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c Performance of protein fold recognition has been improved.
c A new feature extraction method has been proposed.
c An improvement of around 10% has been observed.
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Discovering a three dimensional structure of a protein is a challenging task in biological science.

Classifying a protein into one of its folds is an intermediate step for deciphering the three dimensional

protein structure. The protein fold recognition can be done by developing feature extraction techniques

to accurately extract all the relevant information from a protein sequence and then by employing a

suitable classifier to label an unknown protein. Several feature extraction techniques have been

developed in the past but with limited recognition accuracy only. In this work, we have developed a

feature extraction technique which is based on bi-grams computed directly from Position Specific

Scoring Matrices and demonstrated its effectiveness on a benchmark dataset. The proposed technique

exhibits an absolute improvement of around 10% compared with existing feature extraction techniques.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of a three dimensional structure of a protein
from its primary structure (which is a sequence of amino acids) is
considered to be an important and challenging task in biological
science and bioinformatics. An abundance of protein sequences
are available which inherit significant biological information. The
development of computational methods to decipher protein
structure would help in understanding protein heterogeneity,
protein–protein interactions and protein–peptide interactions.
This would further help in disease diagnosis and drug design.

Proteins with different similarities and lengths can belong to
the same fold. Similarly, proteins in the same fold can have the
same major secondary structure in the same arrangement and
ll rights reserved.
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with the same topology whether or not they have a common
evolutionary origin (Craven et al., 1995; Yang et al., 2011). The
categorization of protein folds from a protein sequence is an
intermediate step in the recognition of protein structure. A wide
range of techniques have been developed for protein fold recogni-
tion which address the issue of either classifier development or
feature extraction development. For the former case, several
classifiers have been developed or used including linear discri-
minant analysis (Klein, 1986), Bayesian classifiers (Chinnasamy
et al., 2005), Bayesian decision rule (Wang and Yuan, 2000),
k-nearest neighbor (Shen and Chou, 2006; Ding and Zhang,
2008), Hidden Markov model (Bouchaffra and Tan, 2006;
Deschavanne and Tuffery, 2009), artificial neural network (Chen
et al., 2007; Ying et al., 2009), support vector machine (SVM)
(Ding and Dubchak, 2001; Shamim et al., 2007; Ghanty and Pal,
2009) and ensemble classifiers (Shen and Chou, 2009; Dehzangi
et al., 2009, 2010; Yang et al., 2011; Dehzangi, 2011; Dehzangi
and Karamizadeh, 2011). Among these classifiers, SVM (or SVM-
based for ensemble strategy) classifier exhibits quite promising
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results (Liu et al., 2012; Kurgan et al., 2008; Ghanty and Pal,
2009). For the latter case, several feature extraction techniques
have been developed. Dubchak et al. (1997) have proposed
syntactical and physicochemical-based features for protein fold
recognition. They used amino acids’ composition (AAC) as
syntactical-based features and 5 following attributes of amino
acids for deriving physicochemical-based features namely, hydro-
phobicity (H), predicted secondary structure based on normalized
frequency of a-helix (X), polarity (P), polarizability (Z) and van der
Waals volume (V). They used three descriptors (composition,
transition and distribution) to compute the features. The AAC
features comprise of 20 features and physicochemical-based
features comprise of 105 features (21 features for each of the
attributes used). The features proposed by Dubchak et al. (1997)
have been widely used in the field of protein fold recognition
(Chinnasamy et al., 2005; Krishnaraj and Reddy, 2008; Valavanis
et al., 2010; Ding and Dubchak, 2001; Dehzangi et al., 2009;
Kecman and Yang, 2009; Kavousi et al., 2011; Dehzangi and
Amnuaisuk, 2011; Chmielnicki and Stapor, 2012). Apart from
the above mentioned 5 attributes used by Dubchak et al. (1997),
features are also extracted by incorporating other attributes of the
amino acids. Some of the other attributes used are: solvent
accessibility (Zhang et al., 2010), flexibility (Najmanovich et al.,
2000), bulkiness (Huang and Tian, 2006), first and second order
entropy (Zhang et al., 2008), size of the side chain of the amino
acids (Dehzangi and Amnuaisuk, 2011). Taguchi and Gromiha
(2007) proposed features which are based on amino acids’
occurrence; Shamim et al. (2007) have extracted features from
the structural information of amino acid residues and amino acid
residue pairs; Ghanty and Pal (2009) proposed pairwise frequen-
cies of amino acids separated by one residue (PF1) and pairwise
frequencies of adjacent amino acid residues (PF2). There are 400
features each in PF1 and PF2. These pairwise frequency features
(PF) are used as in the augmented form in the study conducted by
Yang et al. (2011), thereby, having 800 features. Thus, the feature
vector of PF has 800 features. Chou (2001) proposed pseudo-
amino acid composition (A) based features to effectively repre-
sent protein sequence. Shen and Chou (2006), Kurgan et al. (2008)
and Liu et al. (2012) have shown autocorrelation features for
protein sequence, and Dehzangi and Amnuaisuk (2011) derived
features by considering more physicochemical properties.

Since the extracted features play a crucial role in deciphering
protein structure, in this paper we focus on developing feature
extraction techniques and evaluate their recognition performance
using SVM classifier. In Table 1, we summarize recognition
performance of various existing feature extraction techniques
using SVM classifier on the benchmark Ding and Dubchak (DD)
dataset (Ding and Dubchak, 2001). It can be observed from the
table that so far the highest recognition performance by a feature
extraction technique on SVM classifier is 62.8%.
Table 1
Recognition accuracy for various feature extraction techniques using SVM classi-

fier on DD-dataset.

Feature set Recognition accuracy (%)

AACþHXPZV (Ding and Dubchak, 2001) 56.0

Shamim et al. (2007) 60.5

Ghanty and Pal (2009) 59.2

Chmielnicki and Stapor (2012) 62.8

AHVPZ (Yang et al., 2011) 44.7

AX (Yang et al., 2011) 40.3

AHXPZV (Yang et al., 2011) 49.4

PF (Yang et al., 2011) 60.8

AHVPZþPF (Yang et al., 2011) 51.2

AXþPF (Yang et al., 2011) 49.4

AHXPZVþPF (Yang et al., 2011) 52.7
In the literature, Ghanty and Pal (2009) have used bi-gram
features for protein fold recognition. They have computed these
features by counting the bi-gram frequencies of occurrences from
the amino acid sequence representing the primary structure of a
given protein.1 Since all the primary protein sequences are made
of 20 amino acids, there will be 400 different combinations of
amino acids giving 400 bi-gram features. However, the number of
amino acids in a protein sequence is limited and the dimension-
ality of the bi-gram feature vector is comparatively large. There-
fore, many components in the bi-gram feature vector become
equal to zero. Thus, the use of primary sequence for computing
the bi-gram frequencies for feature extraction is not an effective
way of capturing the information. As a result classification perfor-
mance is expected to be low. Furthermore, if a protein sequence is
updated by using position specific scoring matrix (PSSM) (Altschul
et al., 1997) to obtain the consensus sequence and the bi-gram
features are extracted from the consensus sequence, this problem
of having mostly zeros in a bi-gram feature vector would still
remain.

Instead of representing the given protein by its original primary
sequence or by its consensus sequence, we propose to represent it
by its PSSM directly. We compute the bi-gram feature vector by
counting the bi-gram frequencies of occurrences from PSSM. Since
PSSM provides information about the probability of 20 amino acids
at each location of the protein sequence, we avoid zero compo-
nents in the resulting bi-gram feature vector. Therefore, our
procedure would retrieve more information useful for the protein
fold recognition.

We investigate our feature extraction procedure on the bench-
mark DD-dataset and show that it achieves protein fold recogni-
tion accuracy of 69.5% (using SVM as a classifier). The obtained
result is approximately 7% better than the result of the state-of-
the-art feature extraction technique. We also merge the training
set and test set of DD-dataset to perform k-fold cross-validation
and obtain recognition accuracy around 10% better than the
recognition accuracy of the existing feature extraction techniques.
2. Support Vector Machine for the evaluation of feature
extraction techniques

SVM is considered to be the state-of-the-art machine learning
and pattern classification algorithm (Vapnik, 1995). It has been
extensively applied in classification and regression tasks. SVM aims
to find maximum margin hyperplane to minimize classification
error. SVM model is closely related to the neural network. In fact, a
SVM model using a sigmoid kernel function is equivalent to a two-
layer, perceptron neural network (Delashmit and Manry, 2005).
A function called the kernel K is used to project the data from input
space to a new feature space, and if this projection is non-linear it
allows non-linear decision boundaries (Bishop, 2006).

To find a decision boundary between two classes, SVM attempts
to maximize the margin between the classes, and choose linear
separations in a feature space. The classification of some known
point in input space xi is yi which is defined to be either �1 or þ1.
If x’ is a point in input space with unknown classification then

y0 ¼ sign
Xn

i ¼ 1

aiyiK xi,x
0ð Þþb

 !
ð1Þ

where y0 is the predicted class of point x0. The function KðÞ is the
kernel; n is the number of support vectors; ai are adjustable
1 We will call this sequence in the remainder of the text as the primary

protein sequence, primary sequence, original protein sequence or the protein

sequence interchangeably.
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weights and b is a bias. In this study, the complexity parameter (C)
(WEKA http://www.cs.waikato.ac.nz/ml/weka/; Chang and Lin,
2011; Keerthi et al., 2001; Platt, 1998) is set to be 1000. We use
libsvm for training and testing with the radial basis function (RBF)
kernel (Chang and Lin, 2011). The RBF kernel function can be given
by K zi,zj

� �
¼ exp �g*:zi�zj:2̂

� �
, where g is gamma parameter

which is set to be 0:0038. These g and C parameters are tunable
parameters which are determined here by doing cross-validation
on the training set such that the classification accuracy is opti-
mized. The g and C parameters are same for all the results except
otherwise stated.
3. Dataset

In this study, the benchmark DD protein sequence dataset
(Ding and Dubchak, 2001) have been employed. The DD-dataset
consists of 311 protein sequences in the training set where two
proteins have no more than 35% of sequence identity for aligned
subsequence longer than 80 residues. The test set consists of 383
protein sequences where sequence identity is less than 40%. Both
the sets belong to 27 SCOP folds (Murzin et al., 1995; http://scop.
mrc-lmb.cam.ac.uk/scop/) which represented all major structural
classes: a, b, a=b, and aþb (Ding and Dubchak, 2001).
The summary of DD-dataset has been given in Table 2.
4. Feature extraction technique for protein fold recognition

In this section, we present the proposed bi-gram feature
extraction technique using PSSM linear probabilities. It has been
mentioned in the Introduction section that the computed bi-gram
Table 2
Summary of DD-dataset.

Fold Number of

training vectors

Number of

test vectors

a
Globin-like 13 6

Cytochromec 7 9

DNA-binding 3-helical bundle 12 20

4-Helical up-and-down bundle 7 8

4-Helical cytokines 9 9

Alpha; EF-hand 6 9

b
30 44

Cupredoxins 9 12

Viral coat and capsid proteins 16 13

ConA-like lectins/glucanases 7 6

SH3-like barrel 8 8

OB-fold 13 19

Trefoil 8 4

Trypsin-like serine proteases 9 4

Lipocalins 9 7

a=b
(TIM)-barrel 29 48

FAD (also NAD)-binding motif 11 12

Flavodoxin-like 11 13

NAD (P)-binding Rossmann-fold 13 27

P-loop containing nucleotide 10 12

Thioredoxin-like 9 8

Ribonuclease H-like motif 10 12

Hydrolases 11 7

Periplasmic binding protein-like 11 4

aþb
b -Grasp 7 8

Ferredoxin-like 13 27

Small inhibitors, toxins, lectins 13 27
feature vector from the original protein sequence or the con-
sensus sequence is very sparse as not all the combinations of
amino acids are found in a protein sequence. In this paper, we do
not represent the given protein by its primary sequence or by its
consensus sequence. Instead we represent it by its PSSM and
compute the bi-gram features using the probability information
contained in PSSM. Let P be the matrix representing PSSM of a
given protein. The matrix P will have L rows and 20 columns
(where L is the length of the primary sequence). Its element at ith-
row and jth-column is denoted by pi,j which can be interpreted as
the relative probability of jth amino acid at the ith location of the
primary protein sequence (with

P20
j ¼ 1 pi,j ¼ 1, for i¼ 1,2,. . .,L). The

frequency of occurrence of transition from mth amino acid to nth
amino acid is computed as follows:

Bm,n ¼
XL�1

i ¼ 1
pi,mpiþ1,n, where 1rmr20 and 1rnr20 ð2Þ

This equation gives 400 frequencies of occurrences Bm,n;m¼

1,. . .,20;n¼ 1,. . .,20 for 400 bi-gram transitions. We call the
matrix B as the bi-gram occurrence matrix and its 400 elements
define our bi-gram feature vector F; i.e.,

F ¼ ½B1,1,B1,2,. . .,B1,20,B2,1,. . .,B2,20,. . .,B20,1,. . .,B20,20�
T ð3Þ

where the superscript T indicates the transpose of the vector.
These bi-gram features can also be written in the form of pseudo
amino acid composition (Chou, 2011). To do this, let us write the
bi-gram feature vector as

F ¼ ½c1,c2,. . .,cu,. . .,cO�
T ð4Þ

where O¼mn¼ 400 is the dimensionality of the feature vector F.
The components of feature vector F can be expressed as the
pseudo amino acid features as follows:

cu ¼

B1,u 1rur20ð Þ

B2,u�20 21rur40ð Þ

. . .

� � �

B20,u�380 381rur400ð Þ

8>>>>>><
>>>>>>:

ð5Þ

Since in the computation of feature vector F all the information
of PSSM probability have been used, intuitively F contains more
Fig. 1. A flow-diagram of protein sequence classification using bi-grams.
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Table 5
Bi-gram occurrence matrix B.

0.4775 0.6775 0.4450

0.4125 0.5000 0.3875

0.3100 0.4725 0.3175
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information useful for protein fold recognition task than comput-
ing bi-gram directly from the protein sequence (or from a
consensus sequence). From biological perspective, proteins in
the same fold often have amino-acid subsequences that are highly
conserved. The bi-gram probabilities characterize the subse-
quence of amino acids in these conserved regions. If a certain
subsequence is conserved in a fold, then each protein in that fold
will have a group of bi-grams from that conserved region. This
can help in discriminating folds that do not have the same amino
acids subsequences. A flow-diagram showing the classification of
a protein sequence into a protein fold has been depicted in Fig. 1.

In addition to bi-gram features, we can also compute mono-
gram features from the probability information contained in
PSSM. Since there are 20 amino acids, we will have 20 mono-
gram features. These are computed as follows:

Mm ¼
XL

i ¼ 1

pi,m,where 1rmr20 ð6Þ

Instead of computing mono-gram features from PSSM as done
in Eq. (6), we can compute the frequency of occurrence of
individual mono-grams (or amino acids) directly from the primary
protein sequence itself. This procedure has been used in the past to
compute the occurrence feature by Taguchi and Gromiha (2007).
5. An illustration of bi-gram feature computation
using a toy problem

In order to illustrate the bi-gram feature extraction method, let
us consider a toy example of a protein with primary sequence
RRARA of length L¼ 5. Note that we assume that the toy proteins
are made of 3 amino acids A, R and T. Table 3 shows the PSSM of
this protein.

Using the probability information in PSSM, we can find out the
consensus sequence for this protein as AARAR. The bi-gram
features computed from the original protein sequence RRARA

and the consensus sequence RRARA are shown in Table 4.
Therefore, the bi-gram feature vectors of the original protein

sequence and the consensus sequence will be {0,1,0,2,1,0,0,0,0}
and {1,2,0,1,0,0,0,0}, respectively. From this we can see that both
the primary sequence as well as the consensus sequence produce
many zero components in the bi-gram feature vector. When we
compute the bi-gram feature vector using Eq. (2) from PSSM
(as given in Table 3), we obtain the bi-gram occurrence matrix as
shown in Table 5. This gives the bi-gram feature vector as {0.4775,
0.6775, 0.445, 0.4125, 0.5, 0.3875, 0.31, 0.4725, 0.3175}.
Table 3
PSSM of the protein RRARA.

Amino acids A R T

R 0.50 0.25 0.25

R 0.45 0.30 0.25

A 0.25 0.50 0.25

R 0.40 0.25 0.35

A 0.10 0.60 0.30

Table 4
Bi-gram feature vectors F computed from the original protein sequence and the

consensus sequence. From column 2 to column 10 are the bi-gram frequencies.

F AA AR AT RA RR RT TA TR TT

Frequency (original protein sequence) 0 1 0 2 1 0 0 0 0

Frequency (consensus sequence) 1 2 0 1 0 0 0 0 0
Thus, the bi-gram feature vector computed from PSSM using
Eq. (2) does not show the sparsity as seen earlier when it was
computed using the original primary sequence or the consensus
sequence.

For completeness, we have also computed the mono-gram
feature vector using Eq. (6) from PSSM (as given in Table 3).
This gives the mono-gram feature vector as {1.7,1.9,1.4}.
6. Experimentation

We perform computational experiments on the benchmark
DD-dataset to show the effectiveness of our proposed method.
The DD-dataset has separated training set and test set (as shown
in Table 2). We employ the SVM classifier from libsvm to find the
accuracy of protein fold recognition where the accuracy is defined
as the percentage of correctly recognized proteins to all the
proteins of the test set. The SVM classifier is widely used in
classification task. It finds maximum margin hyperplane to mini-
mize classification error.

In statistical prediction, the following three procedures are
often used to examine a predictor for its effectiveness in practical
application: independent dataset test, subsampling test, and
jackknife test. However, of the three test procedures, the jackknife
test is deemed the least arbitrary that can always yield a unique
result for a given benchmark dataset as elaborated in Chou and
Shen (2010) and demonstrated by equations 28–30 in Chou
(2011). Accordingly, the jackknife test has been increasingly and
widely used by investigators to examine the quality of various
predictors (see, e.g., Mohabatkar, 2010; Qiu and Wang, 2012;
Sahu and Panda, 2010; Esmaeili et al., 2010; Hayat and Khan,
2011, 2012; Shi et al., 2012; Kandaswamy et al., 2011). However,
to reduce the computational time, we adopted the independent
dataset and k-fold cross-validation in this study as done by many
investigators with SVM as the prediction engine. Thereby, the
experiment has two parts. In the first part, we employ the training
set to estimate the parameters of the classifier and use a separate
test set to find the accuracy of protein fold recognition. The
accuracies thereby obtained are compared with the accuracies
reported in the literature. In the second part, we merge the training
set and test set of DD-dataset together and perform k-fold cross-
validation2 on a number of feature extraction techniques.

For the first part, we employ Eqs. (2) and (6) to find the
bi-gram and mono-gram feature vectors, respectively. Thereby,
we applied the SVM classifier to compute the accuracy of protein
fold recognition. The obtained accuracies are compared with
other reported results and shown in Table 6.

It can be observed from Table 6 that the highest accuracy is
obtained by bi-gram technique (69.5%) (as shown as the bold face in
the table), however, mono-gram is also showing promising results.

In order to check the sparsity level of using PSSMs instead of
the original protein sequence on the entire training set, we
compute the average number of non-zero entries in the bi-gram
feature vectors derived from the original protein sequence and
2 For statistical stability we performed 100 times k-fold cross-validation in

this paper.



Table 6
Recognition accuracy of the proposed bi-gram and mono-gram feature extraction

techniques compared with various existing feature extraction techniques using

SVM classifier on DD-dataset.

Feature set Recognition accuracy (%)

ACCþHXPZV (Ding and Dubchak, 2001) 56.0

Shamim et al., (2007) 60.5

Ghanty and Pal (2009) 59.2

Chmielnicki and Stapor (2012) 62.8

AHVPZ (Yang et al., 2011) 44.7

AX (Yang et al., 2011) 40.3

AHXPZV (Yang et al., 2011) 49.4

PF (Yang et al., 2011) 60.8

AHVPZþPF (Yang et al., 2011) 51.2

AXþPF (Yang et al., 2011) 49.4

AHXPZVþPF (Yang et al., 2011) 52.7

Mono-gram (this paper) 62.1

Bi-gram (this paper) 69.5

Table 7

Recognition accuracy by k-fold cross validation procedure for various feature

extraction techniques using SVM classifier on DD-dataset.

Feature sets k¼ 5 k¼ 6 k¼ 7 k¼8 k¼ 9 k¼ 10

PF1 48.6 49.1 49.5 50.1 50.5 50.6

PF2 46.3 47.0 47.5 47.7 47.9 48.2

PFa 51.2 52.2 52.6 52.9 53.4 53.4

O 49.7 50.4 50.8 50.8 51.1 51.0

AACb 43.6 43.9 44.2 44.8 44.6 45.1

AACþHXPZVc 45.1 46.2 46.5 46.8 46.9 47.2

PSSMþPF1 62.5 63.2 63.7 64.2 64.5 64.6

PSSMþPF2 62.7 63.3 64.1 64.2 64.6 64.7

PSSMþPFa 65.5 66.2 66.5 66.9 67.1 67.5

PSSMþO 62.5 62.1 62.5 62.9 63.4 63.5

PSSMþAACb 57.5 58.1 58.4 58.7 59.1 59.2

PSSMþAACþHXPZVc 55.9 56.9 57.1 57.7 58.0 58.2

Mono-gram (this paper) 67.7 68.4 68.6 69.1 69.4 69.6

Bi-gram (this paper) 72.6 73.1 73.7 73.7 74.1 74.1

a PF results use gamma¼0.001.
b AAC results use gamma ¼ 11 QUOTE and C ¼ 100 QUOTE .
c AACþHXPZV results use gamma¼ 2 and C ¼ 8 QUOTE .
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PSSMs, respectively. It was experimentally determined that 29%
of non-zero entries are obtained for the bi-gram feature vectors
extracted from the original protein sequences. On the other hand,
95% of non-zero entries are obtained for the bi-gram feature
vectors extracted from PSSMs. This analysis indicates that about
70% of bi-gram feature vector is sparse when extracted from the
original protein sequence and the sparsity level is reduced to only
5% when extracted from PSSMs. Therefore, it can be seen that bi-
grams from PSSMs significantly reduce the sparsity level which
help in improving the recognition performance.

Next, we have merged the training set and test set of
DD-dataset to perform k-fold cross-validation procedure. The
results are depicted in Table 7. The values of k are taken to be
5, 6, 7, 8, 9 and 10. For the classifier, SVM is used with RBF kernel.
The RBF kernel parameters are gamma ¼ 0:0038 and C ¼ 1000.
For some feature sets, these parameters are changed to obtain
better recognition performance. The parameters that are changed
are mentioned under Table 7. The following feature sets are
considered for the experiment: PF1, PF2 (Ghanty and Pal, 2009),
PF (Yang et al., 2011), Occurrence (O) (Taguchi and Gromiha,
2007), AAC and AACþHXPZV (Ding and Dubchak, 2001). We have
also updated the protein sequences to get the consensus sequence
by using their corresponding PSSMs; i.e., each amino acid of a
protein sequence is replaced by the amino acid that has the
highest probability in PSSM. After this updating procedure, we
have used the same feature extraction techniques (PF1, PF2, PF, O,
AAC and AACþHXPZV) again to obtain the recognition perfor-
mance. In Table 7, we have placed the results for PSSM updated
protein sequences (or the consensus sequence) in the columns
2–7 of the row of PSSMþFEAT, where FEAT is any feature
extraction technique. The highest recognition accuracy of a
particular k-fold cross-validation is mentioned in bold face.

It can be observed from Table 7 that when protein sequences
are not updated by using PSSM then the PF feature shows better
recognition accuracy than PF1, PF2, ACC, O and ACCþHXPZV for
all k¼ 5, 6, 7, 8, 9 and 10. Among the consensus sequences also,
the feature set PF exhibits the best recognition performance. The
mono-gram feature (of this paper) is showing better recognition
performance than all the other existing feature extraction tech-
niques with the highest accuracy of 69.6% when k¼ 10. In
particular, mono-gram is outperforming occurrence feature O
for all the values of k. The bi-gram feature (of this paper) is
showing the best recognition performance for all k. The highest
accuracy obtained is 74.1% (at k¼ 9 and k¼ 10) which is around
10% better than the other feature extraction techniques in the
literature. This is a significant improvement in terms of recogni-
tion accuracy when compared with existing feature extraction
techniques.

Additionally, we have tried this algorithm to compute tri-gram
features from PSSMs and observed that the recognition accuracy
remains almost the same as that from the bi-gram features
obtained by the present PSSM-based algorithm. Thus, the use of
n-gram features (where n42) is found not to be very useful here.

Since user-friendly and publicly accessible web-servers repre-
sent the future direction for developing practically more useful
models, simulated methods, or predictors (Chou and Shen, 2009),
we shall make efforts in our future work to provide a web-server
for the method presented in this paper.
7. Conclusion

In this study, we have developed a feature extraction techni-
que based on bi-gram. The proposed technique utilizes PSSM
linear probabilities to compute features. The effectiveness of the
technique was gauged against several existing feature extraction
techniques on a benchmark dataset and very promising results
have been obtained. It was observed that the proposed technique
exhibits up to 10% improvement in recognition accuracy of
protein fold.

We have also shown that instead of computing frequency of
amino acid occurrence from primary protein sequence, we can
compute mono-gram features from PSSM directly. This has also
shown promising results.
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