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A B S T R A C T

The performance of speech coding, speech recognition, and speech enhancement systems that rely on the
augmented Kalman filter (AKF) largely depend upon the accuracy of clean speech and noise linear prediction
coefficient (LPC) estimation. The formulation of clean speech and noise LPC estimation as a supervised learning
task has shown considerable promise as of late. Generally, a deep neural network (DNN) learns to map noisy
speech features to a training target that can be used for clean speech and noise LPC estimation. Such training
targets fall into four categories: Line spectrum frequency (LSF), LPC power spectrum (LPC-PS), power spectrum
(PS), and magnitude spectrum (MS) training targets. The choice of training target can have a significant impact
on LPC estimation accuracy. Motivated by this, we perform a comprehensive study of the training targets
with the aim of determining which is best for LPC estimation. To this end, we evaluate each training target
using a temporal convolutional network (TCN) and a multi-head attention-based network. A large training
set constructed from a wide variety of conditions, including real-world non-stationary and coloured noise
sources over a range of signal-to-noise ratio (SNR) levels, is used for training. Testing on the NOIZEUS corpus
demonstrates that the LPC-PS as the training target produces the lowest clean speech LPC spectral distortion
(SD) level. We also construct the augmented Kalman filter (AKF) with the estimated speech and noise LPC
parameters of each training target. Subjective AB listening tests and seven objective quality and intelligibility
evaluation measures (CSIG, CBAK, COVL, PESQ, STOI, SegSNR, and SI-SDR) revealed that the LPC-PS training
target produced enhanced speech at the highest quality and intelligibility amongst the training targets.
1. Introduction

Speech processing applications, such as low-bit rate audio coding,
speech enhancement, and speech recognition, rely upon the accuracy of
linear prediction coefficient (LPC) estimates of clean speech and noise
in practice (Vaseghi, 2006, Chapter 8). For example, inaccurate clean
speech and noise LPC estimates impact the quality and intelligibility of
enhanced speech produced by an augmented Kalman filter (AKF) (Gib-
son et al., 1991). To address this, deep learning has been employed to
accurately estimate LPCs for the Kalman filter (KF) and AKF. This paper
focuses on training targets for supervised LPC estimation for AKF-based
speech enhancement.

Paliwal and Basu (1987) introduced the KF for speech enhance-
ment. For the KF, each clean speech frame is represented by an auto-
regressive (AR) process, whose parameters include the clean speech
LPCs and prediction error variance. The LPC parameters and additive
noise variance are used to construct the KF recursive equations. Given
a frame of noisy speech samples, the KF gives a linear MMSE estimate
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E-mail addresses: sujankumar.roy@griffithuni.edu.au (S.K. Roy), aaron.nicolson@csiro.au (A. Nicolson), k.paliwal@griffith.edu.au (K.K. Paliwal).

of the clean speech samples using the recursive equations. Paliwal and
Basu (1987) demonstrated that the inaccurate estimates of the LPC
parameters and noise variance result in poor quality and intelligibility
in the enhanced speech produced by the KF. Later on, Gibson et al.
(1991) introduced an AKF for speech enhancement in coloured noise
conditions. For the AKF, both the clean speech and additive noise are
represented by two AR processes. The speech and noise LPC parameters
form an augmented matrix which is used to construct the recursive
equations of the AKF. In this speech enhancement algorithm (SEA),
the AKF processes the noisy speech iteratively (typically three to four
iterations) to eliminate the coloured background noise, yielding the
enhanced speech. During this, the LPC parameters for the current frame
are computed from the corresponding filtered speech frame of the
previous iteration (Gibson et al., 1991). Although iteratively estimating
the clean speech and noise LPCs for the AKF improves the signal-to-
noise ratio (SNR) of noisy speech, the resultant enhanced speech suffers
from musical noise and speech distortion.
vailable online 25 June 2022
167-6393/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.specom.2022.06.004
Received 12 April 2021; Received in revised form 18 June 2022; Accepted 20 June
 2022

http://www.elsevier.com/locate/specom
http://www.elsevier.com/locate/specom
mailto:sujankumar.roy@griffithuni.edu.au
mailto:aaron.nicolson@csiro.au
mailto:k.paliwal@griffith.edu.au
https://doi.org/10.1016/j.specom.2022.06.004
https://doi.org/10.1016/j.specom.2022.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2022.06.004&domain=pdf


Speech Communication 142 (2022) 49–60S.K. Roy et al.

h
e
i

e
b
b
S
E
e
s
w
a
a
d
f
t
d
t
a
d
o
a
p
a
t
2
b
s
A

1

p
G
n
m
L
t
b
t
c
y
8
d
s
w

e
a
t
v
w
n
n
a
t
l
c

n
b
L
c
c
(
d
F
L
t
2
L

2
(
P
v
e
s
t
D
a
(
t
s
P
(
A
n
K
u
w
s
L
s

f
j
T
p
d
a
i
s
o
m
t
(
R
p
M
t

Multiple training targets have been investigated for deep learning
approaches to speech enhancement. Time–frequency (TF) representa-
tions were the first training targets investigated for speech enhance-
ment (Wang and Wang, 2013; Williamson et al., 2016). One example
is the ideal binary mask (IBM), whose estimate is applied to the noisy
speech magnitude spectrum to completely suppress the noise dominant
TF components (Wang and Wang, 2013). Xu et al. (2014) applied a
feed-forward neural network (FNN) to map the noisy speech log-power
spectrum (LPS) to the clean speech LPS. Han et al. (2015) trained a
FNN to learn a mapping from the noisy speech magnitude spectrum
(MS) to the clean speech MS. Deep learning has also been investigated
for statistical filter-based methods, such as MMSE short-time spectral
amplitude estimators (Nicolson and Paliwal, 2019), the KF (Yu et al.,
2019), and the AKF (Yu et al., 2020). Recently, Nicolson and Paliwal
(2021) demonstrated that the choice of training target for clean speech
MS estimation has a significant impact on speech enhancement. It was
shown that using the a priori SNR as the training target produced the
ighest quality enhanced speech, whilst using the gain of an MMSE
stimator or the ideal amplitude mask (IAM) produced the highest
ntelligibility speech and was most suited as a front-end for robust ASR.

It is found in literature that the baseline DNN-based MS or LPS
stimators (Xu et al., 2014; Wang et al., 2014) and TF masked-
ased SEAs (Wang and Wang, 2013; Williamson et al., 2016) have
een shown significant speech enhancement performance than classical
EAs (Boll, 1979; Kamath and Loizou, 2002; Ephraim and Malah, 1984;
phraim and Malah, 1985). In general, the baseline DNN methods
stimate the MS or LPS of clean speech, then the time-domain clean
peech reconstruction is performed with the noisy speech phase —
hich has a significant impact on the quality of enhanced speech as
ddressed in Paliwal et al. (2011). In addition, the DNN-based SEAs
pplied a compression function to the MS or LPS of clean speech (in
ecibel) to form a mapped training target. However, a compression
unction may over compress values above 0 dB, which correspond
o clean speech formants and a very small proportion of the overall
istribution as specified in Nicolson and Paliwal (2021). MS training
argets were also found to perform the best at lower SNR levels (−5
nd 0 dB). It may result due to the distribution of the clean speech MS
oes not change with the SNR (Nicolson and Paliwal, 2021). On the
ther hand, the DNN assisted KF and AKF methods (Roy et al., 2020a,b)
ddress speech enhancement in the time-domain — which is not im-
acted by the noisy speech phase. Recently, Deep learning assisted KF
nd AKF methods (Roy et al., 2020a,b) has been shown to outperform
hat of MS spectral amplitude estimator (Xu et al., 2014; Wang et al.,
014). As a result, deep learning-assisted KF and AKF methods have
een found interesting to the researchers in the literature. The next
ection discusses some state-of-the-art deep learning-assisted KF and
KF methods.

.1. Related work

Deep learning has been investigated for LPC estimation — a key
arameter for the KF and AKF-based SEAs (Paliwal and Basu, 1987;
ibson et al., 1991). Pickersgill et al. (2018) proposed a deep neural
etwork (DNN)-based LPC estimation method, termed DNN-LPC. In this
ethod, a FNN learns a mapping from each frame of the noisy speech

PS to the log-LPC power spectra of the clean speech. During inference,
he estimated log-LPC PS is converted to the LPC-PS, which is followed
y an inverse Fourier transform giving the autocorrelation matrix. Next,
he Yule–Walker equations are constructed with the estimated auto-
orrelation matrix, which is solved by the Levinson–Durbin recursion
ielding the LPC parameters of the clean speech (Vaseghi, 2006, Section
.2.2). However, there were methodology limitations, for one, spectral
istortion (SD) levels were not reported below 10 dB. Moreover, only
ix noise recordings were used for training the FNN, indicating that it
ould struggle to generalise to unobserved conditions.
50
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Yu et al. (2019) proposed a deep learning assisted KF for speech
nhancement (FNN-KF). A three-layered FNN was employed to learn
mapping from the noisy speech line spectrum frequencies (LSFs) to

he clean speech LSFs (12th order) (Itakura, 1975). The additive noise
ariance for the KF is computed from the first noisy speech frame
ith the assumption that the noise is non-stationary and that there is
o speech present in the first frame. However, these assumptions do
ot account for non-stationary noise sources that have time-varying
mplitudes. Moreover, the conditions observed by the FNN during
raining were derived from only four noise recordings and four SNR
evels, indicating that it would struggle to generalise to unobserved
onditions.

Yu et al. (2020) used a FNN and an long short-term memory (LSTM)
etwork to estimate the clean speech and noise LPCs for coloured KF-
ased speech enhancement (FNN-CKFS and LSTM-CKFS). The FNN and
STM network learn a mapping from the noisy speech LSFs to the
lean speech and noise LSFs. During inference, the estimated LSFs are
onverted to the clean speech and noise LPCs. A maximum likelihood
ML) approach (Srinivasan et al., 2006) is employed to estimate the pre-
iction error variances of the speech and noise AR processes. However,
NN-CKFS and LSTM-CKFS demonstrate poor clean speech and noise
PC estimation accuracy in unobserved noise conditions — leading to
he use of multi-band spectral subtraction (MB-SS) (Kamath and Loizou,
002) for post-processing. This could be due to training the FNN and
STM network with a small dataset (Yu et al., 2019).

Roy et al. (2020a) utilised the DeepMMSE framework (Zhang et al.,
020) to estimate the parameters of the KF for speech enhancement
denoted as Deep Xi-KF, since DeepMMSE uses Deep Xi (Nicolson and
aliwal, 2019)). DeepMMSE utilises a residual network temporal con-
olutional network (ResNet-TCN) (He et al., 2016; Bai et al., 2018) to
stimate the a priori SNR for the MMSE-based noise power spectral den-
ity (PSD) estimator. The noise variance for the KF is computed from
he noise PSD estimated by DeepMMSE. Roy et al. (2020b) later used
eepMMSE to estimate the noise LPCs for the AKF (Deep Xi-AKF). Roy
nd Paliwal (2020a) proposed a causal convolutional encoder–decoder
CCED)-based AKF for speech enhancement (denoted as CCED-AKF). In
his method, the CCED maps each frame of the noisy speech magnitude
pectrum (MS) to the noise magnitude spectrum, from where the noise
SD is computed. Roy and Paliwal (2020b) proposed a residual network
ResNet) assisted AKF for speech enhancement (denoted as ResNet-
KF). This differed by mapping the time-domain samples of a given
oisy speech frame to the corresponding noise frame. For Deep Xi-
F, Deep Xi-AKF, CCED-AKF, and ResNet-AKF, a whitening filter is
tilised to estimate the clean speech LPCs. The coefficients for the
hitening filter are computed from the estimated noise. Each noisy

peech frame is then pre-whitened prior to computing the clean speech
PC parameters. However, Roy et al. (2021a) demonstrated that clean
peech LPCs estimated in this manner exhibit a high amount of bias.

In order to reduce the amount of bias caused by using the whitening
ilter, Roy et al. (2021a) proposed the DeepLPC framework, which
ointly estimates the clean speech and noise LPC-PS using a ResNet-
CN. During inference, the clean speech and noise LPCs are com-
uted from the corresponding LPC-PS estimates. The DeepLPC pro-
uces clean speech LPC estimates with a lower SD level than the
forementioned methods, resulting in higher quality and intelligibil-
ty enhanced speech. Recently, Nicolson and Paliwal (2020) demon-
trated that the multi-head attention network (MHANet) is able to
utperform the ResNet-TCN in terms of speech enhancement perfor-
ance, citing that the MHANet is better able to model the long-

erm dependencies of noisy speech. Motivated by this, Roy et al.
2021b) proposed an extension of the DeepLPC framework by replacing
esNet-TCN with MHANet, called DeepLPC-MHANet, to further im-
rove the clean speech and noise LPC estimates for the AKF. DeepLPC-
HANet demonstrates a lower clean speech LPC estimate SD level

han DeepLPC-ResNet-TCN in various noise conditions. In addition,

he AKF constructed with the clean speech and noise LPC estimates



Speech Communication 142 (2022) 49–60S.K. Roy et al.

g

𝑦

w
n
𝑦

𝑦

𝜳

w

𝜳
a
a
o
v
g

𝑠

w

𝐾

a

𝛽

a
a
r

p
b
t
𝜎
o

of DeepLPC-MHANet (DeepLPC-MHANet-AKF) produces higher quality
and intelligible enhanced speech than DeepLPC-ResNet-TCN-AKF (Roy
et al., 2021a).

This study aims to perform a comprehensive study comparing the
LSF, LPC-PS, power spectrum (PS), and magnitude spectrum (MS) train-
ing targets for AKF-based speech enhancement. The motivation of this
study is to determine which training target produces the most accurate
clean speech and noise LPC estimates, as well as which produces AKF-
based enhanced speech with the highest quality and intelligibility. Each
training target is evaluated using ResNet-TCN and MHANet, where a
large training set consisting of a wide variety of conditions is used for
training (Roy et al., 2021b). The used test set is the NOIZEUS dataset,
which consists of real-world non-stationary and coloured noise condi-
tions over a wide range of SNR levels. We compare the SD level of the
clean speech LPC estimates for each training target. We also evaluate
the AKF-based speech enhancement performance of each training target
using subjective AB listening tests and seven different objective quality
and intelligibility measures (CSIG, CBAK, COVL, PESQ, STOI, SegSNR,
and SI-SDR).

The structure of this paper is as follows: background knowledge is
presented in Section 2, including the signal model and the AKF for
speech enhancement. In Section 3, we present the training targets.
Following this, Section 4 describes the experimental setup. The experi-
mental results are then presented in Section 5. Finally, Section 6 gives
some concluding remarks.

2. Background

2.1. Signal model

The noisy speech 𝑦(𝑛), at discrete-time sample 𝑛, is assumed to be
iven by

(𝑛) = 𝑠(𝑛) + 𝑣(𝑛), (1)

here 𝑠(𝑛) is the clean speech and 𝑣(𝑛) is uncorrelated additive coloured
oise. A 32 ms rectangular window with 50% overlap is used to convert
(𝑛) into frames, denoted by 𝑦(𝑛, 𝑙):

(𝑛, 𝑙) = 𝑠(𝑛, 𝑙) + 𝑣(𝑛, 𝑙), (2)

where 𝑙𝜖{0, 1,… , 𝐿 − 1} is the frame index, 𝐿 is the total number
of frames, and 𝑁 is the total number of samples within each frame,
i.e. 𝑛𝜖{0, 1,… , 𝑁 − 1}.

2.2. AKF for speech enhancement

For simplicity, the frame index is omitted in this Section. Each frame
of the clean speech and noise signal in Eq. (2) can be represented with
𝑝th and 𝑞th order AR models, as in Vaseghi (2006, Chapter 8):

𝑠(𝑛) = −
𝑝
∑

𝑖=1
𝑎𝑖𝑠(𝑛 − 𝑖) +𝑤(𝑛), (3)

𝑣(𝑛) = −
𝑞
∑

𝑘=1
𝑏𝑘𝑣(𝑛 − 𝑘) + 𝑢(𝑛), (4)

where {𝑎𝑖; 𝑖 = 1, 2,… , 𝑝} and {𝑏𝑘; 𝑘 = 1, 2,… , 𝑞} are the LPCs. 𝑤(𝑛) and
𝑢(𝑛) are assumed to be white noise with zero mean and variances 𝜎2𝑤
and 𝜎2𝑢 , respectively.

Eqs. (2)–(4) are used to form the following augmented state-space
model (ASSM) of the AKF, as in Gibson et al. (1991):

𝒙(𝑛) = 𝜱𝒙(𝑛 − 1) + 𝒓𝒈(𝑛), (5)

𝑦(𝑛) = 𝒄⊤𝒙(𝑛). (6)

In the above ASSM,

1. 𝒙(𝑛) = [𝑠(𝑛) … 𝑠(𝑛 − 𝑝 + 1) 𝑣(𝑛) … 𝑣(𝑛 − 𝑞 + 1)]𝑇 is a (𝑝 + 𝑞) × 1
51

state-vector, (
2. 𝜱 =
[

𝜱𝑠 0
0 𝜱𝑣

]

is a (𝑝 + 𝑞) × (𝑝 + 𝑞) state-transition matrix with

𝜱𝑠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝑎1 −𝑎2 … −𝑎𝑝−1 −𝑎𝑝
1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (7)

𝜱𝑣 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝑏1 −𝑏2 … −𝑏𝑞−1 −𝑏𝑞
1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (8)

3. 𝒓 =
[

𝒓𝑠 0
0 𝒓𝑣

]

, where 𝒓𝑠 =
[

1 0 … 0
]⊤, 𝒓𝑣 =

[

1 0 … 0
]⊤,

4.

𝒈(𝑛) =
[

𝑤(𝑛)
𝑢(𝑛)

]

, (9)

5. 𝒄⊤ =
[

𝒄⊤𝑠 𝒄⊤𝑣
]

, where 𝒄𝑠 =
[

1 0 … 0
]⊤ and 𝒄𝑣 =

[

1 0 … 0
]⊤ are 𝑝 × 1 and 𝑞 × 1 vectors,

6. 𝑦(𝑛) is the noisy measurement at sample 𝑛.

For each frame, the AKF computes an unbiased linear MMSE esti-
mate �̂�(𝑛|𝑛) at sample 𝑛, given 𝑦(𝑛), by using the following recursive
equations (Gibson et al., 1991):

�̂�(𝑛|𝑛 − 1) = 𝜱�̂�(𝑛 − 1|𝑛 − 1), (10)

𝜳 (𝑛|𝑛 − 1) = 𝜱𝜳 (𝑛 − 1|𝑛 − 1)𝜱⊤ +𝑸𝒓𝒓⊤, (11)

𝑲(𝑛) = 𝜳 (𝑛|𝑛 − 1)𝒄(𝒄⊤𝜳 (𝑛|𝑛 − 1)𝒄)−1, (12)

�̂�(𝑛|𝑛) = �̂�(𝑛|𝑛 − 1) +𝑲(𝑛)[𝑦(𝑛) − 𝒄⊤�̂�(𝑛|𝑛 − 1)], (13)

(𝑛|𝑛) = [𝑰 −𝑲(𝑛)𝒄⊤]𝜳 (𝑛|𝑛 − 1), (14)

here 𝑸 =
[

𝜎2𝑤 0
0 𝜎2𝑢

]

is the process noise covariance.

For a noisy speech frame, the error covariances (𝜳 (𝑛|𝑛 − 1) and
(𝑛|𝑛) corresponding to �̂�(𝑛|𝑛−1) and �̂�(𝑛|𝑛)) and the Kalman gain 𝑲(𝑛)

re continually updated on a sample-by-sample basis, while ({𝑎𝑖}, 𝜎2𝑤)
nd ({𝑏𝑘}, 𝜎2𝑢 ) remain constant. At sample 𝑛, 𝒉⊤�̂�(𝑛|𝑛) gives the output
f the AKF, �̂�(𝑛|𝑛), where 𝒉 =

[

1 0 0 … 0
]⊤ is a (𝑝+𝑞)×1 column

ector. As demonstrated in AKF-RMBT (George et al., 2018), �̂�(𝑛|𝑛) is
iven by

̂(𝑛|𝑛) = [1 −𝐾0(𝑛)]�̂�(𝑛|𝑛 − 1) +𝐾0(𝑛)[𝑦(𝑛)−

�̂�(𝑛|𝑛 − 1)], (15)

here 𝐾0(𝑛) is the 1st component of 𝑲(𝑛), given by

0(𝑛) =
𝛼2(𝑛) + 𝜎2𝑤

𝛼2(𝑛) + 𝜎2𝑤 + 𝛽2(𝑛) + 𝜎2𝑢
, (16)

where

𝛼2(𝑛) = 𝒄⊤𝑠 𝜱𝑠𝜳 𝑠(𝑛 − 1|𝑛 − 1)𝜱⊤
𝑠 𝒄𝑠, (17)

nd
2(𝑛) = 𝒄⊤𝑣𝜱𝑣𝜳 𝑣(𝑛 − 1|𝑛 − 1)𝜱⊤

𝑣 𝒄𝑣, (18)

re the transmission of a posteriori error variances of the clean speech
nd noise augmented dynamic model from the previous sample, 𝑛 − 1,
espectively (George et al., 2018).

Eq. (15) reveals that 𝐾0(𝑛) has a significant impact on �̂�(𝑛|𝑛). In
ractice, the inaccurate estimates of ({𝑎𝑖}, 𝜎2𝑤) and ({𝑏𝑘}, 𝜎2𝑢 ) introduce
ias into 𝐾0(𝑛), which impacts �̂�(𝑛|𝑛). In this paper, we determine which
raining target for supervised learning is best for ({𝑎𝑖}, 𝜎2𝑤) and ({𝑏𝑘},
2
𝑢 ) estimation. We also investigate a new training target with the aim
f outperforming all previous training targets in terms of ({𝑎𝑖}, 𝜎2𝑤) and

2
{𝑏𝑘}, 𝜎𝑢 ) estimation accuracy.
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Fig. 1. (Colour online) Supervised LPC estimation framework.
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3. Training targets for LPC estimation

The supervised LPC estimation framework is shown in Fig. 1. It
can be seen that the framework is fed as input the single-sided noisy
speech magnitude spectrum, |𝒀 𝑙| ∈ R𝑀 , where 𝑀 = 257 and |𝒀 𝑙| =
{|𝑌 (𝑙, 0)|, |𝑌 (𝑙, 1)|,… , |𝑌 (𝑙,𝑀 − 1)|}, i.e., |𝒀 | ∈ R𝐿×𝑀 . 𝑌 (𝑙, 𝑚) is com-
puted from the noisy speech in Eq. (1) using the short-time Fourier
transform (STFT):

𝑌 (𝑙, 𝑚) = 𝑆(𝑙, 𝑚) + 𝑉 (𝑙, 𝑚), (19)

where 𝑌 (𝑙, 𝑚), 𝑆(𝑙, 𝑚), and 𝑉 (𝑙, 𝑚) denote the complex-valued STFT
coefficients of the noisy speech, clean speech, and noise, respectively,
for time-frame index 𝑙 and discrete-frequency bin 𝑚. The Hamming
window is used for analysis and synthesis. In this framework, a DNN
learns a mapping from |𝒀 𝑙| to the clean speech and noise training
targets whose concatenated form is denoted as �̂� 𝑙.

In this study, the LSFs, LPC-PS, PS, and MS (Sections 3.1–3.4) of
the clean speech and noise are used as training targets for the DNN.
A compression function is typically applied to a training target to
compress its dynamic range to obtain convergence during stochastic
gradient descent. During inference, we split �̂� 𝑙 into the clean speech and
noise estimates of the training targets, apply the inverse mapping of the
compression function, which yields the estimates of the uncompressed
training targets. From this, the clean speech and noise LPCs – ({�̂�𝑖},
̂ 2𝑤) and ({�̂�𝑘}, �̂�2𝑢 ) – are then computed. Following Roy et al. (2021a),
a clean speech and noise LPC order of 𝑝 = 16 and 𝑞 = 16 is used,
respectively.

3.1. LSF training target

The LSFs of the clean speech and noise (denoted as {𝜌𝑖} and {𝜂𝑘})
are used as a training targets for LPC estimation. First, the clean speech
and noise LPC parameters, ({𝑎𝑖}, 𝜎2𝑤) (𝑝 = 16) and ({𝑏𝑘}, 𝜎2𝑢 ) (𝑞 = 16)
are computed from 𝑠(𝑛, 𝑙) and 𝑣(𝑛, 𝑙) using the autocorrelation method
as in Vaseghi (2006, Chapter 8). Next, {𝜌𝑖} and {𝜂𝑘} are computed from
{𝑎𝑖} and {𝑏𝑘}.

Following this, the LPCs are converted to LSFs, which we briefly
describe (McLoughlin, 2008). Each time-domain sample 𝑠(𝑛, 𝑙) under
the linear prediction analysis model can be generated as the output
of a finite impulse response filter, 𝐴(𝑧). Thus, the clean speech LPCs
{𝑎𝑖} computed from 𝑠(𝑛, 𝑙) are used to generate 𝐴(𝑧), as in McLoughlin
(2008):

𝐴(𝑧) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 +⋯ + 𝑎𝑝𝑧
−𝑝. (20)

To compute LSFs, 𝐴(𝑧) is decomposed into both symmetrical and anti-
symmetrical parts, represented by the polynomials, 𝑃 (𝑧) and 𝑄(𝑧), as
in McLoughlin (2008):

𝑃 (𝑧) = 𝐴(𝑧) + 𝑧−(𝑝+1)𝐴(𝑧−1), (21)

𝑄(𝑧) = 𝐴(𝑧) − 𝑧−(𝑝+1)𝐴(𝑧−1). (22)

The clean speech LSFs {𝜌𝑖} are expressed as the zeros (or complex roots
denoted by {𝜃𝑖}) of 𝑃 (𝑧) and 𝑄(𝑧) in terms of angular frequency. Then
{𝜌𝑖} are computed as (McLoughlin, 2008):

{𝜌𝑖} = tan−1
(

𝑅𝑒{𝜃𝑖}
)

, 𝑖 = 1, 2,… , 𝑝, (23)
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𝐼𝑚{𝜃𝑖}
where {𝜌𝑖} are expressed in radians (between [0, 𝜋]). Using Eqs. (20)–
(23), the noise LSFs, {𝜂𝑘} are computed from {𝑏𝑘}.

To improve the rate of convergence during stochastic gradient
descent, the dynamic range of {𝜌𝑖} and {𝜂𝑘} are compressed to the
interval [0, 1] as follows: �̄� = { 𝜌1

𝜋 , 𝜌2𝜋 ,… ,
𝜌𝑝
𝜋 } and �̄� = { 𝜂1

𝜋 , 𝜂2𝜋 ,… ,
𝜂𝑞
𝜋 }.

In Yu et al. (2020), the prediction error variances �̂�2𝑤 and �̂�2𝑢 are
estimated using an ML approach (Srinivasan et al., 2006) using the
estimated {�̂�𝑖} and {�̂�𝑘}. In this study, we jointly estimate ({�̂�𝑖}, �̂�2𝑤)
nd ({�̂�𝑘}, �̂�2𝑢 ). Hence, 𝜻 𝑙 for the LPC estimation framework in Fig. 1
ecomes:

𝑙 = {�̄�, �̄�, 𝜎2𝑤, 𝜎
2
𝑢},

= {�̄�1, �̄�2,… , �̄�𝑝, �̄�1, �̄�2,… , �̄�𝑞 , 𝜎
2
𝑤, 𝜎

2
𝑢}. (24)

uring inference, �̂� 𝑙 is split into ̂̄𝝆, ̂̄𝜼, �̂�2𝑤, and �̂�2𝑢 . Then, ̂̄𝝆, ̂̄𝜼 are
ultiplied by 𝜋 (the inverse mapping of the compression function),
hich yield �̂� and �̂�. Finally, �̂� and �̂� are converted into {�̂�𝑖} and {�̂�𝑘}
sing the LSF to LPC conversion method, as in McLoughlin (2008).

.2. LPC-PS training target

The LPC-PS of clean speech and noise, 𝑃𝑠(𝑙, 𝑚) and 𝑃𝑣(𝑙, 𝑚) were used
s the training targets in Roy et al. (2021a,b). During training, 𝑃𝑠(𝑙, 𝑚)
nd 𝑃𝑣(𝑙, 𝑚) are computed as in Vaseghi (2006, Chapter 9):

𝑃𝑠(𝑙, 𝑚) =
𝜎2𝑤

|

|

|

|

1 +
∑𝑝

𝑖=1 𝑎𝑖𝑒
−𝑗2𝜋𝑖𝑚∕𝑀

|

|

|

|

2
, (25)

𝑃𝑣(𝑙, 𝑚) =
𝜎2𝑢

|

|

|

|

1 +
∑𝑞

𝑘=1 𝑏𝑘𝑒
−𝑗2𝜋𝑘𝑚∕𝑀

|

|

|

|

2
, (26)

here 𝑚𝜖{0, 1,… ,𝑀 − 1} (𝑀 = 257).
The dynamic range of 𝑃𝑠(𝑙, 𝑚) and 𝑃𝑣(𝑙, 𝑚) are compressed to the

interval [0, 1] through utilising the cumulative distribution function
(CDF) of 𝑃𝑠(𝑙, 𝑚)[dB] and 𝑃𝑣(𝑙, 𝑚)[dB], where 𝑃𝑠(𝑙, 𝑚)[dB] = 10 log10(𝑃𝑠(𝑙, 𝑚))
nd 𝑃𝑣(𝑙, 𝑚)[dB] = 10 log10(𝑃𝑣(𝑙, 𝑚)) (Roy et al., 2021a). It can be seen

from Figs. 2 (a) and (c) that 𝑃𝑠(𝑙, 64)[dB] and 𝑃𝑣(𝑙, 64)[dB] follow a Gaus-
sian distribution. Hence, it is assumed that 𝑃𝑠(𝑙, 𝑚)[dB] and 𝑃𝑣(𝑙, 𝑚)[dB]
re distributed normally with mean, 𝜇𝑠 and 𝜇𝑣, and variance 𝜎2𝑠 and

𝜎2𝑣 , respectively (𝑃𝑠(𝑙, 𝑚)[dB] ∼  (𝜇𝑠, 𝜎2𝑠 ) and 𝑃𝑣(𝑙, 𝑚)[dB] ∼  (𝜇𝑣, 𝜎2𝑣 )).
he statistics of 𝑃𝑠(𝑙, 𝑚)[dB] and 𝑃𝑣(𝑙, 𝑚)[dB], i.e., (𝜇𝑠, 𝜎2𝑠 ) and (𝜇𝑣, 𝜎2𝑣) for
ach frequency bin 𝑚 were found over a sample of the training set.1
he resultant CDFs used to compress the dynamic range of 𝑃𝑠(𝑙, 64)[dB]
nd 𝑃𝑣(𝑙, 64)[dB] are shown in Figs. 2(b) and (d), respectively, and are
pplied as follows (Roy et al., 2021a):

𝑃𝑠(𝑙, 𝑚) =
1
2

[

1 + erf
(

𝑃𝑠(𝑙, 𝑚)[dB] − 𝜇𝑠

𝜎𝑠
√

2

)]

, (27)

1 2500 randomly selected clean speech recordings were mixed with 2500
andomly selected noise recordings from the training set (Section 4.2) with
NR levels: −10 dB to +20 dB in 1 dB increments, giving 2500 noisy speech

signals. For each frequency bin, 𝑚, the sample mean and variances, (𝜇𝑠, 𝜎2
𝑠 )

nd (𝜇𝑣, 𝜎2
𝑣 ) were computed from 2500 concatenated clean speech and scaled
noise recordings, respectively.
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Fig. 2. (Colour online) The distribution of (a) 𝑃𝑠(𝑙, 64)[dB] and (c) 𝑃𝑣(𝑙, 64)[dB]. The CDF
f (b) 𝑃𝑠(𝑙, 64)[dB] and (d) 𝑃𝑣(𝑙, 64)[dB], where the sample mean and variance were found
ver the sample of the training set 1.

̄𝑣(𝑙, 𝑚) =
1
2

[

1 + erf
(

𝑃𝑣(𝑙, 𝑚)[dB] − 𝜇𝑣

𝜎𝑣
√

2

)]

. (28)

The training target for the LPC estimation framework in Fig. 1 is formed
by concatenating 𝑃𝑠(𝑙, 𝑚) and 𝑃𝑣(𝑙, 𝑚):

𝜻 𝑙 = {𝑃𝑠(𝑙, 0), 𝑃𝑠(𝑙, 1),… , 𝑃𝑠(𝑙,𝑀 − 1), 𝑃𝑣(𝑙, 0),

𝑃𝑣(𝑙, 1),… , 𝑃𝑣(𝑙,𝑀 − 1)}. (29)

During inference, �̂� 𝑙 is first split into ̂̄𝑃𝑠(𝑙, 𝑚) and ̂̄𝑃𝑣(𝑙, 𝑚). Following
this, the inverse mapping of the CDFs compute the estimated LPC-PS:

𝑃𝑠(𝑙, 𝑚) = 10((𝜎𝑠
√

2erf−1(2 ̂̄𝑃𝑠(𝑙,𝑚)−1)+𝜇𝑠)∕10), (30)

𝑃𝑣(𝑙, 𝑚) = 10((𝜎𝑣
√

2erf−1(2 ̂̄𝑃𝑣(𝑙,𝑚)−1)+𝜇𝑣)∕10). (31)

he |IDFT| of 𝑃𝑠(𝑙, 𝑚) and 𝑃𝑣(𝑙, 𝑚) gives an estimate of the autocorrela-
ion matrices, 𝑅𝑠𝑠(𝜏) and 𝑅𝑣𝑣(𝜏), respectively. Using Roy et al. (2021a,
quations (26) and (27)), we construct the Yule–Walker equations
sing 𝑅𝑠𝑠(𝜏) and 𝑅𝑣𝑣(𝜏). We solve the Yule–Walker equations using the
evinson–Durbin recursion (Vaseghi, 2006, Chapter 8), yielding ({�̂�𝑖},

�̂�2 ) (𝑝 = 16) and ({�̂� }, �̂�2) (𝑞 = 16).
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𝑤 𝑘 𝑢
Fig. 3. (Colour online) The distribution of (a) 𝜆𝑠(𝑙, 64)[dB] and (c) 𝜆𝑣(𝑙, 64)[dB]. The CDF
of (b) 𝜆𝑠(𝑙, 64)[dB] and (d) 𝜆𝑣(𝑙, 64)[dB], where the sample mean and variance were found
over the sample of the training set 1.

3.3. PS training target

The PS of the clean speech and noise (denoted as 𝜆𝑠(𝑙, 𝑚) and
𝜆𝑣(𝑙, 𝑚)) can also be used as the training targets for supervised LPC
estimation. 𝜆𝑠(𝑙, 𝑚) and 𝜆𝑣(𝑙, 𝑚) are computed directly from the squared
magnitude of the single-sided clean speech and noise spectrum, respec-
tively: 𝜆𝑠(𝑙, 𝑚) = |𝑆(𝑙, 𝑚)|2 and 𝜆𝑣(𝑙, 𝑚) = |𝑉 (𝑙, 𝑚)|2. As in Nicolson
nd Paliwal (2021), we utilise the CDF of the training targets (in
B), 𝜆𝑠(𝑙, 𝑚)[dB] and 𝜆𝑣(𝑙, 𝑚)[dB] to compress their dynamic range to the

interval [0, 1], where 𝜆𝑠(𝑙, 𝑚)[dB] = 10 log10(𝜆𝑠(𝑙, 𝑚)) and 𝜆𝑣(𝑙, 𝑚)[dB] =
0 log10(𝜆𝑣(𝑙, 𝑚)).

We observe in Figs. 3(a) and (c) that 𝜆𝑠(𝑙, 64)[dB] and 𝜆𝑣(𝑙, 64)[dB]
ollow a Gaussian distribution. Therefore, we assume that 𝜆𝑠(𝑙, 𝑚)[dB]
nd 𝜆𝑣(𝑙, 𝑚)[dB] are also distributed normally, with mean 𝜇𝑠 and 𝜇𝑣,
nd variance 𝜎2𝑠 and 𝜎2𝑣 , respectively (𝜆𝑠(𝑙, 𝑚)[dB] ∼  (𝜇𝑠, 𝜎2𝑠 ) and
𝑣(𝑙, 𝑚)[dB] ∼  (𝜇𝑣, 𝜎2𝑣 )). The statistics of 𝜆𝑠(𝑙, 𝑚)[dB] and 𝜆𝑣(𝑙, 𝑚)[dB],
.e., (𝜇𝑠, 𝜎2𝑠 ) and (𝜇𝑣, 𝜎2𝑣) for each frequency bin 𝑚 were found over
sample of the training set 1. The resultant CDFs used to compress the
ynamic range of 𝜆𝑠(𝑙, 64)[dB] and 𝜆𝑣(𝑙, 64)[dB] are shown in (Fig. 3(b)
nd (d), respectively, and are applied as follows:

�̄�𝑠(𝑙, 𝑚) =
1
2

[

1 + erf
(

𝜆𝑠(𝑙, 𝑚)[dB] − 𝜇𝑠
√

)]

, (32)

𝜎𝑠 2
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�̄�𝑣(𝑙, 𝑚) =
1
2

[

1 + erf
(

𝜆𝑣(𝑙, 𝑚)[dB] − 𝜇𝑣

𝜎𝑣
√

2

)]

. (33)

The training target for the LPC estimation framework in Fig. 1 is formed
by concatenating �̄�𝑠(𝑙, 𝑚) and �̄�𝑣(𝑙, 𝑚):

𝜻 𝑙 = {�̄�𝑠(𝑙, 0), �̄�𝑠(𝑙, 1),… , �̄�𝑠(𝑙,𝑀 − 1), �̄�𝑣(𝑙, 0),

�̄�𝑣(𝑙, 1),… , �̄�𝑣(𝑙,𝑀 − 1)}. (34)

During inference, �̂� 𝑙 is first split into ̂̄𝜆𝑠(𝑙, 𝑚) and ̂̄𝜆𝑣(𝑙, 𝑚). Following this,
the inverse mapping of the CDFs are used to obtain �̂�𝑠(𝑙, 𝑚) and �̂�𝑣(𝑙, 𝑚):

�̂�𝑠(𝑙, 𝑚) = 10((𝜎𝑠
√

2erf−1(2 ̂̄𝜆𝑠(𝑙,𝑚)−1)+𝜇𝑠)∕10), (35)

�̂�𝑣(𝑙, 𝑚) = 10((𝜎𝑣
√

2erf−1(2 ̂̄𝜆𝑣(𝑙,𝑚)−1)+𝜇𝑣)∕10). (36)

The |IDFT| of �̂�𝑠(𝑙, 𝑚) and �̂�𝑣(𝑙, 𝑚) yields an estimate of the autocorre-
lation matrices, 𝑅𝑠𝑠(𝜏) and 𝑅𝑣𝑣(𝜏), respectively. Using Roy et al. (2021a,
Equations (26) and(27)), we construct the Yule–Walker equations using
𝑅𝑠𝑠(𝜏) and 𝑅𝑣𝑣(𝜏). The Yule–Walker equations are then solved using the
Levinson–Durbin recursion (Vaseghi, 2006, Chapter 8), yielding ({�̂�𝑖},
�̂�2𝑤) (𝑝 = 16) and ({�̂�𝑘}, �̂�2𝑢 ) (𝑞 = 16).

3.4. MS training target

The magnitude of the single-sided clean speech and noise spectrum
(denoted as 𝐶𝑠(𝑙, 𝑚) and 𝐶𝑣(𝑙, 𝑚)) can also be used as the training targets
for supervised LPC estimation (Roy and Paliwal, 2020a). 𝐶𝑠(𝑙, 𝑚) and
𝐶𝑣(𝑙, 𝑚) are computed directly from the magnitude of the clean speech
and noise spectral components: 𝐶𝑠(𝑙, 𝑚) = |𝑆(𝑙, 𝑚)| and 𝐶𝑣(𝑙, 𝑚) =
|𝑉 (𝑙, 𝑚)|. Min–max normalisation (Han et al., 2011, section 3.5.2) is
then employed to compress the dynamic range of 𝐶𝑠(𝑙, 𝑚) and 𝐶𝑣(𝑙, 𝑚),
as in Roy and Paliwal (2020a):

�̄�𝑠(𝑙, 𝑚) =
𝐶𝑠(𝑙, 𝑚) − 𝑆𝑚𝑖𝑛(𝑙)
𝑆𝑚𝑎𝑥(𝑙) − 𝑆𝑚𝑖𝑛(𝑙)

, (37)

�̄�𝑣(𝑙, 𝑚) =
𝐶𝑣(𝑙, 𝑚) − 𝑉𝑚𝑖𝑛(𝑙)
𝑉𝑚𝑎𝑥(𝑙) − 𝑉𝑚𝑖𝑛(𝑙)

, (38)

where (𝑆𝑚𝑎𝑥(𝑙), 𝑆𝑚𝑖𝑛(𝑙)) and (𝑉𝑚𝑎𝑥(𝑙), 𝑉𝑚𝑖𝑛(𝑙)) are the minimum and
maximum values for each frequency bin 𝑚 of the clean speech and noise
MS, respectively, over all frames in the aforementioned sample 1. The
training target for the LPC estimation framework in Fig. 1 is formed by
concatenating �̄�𝑠(𝑙, 𝑚) and �̄�𝑣(𝑙, 𝑚):

𝜻 𝑙 = {�̄�𝑠(𝑙, 0), �̄�𝑠(𝑙, 1),… , �̄�𝑠(𝑙,𝑀 − 1), �̄�𝑣(𝑙, 0),

�̄�𝑣(𝑙, 1),… , �̄�𝑣(𝑙,𝑀 − 1)}. (39)

During inference, �̂� 𝑙 is first split into ̂̄𝐶𝑠(𝑙, 𝑚) and ̂̄𝐶𝑣(𝑙, 𝑚). Next, the
clean speech and noise magnitude spectra are computed from ̂̄𝐶𝑠(𝑙, 𝑚)
and ̂̄𝐶𝑣(𝑙, 𝑚) using inverse min–max normalisation (Han et al., 2011,
section 3.5.2):

�̂�𝑠(𝑙, 𝑚) = 𝑆𝑚𝑖𝑛(𝑙) + ̂̄𝐶𝑠(𝑙, 𝑚)(𝑆𝑚𝑎𝑥(𝑙) − 𝑆𝑚𝑖𝑛(𝑙)), (40)

�̂�𝑣(𝑙, 𝑚) = 𝑉𝑚𝑖𝑛(𝑙) + ̂̄𝐶𝑣(𝑙, 𝑚)(𝑉𝑚𝑎𝑥(𝑙) − 𝑉𝑚𝑖𝑛(𝑙)). (41)

Taking the square of �̂�𝑠(𝑙, 𝑚) and �̂�𝑣(𝑙, 𝑚) followed by the |IDFT|
gives the autocorrelation matrices, 𝑅𝑠𝑠(𝜏) and 𝑅𝑣𝑣(𝜏). Using Roy et al.
(2021a, Equations (26) and(27)), we construct the Yule–Walker equa-
tions using 𝑅𝑠𝑠(𝜏) and 𝑅𝑣𝑣(𝜏). The Yule–Walker equations are then
solved using the Levinson–Durbin recursion (Vaseghi, 2006, Chapter
8), yielding ({�̂�𝑖}, �̂�2𝑤) (𝑝 = 16) and ({�̂�𝑘}, �̂�2𝑢 ) (𝑞 = 16).

4. Experimental setup

4.1. Deep neural networks

The DNNs used in this study – ResNet-TCN and MHANet – are
briefly described below. Each is trained to map |𝒀 𝑙| to 𝜻 𝑙, where 𝜻 𝑙
is given by Eqs. (24), (29), (34), and (39). During inference, each
DNN computes �̂� . The training strategy for each DNN is detailed in
Section 4.3.
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Fig. 4. (Colour online) ResNet-TCN. The kernel size, output size, and dilation rate for
each convolutional unit is denoted as (𝐤𝐞𝐫𝐧𝐞𝐥 𝐬𝐢𝐳𝐞, 𝐨𝐮𝐭𝐩𝐮𝐭 𝐬𝐢𝐳𝐞, 𝐝𝐢𝐥𝐚𝐭𝐢𝐨𝐧 𝐫𝐚𝐭𝐞).

4.1.1. ResNet-TCN
The ResNet-TCN used for the DeepLPC framework (Roy et al.,

2021a) is used in this study to estimate 𝜻 𝑙 (Eqs. (24), (29), (34), and
(39)) from |𝒀 𝑙|. The ResNet-TCN is shown in Fig. 4. For each training
target (Section 3), the input, |𝒀 𝑙| is first passed through FC, a fully-
connected layer of size 𝑑𝑚𝑜𝑑𝑒𝑙, followed by layer normalisation (LN) (Ba
et al., 2016) and the rectified linear unit (ReLU) activation function (He
et al., 2015). FC is followed by B bottleneck residual blocks, where
𝑗𝜖{1, 2,… , 𝐵} is the block index. Each block comprise of three one-
dimensional causal convolutional units. Each convolutional unit (CU)
is pre-activated by LN (Ba et al., 2016) followed by the ReLU activation
function (He et al., 2015). The kernel size, output size, and dilation rate
for each convolutional unit is denoted as (kernel size, output size,
dilation rate).

The first and third CUs in each block have a kernel size of one,
whilst the second convolutional unit has a kernel size of 𝑘𝑠. The output
size of the first and second CU is 𝑑𝑓 , while the third one is 𝑑𝑚𝑜𝑑𝑒𝑙. A
dilation rate of one is set for the first and the third CU, which is 𝑑 for
the second CU. The second CU provides a contextual field over previous
time steps. The dilation rate, 𝑑 is cycled as the block index 𝑗 increases
as: 𝑑 = 2(𝑗−1 mod (log2(𝐷)+1)), where mod is the modulo operation, and 𝐷
is the maximum dilation rate. The last residual block is followed by the
output layer, O, which is a fully-connected layer with sigmoidal units.
The O layer gives an estimate of �̂� 𝑙. For the LPC-PS, PS, and MS training
targets, the hyperparameters used in DeepLPC (Roy et al., 2021a) were
used: 𝑑𝑚𝑜𝑑𝑒𝑙 = 256, 𝑑𝑓 = 64, 𝐵 = 40, 𝑘𝑠 = 3, and 𝐷 = 16. With this
set of hyperparameters, ResNet-TCN exhibits approximately 2.1 million
parameters. For the LSF training target, all the above hyperparameters
were used except 𝑑𝑓 = 34, giving around 1.91 million parameters.

4.1.2. MHANet
MHANet is an attention-based architecture for speech enhancement

that is based on the encoder of the Transformer (Nicolson and Paliwal,
2020). Along with ResNet-TCN, we use it to compare LPC estimation
training targets. MHANet is briefly summarised in this Section. The
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Fig. 5. (Colour online) MHANet for LPC estimation.

implest form of MHANet is shown in Fig. 5. The processing steps of the
HANet from input to output are described as follows. The first layer

n MHANet is used to project the input to a size of 𝑑𝑚𝑜𝑑𝑒𝑙. As in Nicolson
nd Paliwal (2019), the first layer is formed as: max(0, LN(|𝑿|𝑾 𝐼+𝒃𝐼𝑠 )),
here LN is frame-wise layer normalisation (Ba et al., 2016), and 𝑾 𝐼 ∈
𝑀×𝑑𝑚𝑜𝑑𝑒𝑙 and 𝒃𝐼𝑠 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙 are the learnable weights and biases of the

irst layer, respectively. Next, the positional encoding from Nicolson
nd Paliwal (2021, Section A.2) is added after the first layer, where
he time-frame index indicates the position. The positional encoding is
earned using weight matrix 𝐖𝑝, with a maximum length of 2048 time-

frames (i.e. 𝐖𝑝 ∈ R2048×256). This is followed by 𝐵 cascading blocks.
Each block includes an MHA module, a two-layer feed-forward neural
network (FNN), residual connections (He et al., 2016), and frame-
wise LN (Ba et al., 2016). For a detailed description of the blocks,
we refer the reader to Nicolson and Paliwal (2020, Section 3.1). The
last block is followed by the output layer, which is a sigmoidal feed-
forward layer, as in Nicolson and Paliwal (2019). We use configuration
from Nicolson and Paliwal (2020, Section A.2) for MHANet: 𝐵 = 5,
𝑑𝑓 = 1024, 𝑑𝑚𝑜𝑑𝑒𝑙 = 256, 𝐻 = 8, 𝑃𝑑𝑟𝑜𝑝 = 0.0, and 𝛤 = 40 000. With this
set of hyperparameters, MHANet exhibits approximately 4.27 million
parameters.

4.2. Training and validation set

The noisy speech for the training and validation sets are formed
from clean speech and noise recordings. For the clean speech record-
ings, the train-clean-100 set of the Librispeech corpus (Panayotov et al.,
2015) (28 539), the CSTR VCTK corpus (Veaux et al., 2019) (42 015),
and the 𝑠𝑖∗ and 𝑠𝑥∗ training sets of the TIMIT corpus (Garofolo et al.,
1993) (3696) were used, giving a total 74 250 clean speech recordings.
To form the validation set, 5% of the clean speech recordings (3713)
re randomly selected. Thus, 70 537 of the clean speech recordings are
sed for the training set. For the noise recordings, the QUT-NOISE
ataset (Dean et al., 2010), the Nonspeech dataset (Hu, 2004), the
nvironmental Background Noise dataset (Saki et al., 2016; Saki and
ehtarnavaz, 2016), the noise set from the MUSAN corpus (Snyder
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c

et al., 2015), multiple FreeSound packs (https://freesound.org/),2 and
coloured noise recordings (with an 𝛼 value ranging from 2 to 2 in
increments of 0.25) were used, giving a total of 16 243 noise recordings.
For the validation set, 5% of the noise recordings (813) are randomly
selected. The remaining 15 430 noise recordings are used for the train-
ing set. All the clean speech and noise recordings are single-channel
with a sampling frequency of 16 kHz. To create the noisy speech for
the validation set, each of the 3713 clean speech recordings is corrupted
by a random section of a randomly selected noise recording (from the
set of 813 noise recordings) at a randomly selected SNR level (−10 to
+20 dB, in 1 dB increments). The noisy speech for the training set was
created using the method described in Section 4.3.

4.3. Training strategy

The following training strategy was employed for training ResNet-
TCN and MHANet:

• Mean squared error is used as the loss function.
• The Adam optimiser (Kingma and Ba, 2014) is used for stochastic

gradient descent optimisation when training ResNet-TCN and
MHANet. For ResNet-TCN, the default hyperparameters were
used. For MHANet, 𝛽1 = 0.9, 𝛽2 = 0.98, and 𝜖 = 10−9 were used,
where the learning rate, 𝛼𝑟, depends on the training step (Vaswani
et al., 2017):

𝛼𝑟 = 𝑑−0.5𝑚𝑜𝑑𝑒𝑙 ⋅min(𝛾−0.5, 𝛾 ⋅ 𝛤−1.5), (42)

where 𝛾 is the total number of training steps and 𝛤 is the number
of warmup steps.

• Gradient norms that exceed [−1, 1] are clipped (Pascanu et al.,
2013).

• The number of training examples in an epoch is equal to the num-
ber of clean speech recordings used in the training set, i.e., 70 537.

• A mini-batch size of eight training examples is used. To generate
the mini-batch, at first, we select the shortest length of the
corrupted utterance among the 8 utterances in the mini-batch.
Then we pad the samples of the other utterances in the min-batch
longer than the shortest length utterance.

• The noisy speech signals are generated on the fly as follows:
each clean speech recording is randomly selected and corrupted
with a random section of a randomly selected noise recording
at a randomly selected SNR level (−10 to +20 dB, in 1 dB
increments).3

• A total of 150 epochs are used to train both ResNet-TCN and
MHANet.

.4. Test set

For the objective experiments, 30 phonetically balanced IEEE ut-
erances belonging to six speakers (three male and three female) are
aken from the NOIZEUS corpus (Loizou, 2013, Chapter 12). In this
xperiment, filtering is not performed to the clean speech utterances as
n the original NOIZEUS corpus (Loizou, 2013, Chapter 12). The noisy
peech for the test set is formed by mixing the clean speech with real-
orld non-stationary (voice babble, street, restaurant, and shopping mall)
nd coloured (factory1, factory2, hfchannel, and f16) noise recordings
elected from (Saki et al., 2016; Saki and Kehtarnavaz, 2016; Pearce
nd Hirsch, 2000; Varga and Steeneken, 1993) at multiple SNR levels

2 FreeSound packs that were used: 147, 199, 247, 379, 622, 643, 1133,
563, 1840, 2432, 4366, 4439, 15 046, 15 598, 21 558.

3 For clean speech recordings longer than the noise recordings, we simply
ppend the noise recording until it becomes larger than or equal to the clean
peech recording. Then, the noise recording is clipped to the length of the

lean speech recording. The same applies when generating the validation set.

https://freesound.org/
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varying from −5 dB to +15 dB, in 5 dB increments. This provides
30 examples per condition with 40 total conditions, yielding 1200
examples. All the clean speech and noise recordings are single-channel
with a sampling frequency of 16 kHz. Note that the speech and the
noise recordings in the test set are different from those used in the
training and validation sets.

4.5. SD level evaluation

The frame-wise spectral distortion (SD) (dB) (Gray and Markel,
1976) is used to evaluate the accuracy of LPC estimates obtained using
ResNet-TCN and MHANet for the training targets; LSF, LPC-PS, PS, and
MS. Specifically, the estimated clean speech LPCs are evaluated. The
SD for 𝑙th frame, denoted by 𝐷𝑙 (in dB) is defined as the root-mean-
square-difference between the LPC-PS estimate in dB 𝑃𝑠(𝑙, 𝑚)[𝑑𝐵], and
the oracle case in dB 𝑃𝑠(𝑙, 𝑚)[𝑑𝐵], as in Gray and Markel (1976):

𝐷𝑙 =

√

√

√

√
1
𝑀

𝑀−1
∑

𝑚=0

[

𝑃𝑠(𝑙, 𝑚)[𝑑𝐵] − 𝑃𝑠(𝑙, 𝑚)[𝑑𝐵]
]2. (43)

4.6. Speech enhancement methods

We also evaluate the speech enhancement performance of each
training target (as described in ‘‘3. AKF" below). We also compare
the performance of each LPC estimation target to other SEAs in the
literature:

1. Noisy: speech corrupted with additive noise.
2. Oracle-AKF: AKF, where ({𝑎𝑖}, 𝜎2𝑤) and ({𝑏𝑘}, 𝜎2𝑢 ) are computed

from the clean speech and noise, respectively, where 𝑝 = 16,
𝑞 = 16, 𝑤𝑓 = 32 ms, 𝑠𝑓 = 16 ms, and a rectangular window is
used for framing.

3. AKF constructed from the speech and noise LPC estimates de-
rived from the training targets — LSF, LPC-PS, PS, and MS
estimated using ResNet-TCN and MHANet. Thus, there are eight
AKF methods, where 𝑝 = 16, 𝑞 = 16, window length=32 ms,
frame shift=16 ms, and a rectangular window is used for fram-
ing.

4. LSTM-CKFS (Yu et al., 2020): AKF constructed using ({𝑎𝑖}, 𝜎2𝑤)
and ({𝑏𝑘}, 𝜎2𝑢 ) are computed using an LSTM and maximum-
likelihood (ML)-based approaches (Srinivasan et al., 2006), fol-
lowed by post subtraction using the multi-band spectral subtrac-
tion (MB-SS) method (Kamath and Loizou, 2002), where 𝑝 = 12,
𝑞 = 12, 𝑤𝑓 = 20 ms, 𝑠𝑓 = 0 ms, and a rectangular window is used
for framing.

5. IAM-IFD (Zheng and Zhang, 2019): Phase-aware DNN for speech
enhancement, where 𝑤𝑓 = 20 ms, 𝑠𝑓 = 5 ms, and the Hamming
window is used for analysis and synthesis.

6. ResNet20-AKF (Roy and Paliwal, 2020b): AKF-based SEA, where
({𝑏𝑘}, 𝜎2𝑢 ) is estimated using the ResNet20-based method and
({𝑎𝑖}, 𝜎2𝑤) are computed from pre-whitened speech correspond-
ing to each noisy speech frame, where 𝑝 = 16, 𝑞 = 16, 𝑤𝑓 =
32 ms, 𝑠𝑓 = 16 ms, and a rectangular window is used for framing.

7. Deep Xi-ResNet-TCN-MMSE-LSA: Deep Xi-ResNet-TCN (Zhang
et al., 2020) estimates the a priori SNR for the MMSE-LSA
estimator (Ephraim and Malah, 1985), where 𝑤𝑓 = 32 ms, 𝑠𝑓 =
16 ms.

8. Deep Xi-MHANet-MMSE-LSA: Deep Xi-MHANet (Nicolson and
Paliwal, 2020) estimates the a priori SNR for the MMSE-LSA
estimator (Ephraim and Malah, 1985), where 𝑤𝑓 = 32 ms, 𝑠𝑓 =
16 ms.

4.7. Objective quality and intelligibility measures

Objective measures are used to evaluate the quality and intelligi-
bility of the enhanced speech with respect to the corresponding clean
speech. Table 1 shows the objective quality and intelligibility measures
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used in this study. 2
Table 1
Objective measures, what each assesses, and the range of their scores. For each measure,
higher is better.

Measure Assesses Range

CSIG (Hu and Loizou, 2008) Quality [1, 5]
CBAK (Hu and Loizou, 2008) Quality [1, 5]
COVL (Hu and Loizou, 2008) Quality [1, 5]
PESQ (Rix et al., 2001) Quality [−0.5, 4.5]
STOI (Taal et al., 2011) Intelligibility [0, 100]%
SI-SDR (Roux et al., 2019) Quality [−∞,∞]
SegSNR (Mermelstein, 1979) Quality [−∞,∞]

4.8. Subjective evaluation for speech enhancement

The subjective evaluation was carried out through a series of blind
AB listening tests (Paliwal et al., 2010, Section 3.3.4). To perform
the tests, we generated a set of stimuli by corrupting six IEEE ut-
terances sp01, sp05, sp10, sp15, sp26, and sp27 from the NOIZEUS
orpus (Loizou, 2013, Chapter 12). The reference transcript for record-
ng sp01 is: ‘‘The birch canoe slid on the smooth planks’’, and is corrupted
ith hfchannel at 0 dB. The reference transcript for recording sp05 is:

‘Wipe the grease off his dirty face’’, and is corrupted with f16 at 5 dB.
he reference transcript for recording sp10 is: ‘‘The sky that morning was
lear and bright blue’’, and is corrupted with voice babble at 10 dB. The
eference transcript for recording sp15 is: ‘‘The clothes dried on a thin
ooden rack’’, and is corrupted with shopping mall at 0 dB. The reference

ranscript for recording sp26 is: ‘‘She has a smart way of wearing clothes’’,
nd is corrupted with street at 0 dB. The reference transcript for
ecording sp27 is: ‘‘Bring your best compass to the third class’’, and is
orrupted with factory2 at 10 dB. Utterances sp01, sp05, and sp10 were
ttered by male and utterances sp15, sp26, and sp27 were uttered by
emale, respectively. In this test, the enhanced speech produced by
ight SEAs as well as the corresponding clean speech and noisy speech
ignals were played as stimuli pairs to the listeners. Specifically, the
est is performed on a total of 540 stimuli pairs (90 for each utterance)
layed in a random order to each listener, excluding the comparisons
etween the same method. Each listener’s perceptual preference for the
irst or second stimuli was recorded. Pairwise scoring was used, with
00% award is given to the preferred method, 0% to the other, and 50%
o both if there was no preference. The participants could re-listen to
he stimuli if required. Ten English speaking listeners participate in the
lind AB listening tests.4 The average of the preference scores given by
he listeners termed as mean subjective preference score (%), is used to
ubjectively compare the SEAs.

. Results and discussion

.1. SD level comparison

The average clean speech LPC estimation SD levels attained by each
f the training targets are shown in Fig. 6. The SD levels for noisy
peech indicate the upper bounds of the SD level. It can be seen that
he LPC-PS is able to produce the lowest SD levels for both real-world
on-stationary as well as coloured noise conditions. PS produced the
ext lowest SD level. This indicates that the LPC-PS as the training
arget produces the most accurate clean speech LPC estimates. The low
D levels attained by LPC-PS will be of benefit to the AKF for speech
nhancement.

4 The AB listening tests were conducted with approval from Griffith
niversity’s Human Research Ethics Committee: database protocol number
018/671.
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Table 2
Mean objective scores on NOIZEUS corpus in terms of CSIG, CBAK, COVL, PESQ, STOI, SegSNR, and SI-SDR. Apart from Oracle-AKF, the highest
score amongst the competing methods for each measure is given in boldface.

Methods CSIG CBAK COVL PESQ STOI SegSNR SI-SDR

Noisy speech 2.33 2.21 2.02 1.36 52.74 1.13 5.87
LSTM-CKFS 2.86 2.44 2.35 1.87 77.59 7.12 11.89
ResNet-TCN-LSF-AKF 2.94 2.52 2.43 1.96 77.86 7.21 12.12
MHANet-LSF-AKF 3.03 2.68 2.51 2.04 78.33 7.28 12.31
IAM-IFD 3.10 2.74 2.58 2.12 78.46 7.37 12.49
ResNet20-AKF 3.18 2.81 2.64 2.21 79.78 7.45 12.68
ResNet-TCN-MS-AKF 3.26 2.87 2.72 2.27 80.67 7.58 12.91
ResNet-TCN-PS-AKF 3.34 2.93 2.80 2.33 81.47 7.62 13.11
Deep Xi-ResNet-TCN-MMSE-LSA 3.39 3.04 2.89 2.39 82.66 7.75 13.47
MHANet-MS-AKF 3.41 3.11 3.02 2.43 83.79 7.96 13.69
MHANet-PS-AKF 3.47 3.19 3.11 2.52 85.35 8.78 14.14
ResNet-TCN-LPC-PS-AKF 3.54 3.25 3.19 2.59 85.84 9.45 14.81
Deep Xi-MHANet-MMSE-LSA 3.66 3.36 3.37 2.67 88.66 10.05 15.52
MHANet-LPC-PS-AKF 3.74 3.47 3.33 2.76 89.12 9.97 16.01
Oracle-AKF 4.36 4.17 4.03 2.81 95.88 11.04 17.02
Fig. 6. (Colour online) Average clean speech LPC estimation SD (dB) level for each SEA found over all frames for each test condition in Section 4.4.
Fig. 7. (Colour online) PESQ score for each SEA and for each condition specified in Section 4.4.
5.2. Objective evaluation

In this section, we analyse the speech enhancement performance of
the AKF constructed using the clean speech and noise LPC estimates
given by each training target. The objective measures are described
57
in Table 1. We also compare each LPC estimation training target to
other deep learning approaches to speech enhancement described in
Section 4.6.

The mean objective scores on the NOIZEUS corpus are shown in
Tables 2. It can be seen that Oracle-AKF produces the highest objective
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Fig. 8. (Colour online) STOI score for each SEA and for each condition specified in Section 4.4.
N
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Fig. 9. (Colour online) The mean subjective preference score (%) comparison among
the competing SEAs for the stimuli set described in Section 4.8.

scores amongst all methods, which is the upper boundary of speech en-
hancement performance for the AKF. Noisy speech produced the lowest
objective scores amongst all methods, indicating the lower boundary of
performance. LPC-PS produced the best objective scores amongst the
LPC estimation training targets. This is likely due to the fact that LPC-
PS as the training target exhibits the least amount of bias. Amongst the
SEAs, MHANet-LPC-PS-AKF performed best, attaining the highest CSIG,
CBAK, PESQ, STOI, and SI-SDR scores (except for COVL, SegSNR). Deep
Xi-MHANet-MMSE-LSA was the next best performing SEA, producing
the highest COVL and SegSNR scores.

Figs. 7 and 8 show the PESQ and STOI scores, respectively, of each
SEA for multiple conditions. MHANet-LPC-PS-AKF produced the highest
PESQ and STOI scores for each condition. Following MHANet-LPC-
PS-AKF, Deep Xi-MHANet-MMSE-LSA (Nicolson and Paliwal, 2020)
attained the next highest objective scores for each condition. This
indicates that LPC-PS as the training target enables the AKF to objec-
tively outperform the MMSE-LSA estimator with the a priori SNR as the
training target.

5.3. Subjective evaluation by AB listening test

The mean subjective preference score (%) for each SEA is shown in
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Fig. 9. For this study, we selected the eight SEAs from Section 5.2 that
achieved the highest objective quality and intelligibility scores. It can
be seen that MHANet-LPC-PS-AKF is preferred (73.43%) by the listen-
ers, apart from the clean speech (100%) and the Oracle-AKF method
(82.86%). Deep Xi-MHANet-MMSE-LSA was the next most preferred
(70.21%), followed by ResNet-TCN-LPC-PS-AKF (64.70%), MHANet-
PS-AKF (60.71%), ResNet20-AKF (58.57%), IAM-IFD (49.50%) and
then MHANet-LSF-AKF (44.71%). This indicates that the enhanced
speech produced by MHANet-LPC-PS-AKF exhibits the highest per-
ceived quality amongst all tested SEAs.

6. Conclusion

This paper conducts a comprehensive study on LPC estimation
training targets, namely LSF, LPC-PS, PS, and MS training targets.
Experiments on the NOIZEUS dataset demonstrate that LPC-PS pro-
duces the lowest clean speech LPC estimation SD levels amongst all
of the training targets. Objective and subjective scores also indicate
that the AKF produces the highest quality and intelligibility enhanced
speech when constructed with the clean speech and noise LPC estimates
derived from the LPC-PS training target. Moreover, we find that pairing
the LPC-PS training with the AKF produces higher quality and intelli-
gibility enhanced speech than pairing the a priori SNR as the training
target with the MMSE-LSA estimator. We also show that MHANet is
able to outperform the ResNet-TCN in terms of objective and subjective
quality and intelligibility scores, as well as clean speech LPC estimation
SD levels.
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