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Abstract—Better understanding of structural class of a given protein reveals important information about its overall folding type and its

domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact

on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based

approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration.

In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information

simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide

more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising

attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different

classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show

enhancement of the protein structural class prediction accuracy for four popular benchmarks.

Index Terms—Mixture of feature extraction models, overlapped segmented distribution, overlapped segmented autocorrelation,

ensemble of different classifiers, physicochemical-based features

Ç

1 INTRODUCTION

PROTEIN structural class prediction problem is defined as
assigning a protein into one of the four well-defined

structural classes of proteins [1]. These structural classes
are denoted by: all-�, all-�; �þ �, and �=�. The most
accurate and popular structural classification of proteins
can be found in structural classification of proteins (SCOP) [2].
In the latest version of the SCOP, the number of structural
classes has increased to 11 groups. However, these four
major structural classes still cover almost 90 percent of
proteins and are commonly used in many studies. In the
biological perspective, protein structural class prediction
problem is considered as an important task which provides
crucial information about overall folding process and
general functionality of the proteins. It also gives a better
insight into protein fold recognition, protein secondary
structure prediction, and drug design [3], [4], [5]. Most of
the approaches proposed in the literature to tackle this
problem have been successfully applied to protein fold
recognition and attained promising results [6], [7], [8].

From the pattern recognition perspective, this problem is

presented as solving a multiclass classification task. The

performance of the proposed method to solve this problem
crucially relies on the selected attribute and consequently
feature extraction method being used as well as the
classification techniques being developed. During the past
few decades a wide range of classification techniques such
as, metaclassifiers [9], [10], [11], [12], support vector machine
(SVM) [13], [14], artificial neural network (ANN) [15], [16],
[17], and ensemble classifiers [18], [19] have been used to
tackle this problem. Among these classifiers, ensemble and
SVM-based classifiers exhibited quite promising results [6],
[7]. However, the performance of ensemble classifiers has
not been adequately explored [20], [21], [22]. At the same
time and in parallel by exploring the impact of classification
techniques, a wide range of studies tried to tackle this
problem by proposing novel feature extraction methods
that maintain more local and global information for this
task [3], [4], [5], [6], [23].

The most successful studies to enhance protein structural
class prediction accuracy addressed both feature extraction
and classification approaches simultaneously [6], [7], [18],
[24]. However, it has been shown in the literature [3], [6], [7]
that development of attribute selection and feature extrac-
tion methods tend to be more crucial for protein structural
class prediction problem compared to the impact of
classification technique being used. In general, features that
have been used for this problem can be categorized into
four groups, namely, sequential, physicochemical, structural,
and evolutionary-based features. The early studies conducted
to tackle this problem have mostly relied on sequential-
based (also called compositional-based) features which are
extracted merely based on the alphabetic sequence of the
amino acids [25]. Despite the importance of these features to
provide significant discriminatory information based on the
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sequential similarities, they fail to perform properly when
sequence similarity is low (which is also called twilight
zone [3], [26]).

On the other hand, physicochemical-based features
(extracted based on different physicochemical-based attri-
butes (e.g., hydrophobicity and polarity) of the proteins and
amino acids) are able to provide and maintain discrimina-
tory information when that sequence similarity is low.
Furthermore, these features are able to reveal the impact of
different physicochemical-based attributes on the folding
process. However, using just these group of features the
protein structural class prediction accuracy remains limited.
Note that in many above-referenced studies, structural-
based features (extracted based on predicted secondary
structure of proteins (e.g., normalized frequency of �-helix))
are categorized as physicochemical-based attributes [20],
[27], [28]. Therefore, to maintain the consistency and for
simplicity, these features are also referred as a kind of
physicochemical-based attributes in this study.

Recently, evolutionary-based features have been widely
used for this problem and attained promising results [6],
[29]. These features rely on the concept of substitution of the
amino acids along the proteins through evolution and
mainly extracted from the position specific scoring matrix
(PSSM). PSSM is calculated by running PSIBLAST on a
protein database [30]. The PSSM probabilities depend on
the position of amino acids in the protein sequence. It
provides important information about dynamic substitution
score of an amino acid. Previously, PSSM was used to find
transformed protein sequences (called consensus sequence)
[3]. However, these features also suffer from the following
two limitations: 1) it fails to maintain its discriminatory
information especially when sequence similarity is low; and
2) it is unable to provide any information about the relation
between physicochemical-based attributes and folding
process [20].

To address these two limitations and at the same time
to enhance the prediction performance, features derived
from the predicted secondary structure using PSIPRED
were used [3], [8], [31]. PSIPRED predicts protein
secondary structure with about 80 percent prediction
accuracy using the evolutionary-based information and
PSIBLAST. However, due to this limited accuracy (about
80 percent) of the predicted secondary structure by
PSIPRED, it could not be relied as an adequate source of
information for feature extraction to enhance the protein
structural class prediction accuracy especially for over
80 percent [32]. It is also shown that studies relied on these
features to enhance the prediction accuracy could not
reach too far better results than 80 percent [3], [8], [31].

In this study, to address the above-mentioned limita-
tions and to enhance the protein structural class prediction
accuracy, a novel approach is proposed which comprises of
both feature extraction and classification methods (with
more consideration given to the attribute selection and
feature extraction). The proposed method is implemented
in the following four steps. In the first step, we conduct a
comprehensive experimental study on a wide range of
physicochemical-based attributes and select 15 most
promising attributes which are explored using several

previously reported feature extraction methods. In the
second step, based on the concepts of overlapped
segmented distribution and autocorrelation methods, two
sets of features are extracted based on each attribute from
the consensus sequence using evolutionary-based informa-
tion. This approach enables us to obtain benefit of these
two categories of features simultaneously to provide
more local and global discriminatory information. In the
third step, two sets of sequential-based features that
attained good results in previous studies for this task are
extracted and combined with our proposed features. In
the final step, an ensemble of five different classifiers
(AdaBoost.M1, LogitBoost, Naive Bayes, MLP, and SVM) is
applied to the combination of the proposed features. The
employed ensemble classifier was proposed in our pre-
vious work and attained promising results for the protein
fold recognition [21]. However, it was not explored for the
protein structural class prediction problem. The perfor-
mance of the proposed approach is explored using four
popular benchmarks. Our results show that the proposed
approach in this study outperforms the protein structural
class prediction accuracy compared to the results of
previous studies for all of the employed benchmarks.

2 MATERIALS AND METHODOLOGY

2.1 Benchmarks

In this study, two popular benchmarks introduced by
Zhou [25] are used to compare the performance of our
proposed methods with the state-of-the-art methods found
in the literature. The first benchmark denoted as Z277
consisting of 277 proteins and the second benchmark
denoted as Z498 consisting of 498 proteins. Despite the
relatively small size of these two benchmarks, they are
still considered as important data sets for benchmarking.
To explore the impact of the proposed methods on the
low-similarity data sets, 1,189 [33] and 25PDB [19] bench-
marks which, respectively, consist of 1,092 proteins with
less than 25 percent sequential similarity and 1,673 pro-
teins with less than 40 percent sequential similarity are
explored (see Table 1).

2.2 Explored Physicochemical-Based Attributes

In this study, 15 most promising physicochemical-based

attributes which are taken from AAindex [34], APDbase [35],

and previous studies found in the literature are explored [27].

We selected these 15 attributes among 115 physicochemical-

based attributes which were experimentally explored using

several classification techniques and feature extraction

methods (mainly based on the overlapped segmented

distribution and autocorrelation-based approaches). For a

given attribute, we extracted six feature groups based on
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the overlapped segmented distribution and overlapped
segmented autocorrelation approaches which are the

subjects of this study. Then we applied five classifiers,
namely, Adaboost.M1, random forest, naive Bayes, K-nearest

neighbor (KNN), and SVM to each feature group separately.
Therefore, 30 prediction accuracies were achieved for each

physicochemical-based attribute (five classifiers applied to
six feature groups separately (5� 6 ¼ 30)). Then we com-

pared these results for all 115 attributes and selected
15 attributes that attained the best results in average for all

30 prediction accuracies. The attribute selection process is
explained in detail in Appendix A, which can be found on

the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2013.65. Explored

attributes in this study are namely,

1. structure derived hydrophobicity value,
2. polarity,
3. average long range contact energy,
4. average medium range contact energy,
5. mean root mean square (RMS) fluctuational displa-

cement,
6. total nonbounded contact energy,
7. amino acids partition energy,
8. normalized frequency of �-helix,
9. normalized frequency of �-turns,
10. hydrophobicity scale derived from 3D data,
11. hydrophilicity scale derived from high-performance

liquid chromatography (HPLC) peptide retention data,1

12. average gain ratio of surrounding hydrophobicity,
13. mean fractional area loss,
14. flexibility, and
15. bulkiness.

Most of the selected attributes have not been adequately
(or not at all) explored for the protein structural class
prediction problem (or for the protein fold recognition [3],
[20], [28]); while in our experimental study, they out-
performed even the popular attributes that had been widely
used to tackle this task.

2.3 Feature Extraction Approach

In this study, we concatenate features driven from the all
three main sources (sequential, physicochemical, and
evolutionary-based features) to form a feature vector which
is used for the protein structural class prediction problem.
In the first step, PSSM is calculated by applying the
PSIBLAST on NCBI’s nonredundant (NR) data base for
our explored benchmarks (cut off value (E) set to 0.001) [3],
[6], [36]. The PSSM consists of two L� 20 matrices (L is the
length of a protein and the columns of the matrices
represent 20 amino acids) [6]. The first matrix is called
PSSM_cons and gives the log-odd of the substitution score.
The second matrix is called PSSM_prob and gives the
normalized probability of substitution score for each amino
acid. In the second step, two important sequential-based
feature sets are extracted from the PSSM. In the third step,
consensus sequence is extracted directly from the PSSM and
then, physicochemical-based features are extracted from

this sequence instead of using the original sequence (as it

was used conventionally). In the next step, extracted
features are combined with the extracted features in the

previous steps. In this way, the true potential of all the three

categories of attributes are considered and explored. In

continuation, each approach will be explained in detail.

2.3.1 Sequential-Based Feature Extraction from

Evolutionary-Based Information

To explore the impact of the sequential-based features, two
feature groups, namely, evolutionary-based composition

(PSSM_AAC) and evolutionary-based auto covariance

(PSSM_AC) are extracted from the PSSM matrix. These

features capture significant local and global information

and have been used in the past [3], [6], [36] with promising

results for the protein structural class prediction problem.
Evolutionary-based composition feature group (PSSM_AAC).

This feature group is extracted based on the concept of

composition of the amino acids feature group to provide

discriminatory information related to the occurrence of each

amino acid along a given protein sequence [6]. The

difference between the PSSM_AAC and the composition

features derived from the original protein sequence (which
is extracted by counting the occurrence of each amino acids

along the protein sequence divided by the length of the

protein) is that the PSSM_AAC is extracted from the

PSSM_cons by summing the substitution score of each

amino acids and divide it by the total length of the protein

PSSM AACj ¼
1

L

XL

i¼1

Sij; ðj ¼ 1; . . . ; 20Þ; ð1Þ

where L is the length of protein and Sij is the substitution

score of the amino acids at location i by jth amino acid in

the PSSM_cons.
Evolutionary-based auto covariance feature group (PSSM_AC).

To provide more information about the interaction of the

amino acids with each other along a protein sequence,

the concept of PSSM_AC is used recently in the literature [6],

[36]. PSSM_AC gives the autocovariance of the substitution

score of each amino acid along a protein sequence and is

defined as follows:

PSSM ACk;j ¼
1

ðL� kÞ
XL�k

i¼1

ðSi;j � Save;jÞðSiþk;j � Save;jÞ;

ðj ¼ 1; . . . 20 and k ¼ 1; . . . ; FsÞ;
ð2Þ

where Save;j is the average of substitution score of the amino

acid i in the PSSM_cons and Fs is the distance factor.

Therefore, in total 20� Fs features are calculated in this

feature group. In this study, two values of the distance
factor (Fs ¼ 6 or 10) are investigated as they were presented

in the literature as the most effective distance factors for

protein structural class and protein fold prediction pro-

blems [6], [36]. Note that the combination of these two

feature groups PSSM_AAC, and PSSM_AC is called AAC-

PSSM-AC in the literature (which will also be referred
similarly for the rest of this study).
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2.3.2 Consensus Sequence Extraction Method

Consensus sequence is extracted to reveal more evolution-
ary information considering the PSSM compared to the
original protein sequence. It was also shown as an effective
way to provide more information for the protein structural
class prediction problem [3], [7], [18]. To extract the
consensus sequence, previous studies replaced the amino
acid at a given location in the original protein sequence by
the amino acid with the maximum substitution score in the
row corresponding to that location in the PSSM. This is
done using the following two steps. In the first step, the
index is found as

Ii ¼ argmaxfSij : 1 � j � 20g; 1 � i � L; ð3Þ

where Sij is the substitution score of the amino acid at
location i with the jth amino acid in the PSSM_cons. In the
second step, replace the amino acid at ith location of
original protein sequence by the Iith amino acid to form
the consensus sequence C1; C2; . . . ; CL. However, due to
the fact that the PSSM_cons consists of the log-odds of the
substitution score, in many cases there are more than one
maximum for the substitution score in this matrix. In this
case, the selection of the better value from multiple
maximum values were conducted randomly (the first/last
maximum values) which cannot be considered as an
accurate method. Furthermore, the PSSM_cons does not
provide any beneficial information about unknown amino
acids in proteins (which are conventionally shown by “X”
in the sequence). The substitution scores for these
unknown amino acids in the PSSM_cons are all equal
to �1. Therefore, relying merely on the PSSM_cons left the
issue of unknown proteins unaddressed.

By exploring the PSSM_prob in more detail, we
realized that the occurrence of multiple maximum is
much less frequent in this matrix compared to the
PSSM_cons due to the fact that it returns the normalized
probability of substitution score (due to better precision).
In addition, in case that a similar sequence is spotted in
the nonredundant protein data bank, this matrix provides
substitution score probability even for unknown amino
acids (if none is spotted it returns zero which rarely
occurs just in case that the length of the protein is very
short and at the same time unknown amino acids are
spotted). Therefore, it is possible to address the issue of
unknown amino acids using evolutionary-based informa-
tion and considering the PSSM_prob.

Hence, in this study, we propose a novel consensus
sequence extraction model for the protein structural class
prediction problem considering the concepts of the
PSSM_prob and the PSSM_cons simultaneously. In our
method, we first check the PSSM_prob. In case that a
unique maximum is spotted, it will be replaced with the
original amino acids in the sequence. Otherwise, we will
refer to the PSSM_cons to find the maximum. If a unique
maximum is spotted in this matrix, it will be replaced with
the original amino acids sequence. Otherwise, the first
maximum from the PSSM_prob will be replaced. The most
crucial impact of the explored method in this study
is proposing a method to address the issue of unknown
amino acids. In this method, unknown amino acids are

transformed to the consensus sequence considering the
evolutionary-based information which are extracted from
the PSSM_prob. Our approach successfully addresses the
issue of unknown amino acids for the explored bench-
marks. Using our proposed consensus sequence extraction
method, for 25 PDB and 1,189 benchmarks, all unknown
amino acids are replaced and for Z277 and Z498 all but one
protein, unknown amino acids are replaced.

2.3.3 Physicochemical-Based Feature Extraction

Method

To explore the potential of the physicochemical-based
attributes for the protein structural class prediction problem
better, a novel feature extraction model based on the concept
of the evolutionary-based information is proposed. In the
proposed model, we first transform the original protein
sequence to its consensus sequence as described before.
Then from the consensus sequence, physicochemical-based
features are extracted using overlapped segmented distribu-
tion and autocorrelation-based methods which are proposed
in this study. Proposed approaches are aimed at providing
more local and global discriminatory information.

As highlighted earlier, previous approaches mainly
relied on the original protein sequence to extract the
physicochemical-based features [3], [4]. In our approach,
we use the consensus sequence (C1; C2; . . . ; CL) to derive a
numerical sequence R1; R2; . . . ; RL where Ri is the
numerical value of a particular physicochemical attribute
(e.g., polarity) of amino acid Ci. This sequence is then used
by overlapped segmented distribution and autocorrelation-
based methods to derive features. In this manner, we are
able to explore the discriminatory information (shown
during the experimentation) provided by the evolutionary
and physicochemical-based attributes simultaneously
which not only enhances the protein structural class
prediction accuracy but it also enables us to provide crucial
information about the impact of a given physicochemical-
based attribute on the folding process. The overlapped
segmented distribution and autocorrelation methods are
explained below in detail.

Overlapped segmented distribution approach. Global density
of different attributes is widely used in protein science and
believed to provide important information of the global
impact of a specific attribute on the folding process
(e.g., polarity) [3], [27]. It is defined as follows:

Tglobal density ¼
PL

i¼1 Ri

L
; ð4Þ

where Ri is the attribute value (normalized) of the ith
amino acid. However, it fails to provide adequate local
information [37]. Therefore, global density is not considered
as an effective feature to appropriately explore the potential
discriminatory information of a given attribute. In this
study, instead of relying solely on the global density of a
given attribute, we also use the distribution of the amino
acids based on the segmented density.

In the proposed approach, we first compute T ¼
Tglobal density � L, which is the total sum of the attribute
sequence Ri ði ¼ 1; . . . ; LÞ. In the second step, starting from
left side of the attribute sequence, we find the index I such
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that the partial sum S ¼ R1 þR2 þ � � � þRi of the first I
ðfÞ
1

(in which the superscript f stands for starting from the left
side of the proteins) attributes reaches to d percent (called
distribution factor) of T (i.e., S � ðT � dÞ=100). This process
is carried out for different values of d (5%; 10%; 15%; . . . ;
75%) to get 15 indices I

ðfÞ
1 ; I

ðfÞ
2 ; . . . ; I

ðfÞ
15 . These indices are

divided by the length of protein to obtain 15 distribution
features. Note that these 15 features are obtained by
analyzing the sequence in the forward direction (i.e.,
starting from the left). We also compute 15 features by
analyzing the sequence in the backward direction (i.e.,
starting from the right). Thus, a total of 31 features using the
proposed method are extracted (1 global density þ15 from
the left side þ15 from the right side). Note that we segment
the protein sequence with distribution factor of d and
process it from the left as well as from the right side of the
protein sequence while the left and right side processing are
having overlap (see Fig. 1). As a result, we call this method
overlapped segmented distribution approach.

In this study, 5 percent distribution factor and 75 percent
called overlapping factor, are selected based on the average
length of the proteins in the explored benchmarks which is
the tradeoff between the number of produced features and
the time consumption of this task, and experimental study
that was conducted by the authors. The overlapping
approaches are proposed to provide more information about
the distribution of the amino acids in the middle of a protein
considering each side. Considering the number of features
(only 10 overlap features), this approach is able to provide
crucial overlapping information to tackle this problem.

This approach also enables us to explore the impact of
each attribute more comprehensively compared to pre-
viously explored methods [3], [20], [28], [38], [39]. It is
important to highlight that due to use of density, the
segmentation factor is independent from the length. It makes
our method more appropriate for general cases where the
gap between the length of the shortest and the longest
proteins in the data bank is large compared to previously
used distribution-based approaches [28].

Overlapped segmented autocorrelation. In the past, the
autocorrelation features have been computed using
the whole protein sequence of L attribute values Ri ði ¼
1; . . . ; LÞ pseudo amino acid composition-based features
are good examples of these type of features [39]. These
autocorrelation features capture the interaction of the
neighboring amino acids over the entire length of the protein
sequence. In this study, we extend the concept of overlapped
segmented distribution features as described in the previous
section to compute the autocorrelation features from
the segmented protein sequence. This is done to provide
more local discriminatory information. Here, we segment the

protein sequence using distribution factor of 10 percent
(d ¼ 10) and overlapping factor of 70 percent (of ¼ 70).
Using a procedure similar to the one described in the
previous section, we first analyze the protein sequence
in forward direction and find seven indices I

ðfÞ
1 ; I

ðfÞ
2 ; . . . ; I

ðfÞ
7

for seven different values of d (d ¼ 10%; 20%; . . . ; 70%). These
seven indices are used to segment the protein sequence into
seven segments and Fph number of autocorrelation coeffi-
cients for each of these segments are computed as follows:

Autocorrelationi;k ¼
1

�
I
ðfÞ
k � i

�
XI
ðfÞ
k
�i

j¼1

RjRjþi;

ðk ¼ 1; 2; . . . ; 7 and i ¼ 1; . . . ; FphÞ:

ð5Þ

Note that 7� Fph autocorrelation coefficients are computed
in this manner by analyzing the protein sequence in the
forward direction. This process is repeated to obtain
another 7� Fph autocorrelation coefficients by analyzing
the protein sequence in the backward direction. We also
compute the global autocorrelation coefficient of the whole
protein sequence to provide more global information in
conjunction with the extracted local information. Thus, we
have extracted a total of ð7 Fph þ 7 Fph þ Fph Þ ¼ 15 Fph
autocorrelation features in this manner. Two values of Fph
(6 and 10) are investigated in this study, which gives
90 ð42þ 42þ 6Þ features for Fph ¼ 6 and 150 ð70þ 70þ 10Þ
features for Fph ¼ 10.

Finally, the extracted feature groups based on both
physicochemical-based feature extraction methods for a
given attribute are combined to provide local and global
discriminatory information based on density, distribution,
and autocorrelation approaches simultaneously. Therefore,
considering two different autocorrelation distance factors,
two combined feature groups with 121 and 181 features are
produced for Fph ¼ 6 and Fph ¼ 10, respectively.

2.4 Ensemble of Different Classifiers

Instead of using a single classifier, we use an ensemble of
different classifiers for protein structural class prediction
task. A well-defined ensemble of these classifiers is capable
of addressing statistical, computational, and representational
issues better than an individual classifier [19], [21], [40].

For an ensemble classifier, diversity, and individual
accuracy of its component classifiers are two main criteria
that define its classification performance [41]. In an
ensemble classifier, diversity is encouraged by exploring
classifiers that have diverse learning policies (or diversely
trained) and individual accuracy is encouraged by the
individual performance of the explored classifiers for an
specific task.

In our previous work, we proposed an ensemble of five
different classifiers, namely, AdaBoost.M1, LogitBoost,
naive Bayes, SVM, and MLP that was successfully explored
for the protein fold recognition and attained promising
results [21], [42]. These five classifiers also have been
explored individually for protein structural class prediction
problem in different studies and attained promising results
(which encourage individual accuracy of the ensemble
classifier built base on these classifiers [5], [10], [16], [33]).
Using these five classifiers also encourages diversity due to
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their different learning and classification approaches which
are studied in [21] and [42]. In this study, we employ the
same five classifiers to construct an ensemble classifier used
for the classification task. Note that the implementations of
these classifiers (AdaBoost.M1, LogitBoost, MLP, SVM, and
naive Bayes) in WEKA machine learning toolbox are used
[43]. To combine the employed classifiers, we use majority
voting, which attained better results compared to other
explored algebraic combiners. We describe briefly each of
these individual classifiers below.

2.4.1 AdaBoost.M1

AdaBoost.M1 was introduced by Freund and Schapire [44]
based on boosting approach. AdaBoost.M1 sequentially
applies a base learner to bootstrap samples of data and
adjusts the weight of the misclassified samples in each
iteration to minimize the exponential loss function. In the
final step, by combining all classifiers in each iteration using
majority voting, it creates a diverse classifier. AdaBoost.M1
is considered as the best-of-the-shelf metaclassifiers which
attained promising results for a wide range of applications
as well as protein structural class prediction problem [10],
[45]. In this study, Adaboost.M1 using C4.5 decision tree as
its base learner is used with 100 iterations; these many
iterations have been found to provide the best results for
similar studies in the past [20].

2.4.2 LogitBoost

Similar to the Adaboost.M1, LogitBoost is considered as a
kind of Meta-classifier based on boosting approach [46]. It
was introduced to address the over fitting problem in
AdaBoost.M1 which arises when the number of training
samples is small. In this classifier, logistic regression
function is employed as a base learner and in each iteration
it minimizes logistic loss function to improve the perfor-
mance of its base learner. Similar to the Adaboost.M1, this
classifier has been widely used in protein science and
attained promising results [9], [12], [20]. In this study, the
number of iterations for this classifier is set to 100 (which
attained the best results for similar studies [20]).

2.4.3 Support Vector Machine

This classifier is considered as the-state-of-the-art classifier
in the pattern recognition as it outperforms other individual
classifiers in tackling this problem [6]. SVM aims at
minimizing the prediction error by finding the maximal
marginal hyperplane (MMH) based on the support vector
theory [47]. It transforms the input data using kernel trick to
find appropriate support vectors to achieve its goals. We
use SVM using the sequential minimal optimization (SMO)
algorithm with polynomial kernel of degree one (which is
called linear kernel) to reduce the time complexity of our
proposed classifier.2 It was also shown that using linear

kernel attained similar results compared to use of kernel
degree of two and three as a part of proposed ensemble
classifier. For this classifier, the regularization parameter is
set to four as the number of classes for protein structural
class prediction problem.

2.4.4 Multilayer Perceptron (MLP)

It is considered as one the most popular artificial neural
network based classifiers [21]. It uses gradient descent in
its interconnected network in the feedforward method to
minimize the prediction error function over the training
data. Despite its simplicity compared to the other ANN-
based classifiers, it has achieved comparable results (and
sometimes even better results) for similar studies [15],
[20], [48]. In this study, the default parameters of WEKA
used for MLP are adopted (number of hidden layers is set
to one and number of hidden nodes where set to number
of input features).

2.4.5 Naive Bayes

This classifier assumes the independence of features which
helps in computing the posterior probability required in the
Bayes rule in a simple manner [21], [33]. Despite its naive
assumption, it has been popularly used for different tasks
and attained promising results for similar studies found in
the literature [49]. Naive Bayes classifier uses the features
in a manner different from other classifiers and hence,
when it is used as a component of an ensemble classifier it
has attained good results for the protein fold classification
task [42].

3 RESULTS AND DISCUSSION

As mentioned in Section 2, we propose in this paper a feature
extraction method and ensemble of different classifiers for
protein structural class prediction problem. The feature
extraction method uses individual physicochemical-based
attributes to extract the following two kinds of features:
1) segmented distribution, and 2) segmented autocorrela-
tion. In this section, we investigate these two kinds of
features for each of the 15 physicochemical-based attributes.
These features are concatenated with PSSM_AAC and
PSSM_AC features to form the final feature vector used for
classification task.

Note that most of the studies conducted on the Z277 and
Z498 benchmarks used Jackknife evaluation criterion while
studies conducted on the 1,189 and 25 PDB benchmarks
used tenfold cross-validation evaluation criterion. In this
study, we use tenfold cross validation to report our results
on the four benchmarks (Z277, Z498, 1,189, and 25 PDB).
As it was shown in [50], cross-validation evaluation
criterion produces similar results compared to the use of
Jackknife method (while using cross-validation produces
slightly less biased results especially when the number of
samples increases). To the best of our knowledge, the
results reported by Liu et al. [6] using SVM classifier with
radial-based function (RBF) kernel (implemented in the
SVMLIB) are the best results for these four benchmarks.

We use ensemble of different classifiers to classify the
feature vector introduced earlier. The general architecture
of the proposed method is shown in Fig. 2. For the rest of
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2. We have studied a number of kernels such as linear, polynomial,
Gaussian, and radial basis function (RBF) for the SVM classifier and used
this classifier on its own (i.e., without putting it in the ensemble
configuration) and found the polynomial kernel (with polynomial degree
p ¼ 3) giving the best results. When we studied these kernels for the SVM
classifiers when this classifier is used in the ensemble configuration, we
found all the kernels are similar in terms of their performance. Since linear
kernel is simple and does not need much tuning, we provide in this paper
the results of the ensemble configuration with the SVM classifier using
linear kernel.



this study, the combination of the feature groups based on

each attribute and considering Fph (distance factor used in

overlapped segmented autocorrelation feature group) and

Fs (distance factor used in evolutionary-based auto covar-

iance feature group) will be shown by: (comb_num, Fph; Fs).

To be able to compare our results with previous studies

found in the literature, we report our results in terms of

protein structural class prediction (or classification) accu-

racy (in percentage) which is defined as follows:

Q ¼ C

N
� 100; ð6Þ

where C is the number of the correctly classified test

samples and N is the total number of test samples.

3.1 The Impact of Fph and Fs on the Prediction
Performance

In this section, we use PSSM_AAC, PSSM_AC, overlapped

segmented distribution, and overlapped segmented auto-

correlation feature groups and investigate the impact of Fph
and Fs on the protein structural class prediction problem.

This is done to arrive at the best combination of Fph and Fs
values. With Fph ¼ 6 or 10 and Fs ¼ 6 or 10, the following

four combinations of Fph and Fs are possible:

1. Fph ¼ 6; Fs ¼ 6,
2. Fph ¼ 6; Fs ¼ 10,
3. Fph ¼ 10; Fs ¼ 6, and
4. Fph ¼ 10; Fs ¼ 10.

Since the combination Fph ¼ 6 and Fs ¼ 10 gives results
similar to combination Fph ¼ 6 and Fs ¼ 6 in our experi-
mental study, we have not shown it here to keep the paper
as brief as possible. We apply our proposed ensemble of
classifiers to all the combinations of feature vectors
extracted in this study with respect to the values of Fph
and Fs. The results achieved by applying the ensemble
classifier (which is an ensemble of five classifiers as
described in previous section) to 15 combinations of
features extracted for Fph ¼ 6 and Fs ¼ 6 (comb_num,6,6);
Fph ¼ 10 and Fs ¼ 6 (comb_num,10,6); and Fph ¼ 10 and
Fs ¼ 10 (comb_num,10,10) for all benchmarks and their
average prediction accuracies (for each combination) are
shown in Figs. 3, 4, and 5, respectively.

570 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013

Fig. 2. The overall architecture of the proposed method.

Fig. 3. The prediction accuracies achieved (in percentage) for applying
ensemble of classifiers to 15 combinations of feature vectors using
Fph ¼ 6 and Fs ¼ 6 for feature extraction.



In Fig. 6, the average prediction accuracies achieved for
all 15 combinations of feature vectors for all four bench-
marks investigated in this study by adjusting Fph ¼ 6 and
Fs ¼ 6; Fph ¼ 10 and Fs ¼ 6, and Fph ¼ 10 and Fs ¼ 10 are
shown and compared. As we can see, the average results
achieved by adopting Fph ¼ 10 and Fs ¼ 6 attains relatively
better results than two other alternatives used for Fph and
Fs. Therefore, we adopt Fph ¼ 10 and Fs ¼ 6 as the most
effective values for these two parameters and the report the
results in this paper from here onwards using these values.
Note that the highest results in average for all these four
benchmarks achieved by using physicochemical-based
attributes number 9, 11, and 12 (normalized frequency of
�-turn, hydrophilicity scale derived from (HPLC) peptide
retention data, and average gain ratio of surrounding
hydrophobicity, respectively) which to the best of our
knowledge have not been adequately explored for feature
extraction for the protein structural class prediction
problem in the literature.

These three attributes are based on hydrophobicity and
predicted secondary structure of the proteins, which are

considered the most important aspect of proteins and
amino acids that impact on the folding process in the
biological perspective. Achieving best results using hydro-
phobicity and predicted secondary structure of proteins
also highlights their effectiveness in the computational
aspect, which can be explored using segmentation-based
feature extraction method. Furthermore, the better perfor-
mance attained by using these three attributes highlight
their effectiveness and preference compared to use of the
other, more popular, attributes to enumerate hydrophobi-
city and predicted secondary structure of proteins
(e.g., structure derived hydrophobicity value, normalized
frequency of alpha-helix (which both are also investigated
in this study (attribute numbers 1 and 8, respectively)).
Among these three physicochemical-based attributes, attri-
bute number 11 attained the best results in average for all
four benchmarks explored in this study.

3.2 The Impact of Proposed Features versus
Classification Technique Used in This Study

In this section, we separately investigate the impact of
proposed feature extraction techniques and the ensemble
classifier on the protein structural class prediction accuracy.
To do this, we start with the study reported by Liu and his
co-workers as it has reported the best results for this
prediction problem as mentioned earlier [6]. They have
used SVM classifier with the combination of PSSM_AAC
and PSSM_AC feature groups where Fs is set to 6
(140 features in total) and called this feature combination
as AAC-PSSM-AC. In this section, we use the same SVM
classifier with the same AAC-PSSM-AC features and report
the protein structural class prediction results in the first
row of Table 2 for the four benchmarks described earlier.
These results are used here as baseline results which we
want to improve by using our feature extraction techniques
and the ensemble classifier. For this, we first study the
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Fig. 4. The prediction accuracies achieved (in percentage) for applying
ensemble of classifiers to 15 combinations of feature vectors using
Fph ¼ 10 and Fs ¼ 6 for feature extraction.

Fig. 5. The prediction accuracies achieved (in percentage) for applying
ensemble of classifiers to 15 combinations of feature vectors using
Fph ¼ 10 and Fs ¼ 10 for feature extraction.

Fig. 6. The comparison of the prediction accuracies driven from the
average results (in percentage) achieved by adjusting Fph ¼ 6 and
Fs ¼ 6, Fph ¼ 10 and Fs ¼ 6, and Fph ¼ 10 and Fs ¼ 10 for all
15 combinations of feature vectors.

TABLE 2
The Impact of Proposed Feature Extraction Groups versus Ensemble of Classifiers Proposed in This Study to Enhance

Protein Structural Class Prediction Accuracy for Attribute Number 11 Where Fph and Fs Are, Respectively, Set to 10 and 6



impact of adding the overlapped segment distribution
feature group to the baseline features (AAC-PSSM-AC) and
use the SVM classifier to obtain the results as shown in the
second row of Table 2.

Results with the overlapped segmented autocorrelation
feature group added to the baseline feature are shown in
the third row. These results clearly indicate that overlapped
segmented feature group as well as overlapped segmented
autocorrelation feature group help individually to improve
the results, though the latter group does slightly better.
When both of these groups are added to the baseline
features, the results (shown in the fourth row) become
much better. Finally, we use the ensemble classifier (instead
of SVM classifier) with both the feature groups added to the
baseline features and results are shown in the fifth row of
Table 2. These results are better than the results listed in the
fourth row indicating the improvement in performance
resulting from the ensemble classifier over the SVM
classifier. We can also see from this table that these results
(in the fifth row) are better than the baseline results
demonstrating the importance of our feature extraction
method and the ensemble classifier.

To ascertain the statistical significance of this improve-
ment, we use paired t-test and find t-value equal to 6.7293
with 3 degrees of freedom. These results are statistically
better than the baseline results at 5 percent significance
level (p value equals to 0.0034). This shows the significance
of our proposed feature extraction and ensemble classifier
with respect to baseline results.

3.3 Reported Results in This Study Compared to the
Results Reported in the Literature

In this section, we use AAC-PSSM-AC, overlapped segmen-
ted distribution, and overlapped segmented autocorrelation
as features with the ensemble classifier for protein structural
class prediction problem. The resulting prediction accuracy
(in percentage) is shown in Tables 3, 4, 5, and 6 for the
Z277, Z498, 1,189, and the 25PDB benchmarks, respectively,
for the three physicochemical-based attributes (attributes
number 9, 11, 12) using Fph ¼ 10 and Fs ¼ 6 (comb_9,10,6,
comb_11,10,6, and comb_12,10,6). For comparison, we also list
the best results found in the previous studies reported in
the literature.3 For each benchmark, the prediction perfor-
mance for each structural class is also reported separately
in these tables.

As shown in Table 3, we achieve over 90 percent
prediction accuracy for the Z277 benchmark, which is
1.5 percent better than the highest result that was reported
for this benchmark before. By reproducing the result of [6] on
this benchmark (using tenfold cross validation) 88.8 percent
prediction accuracy is achieved, while for our method,
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TABLE 4
The Best Results (in Percentage Percent) Achieved
for Z498 Benchmark (for Combinations of Feature

Vectors Extracted for Attributes Number 9, 10, and 12,
While Fph and Fs Are, Respectively, Set to 10 and 6)

Compared to the Best Results Reported in the Literature

TABLE 3
The Best Results (in Percentage Percent) Achieved
for Z277 Benchmark (for Combinations of Feature

Vectors Extracted for Attributes Number 9, 10, and 12,
While Fph and Fs Are, Respectively, Set to 10 and 6)

Compared to the Best Results Reported in the Literature

TABLE 5
The Best Results (in Percentage Percent) Achieved
for 1,189 Benchmark (for Combinations of Feature

Vectors Extracted for Attributes Number 9, 10, and 12,
While Fph and Fs Are, Respectively, Set to 10 and 6)

Compared to the Best Results Reported in the Literature

3. As highlighted earlier in Section 1, the prediction accuracy of the
PSIPRED for the protein secondary structure prediction is about 80 percent.
Therefore, as discussed in [32], it cannot be considered as a reliable feature
source as it could not contribute to enhance the protein structural class
prediction accuracy too far better than 80 percent. Therefore, these tables
show results from previous studies without the use of PSIPRED [3],
[8], [31]).

TABLE 6
The Best Results (in Percentage Percent) Achieved
for 25PDB Benchmark (for Combinations of Feature

Vectors Extracted for Attributes Number 9, 10, and 12,
While Fph and Fs are, Respectively, Set to 10 and 6)

Compared to the Best Results Reported in the Literature



we reach up to 90.3 percent (for Comb_11,10,6) prediction
accuracy. Similarly, we achieve 96.8 percent prediction
accuracy using (Comb_9,10,6) feature set for the Z49 bench-
mark (see Table 4), which is better than the best prediction
accuracy of 95.7 percent reported in the literature for this
benchmark [18]. We also achieved up to 96.6 percent
prediction accuracy using (Comb_11,10,6) up to 0.9 percent
better than previously reported results for this benchmark.

The proposed method also outperforms similar studies
found in the literature for the 1,189 and the 25PDB
benchmarks. For the 1,189 benchmark, we achieve up to
74.8 percent prediction accuracy (for Comb_11, 10, 6),
2.1 percent better than 72.7 percent achieved by reprodu-
cing the results of [6] on this benchmark (see Table 5). This
study also reports 76.7 percent prediction accuracy (for
Comb_11, 10, 6), 2.8 percent better than 73.9 percent
prediction accuracy achieved by reproducing the results
of [6] for the 25 PDB benchmark (see Table 5).

To study the statistical significance of the prediction
accuracy enhancement reported in this study, we conduct
the paired t-test on our achieved results compared to the
highest results reported in the literature. We note that the
best prediction results reported on Z277, Z498, 1,189, and
25 PDB benchmarks in the previous studies are 88.8, 95.7,
72.7, and 73.9 percent, respectively; while the correspond-
ing results from the present study are 90.3, 96.6, 74.8,
and 76.7 percent (using comb_11,10,6 features). For the
paired t-test, we get t-value equal to 4.484 with 3 degrees of
freedom. Our results are statistically better than the best
results from the previous studies at 5 percent significance
level (p value equals to 0.0103).

Achieved results highlight the promising performance
of the proposed method to tackle the protein structural
class prediction problem compared to the previous studies
found in the literature. Besides enhancing the prediction
performance for this task, our proposed methods introduce
a new approach to explore potential discriminatory
information of the physicochemical-based features in
conjunction with the evolutionary-based features that can
be used for similar studies.

Exploring results individually for each structural class
also shows that for all the employed benchmarks and
almost all of the structural classes, proposed method is
capable of achieving better results compared to the
previously proposed approaches found in the literature
(especially the significant enhancement observed for diffi-
cult classes (�=�)). It is important to highlight that the
reported results are achieved by adding limited number of
features to the number of features explored previously [4],
[12]. However, despite increasing the number of features,
the proposed method provides important information
about the impact of the physicochemical-based attributes
for this task. This study also shows the importance of the
attributes that have not been explored adequately or
completely neglected in previous studies. Achieved results
also emphasizes the importance and effectiveness of the
proposed feature extraction methods based on the over-
lapped segmented distribution and autocorrelation con-
cepts to provide more discriminatory information to
enhance protein structural class prediction accuracy.

4 CONCLUSION AND FUTURE WORKS

In this paper, we investigated the use of physicochemical-
based attributes of the amino acids along with the
evolutionary-based information contained in the PSSM for
feature extraction. For this, we have selected 15 different
physicochemical-based attributes and used each of these
attributes to extract two kinds of features: 1) overlapped
segmented distribution and 2) overlapped segmented
autocorrelation. These features are concatenated with two
other kinds of sequential features, PSSM_AAC and
PSSM_AC, derived directly from the PSSM.

These features are studied for protein structural class
prediction problem using an ensemble of different classifiers
on four different benchmarks widely used in the literature.
The classification results are reported using the tenfold
cross-validation process. The proposed feature extraction
method has been found to perform better than the previously
reported results for the protein structural class prediction
problem for all the four employed benchmarks [6], [18].
This illustrates the importance of the physicochemical-
based attributes (that have not been explored earlier for this
task) as well as the overlapped segmented-based feature
extraction procedure to provide more local and global
discriminatory information to tackle the protein structural
class prediction problem. For future studies, we aim to
explore a wider range of segmented-based feature extraction
methods as well as novel weighted-based ensemble of
different classifiers. We also aim to collaborate with
biological experts to investigate the significant of the
explored features in the biological perspective.
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