tures. Furthermore, fusion of the proposed methods through a
linear combination of the log-likelihood scores produced fur-
ther improvements at particular SNR. Thus, features derived
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(a) 16/8ms

(b) 200/8ms

(c) FAVG 72ms

(d) FAVG 72ms + 256/8ms

Figure 3: ASI accuracy for various methods and fusion. (a)

STFT with 16ms frame and 8ms frame-shift; (b) LTFT with

200ms frame and 8ms frame-shift; (c) FAVG with 16ms frame,

8ms frame-shift, averaged over a 72ms window; (d) Fusion of

FAVG 16ms frame / 8ms frame-shift, averaged over a 72ms win-

dow and LTFT with 256ms frame / 8ms frame-shift.

from window lengths longer than would generally be consid-
ered stationary for speech signals are an effective alternative to
the 20-30ms windows currently in widespread use.
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