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Abstract

Speech signal is basically meant to carry the information about the linguistic

message. But, it also contains the speaker-specific information. It is gen-

erated by acoustically exciting the cavities of the mouth and nose, and can

be used to recognize (identify/verify) a person. This thesis deals with the

speaker identification task; i.e., to find the identity of a person using his/her

speech from a group of persons already enrolled during the training phase.

Listeners use many audible cues in identifying speakers. These cues range

from high level cues such as semantics and linguistics of the speech, to low

level cues relating to the speaker’s vocal tract and voice source characteristics.

Generally, the vocal tract characteristics are modeled in modern day speaker

identification systems by cepstral coefficients. Although, these coefficients

are good at representing vocal tract information, they can be supplemented

by using both pitch and voicing information.

Pitch provides very important and useful information for identifying speak-

ers. In the current speaker recognition systems, it is very rarely used as it

cannot be reliably extracted, and is not always present in the speech signal.

In this thesis, an attempt is made to utilize this pitch and voicing information

for speaker identification.

This thesis illustrates, through the use of a text-independent speaker

identification system, the reasonable performance of the cepstral coefficients,

achieving an identification error of 6%. Using pitch as a feature in a straight
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forward manner results in identification errors in the range of 86% to 94%,

and this is not very helpful.

The two main reasons why the direct use of pitch as a feature does not

work for speaker recognition are listed below. First, the speech is not always

periodic; only about half of the frames are voiced. Thus, pitch can not be

estimated for half of the frames (i.e. for unvoiced frames). The problem is

how to account for pitch information for the unvoiced frames during recog-

nition phase. Second, the pitch estimation methods are not very reliable.

They classify some of the frames unvoiced when they are really voiced. Also,

they make pitch estimation errors (such as doubling or halving of pitch value

depending on the method).

In order to use pitch information for speaker recognition, we have to

overcome these problems. We need a method which does not use the pitch

value directly as feature and which should work for voiced as well as unvoiced

frames in a reliable manner. We propose here a method which uses the

autocorrelation function of the given frame to derive pitch-related features.

We call these features the maximum autocorrelation value (MACV) features.

These features can be extracted for voiced as well as unvoiced frames and do

not suffer from the pitch doubling or halving type of pitch estimation errors.

Using these MACV features along with the cepstral features, the speaker

identification performance is improved by 45%.
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Chapter 1

Introduction

Speaker recognition is the process of identifying a person on the basis of

speech alone. Campbell defines it more precisely as the use of a machine to

recognize a person from a spoken phrase [9]. It is a known fact that speech

is a speaker dependent feature that enables us to recognise friends over the

phone.

During the years ahead, it is hoped that speaker recognition will make it

possible to verify the identity of persons accessing systems; allow automated

control of services by voice, such as banking transactions; and also control

the flow of private and confidential data [15].

While fingerprints and retinal scans are more reliable means of identifica-

tion, speech can be seen as a non-evasive biometric that can be collected with

or without the persons knowledge or even transmitted over long distances via

telephone. Unlike other forms of identification, such as passwords or keys, a

person’s voice cannot be stolen, forgotten or lost. Speaker recognition allows

for a secure method of authenticating speakers.

1
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Figure 1.1: The Scope of Speaker Recognition [9].

During the enrollment phase, the speaker recognition system generates a

speaker model based on the speaker’s characteristics. The testing phase of the

system involves making a claim on the identity of an unknown speaker using

both the trained models and the characteristics of the given speech. Many

speaker recognition systems exist and the following section will attempt to

classify the many types of speaker recognition systems.

1.1 Classification of Automatic Speaker Recog-

nition

This section covers the classification of speaker recognition systems (see Fig.

1.1), their differences and how the performance of such systems are accessed.

Automatic speaker recognition systems can be divided into two classes de-

pending on their desired function; Automatic Speaker Identification (ASI)
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Figure 1.2: Speaker Identification and Speaker Verification [39].

and Automatic Speaker Verification (ASV) systems [49]. ASI systems at-

tempt to answer the question “who are you?”, while Automatic Speaker

Verification systems ask the question “are you whom you claim to be?”, as

shown in Fig. 1.2.

The role of an automatic speaker verification (ASV) system is to justify an

identity claim made by the speaker. The decision of the verification system

is strictly binary in the form of an accept or a reject [69]. If we represent

the probability of a given utterance x belonging to the ith speaker by pi(x),

then the speaker verification task is simply:

if pi(x) > pTHRESHOLD ACCEPT

else REJECT

Generally, pTHRESHOLD is an experimentally derived threshold.

The role of an automatic speaker identification (ASI) system is more
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complex. It is required to make a claim on the identity of the speaker from

the NS trained speakers in its user database; i.e.,

The speaker is identified as the jth speaker,

if pj(x) results in the highest score among

all the NS trained (enrolled) speakers.

Since the system is required to make NS tests and decisions, the error

of the system will increase with NS, whereas the error of an ASV system is

independent of NS.

The errors of ASV/I systems can be classified into two groups: false ac-

ceptance (FA), accepting an impostor (ASV) or identifying a wrong person

(ASI) and false rejection (FR), rejecting a true speaker (ASV) or not match-

ing a speaker (ASI). Since the decision to reject or accept a speaker is defined

by a threshold, the system can be designed to minimize the more costly of

these two errors. A system designed to protect sensitive information would

have a low decision threshold, which in turn would produce a low FA at the

expense of a high FR, i.e. unauthorised personnel would be denied access at

the expense of inconveniencing authorised personnel.

Since FA and FR are dependent on the threshold, the threshold can be

chosen so that these two errors are equal, defined as the Equal Error Rate

(EER) [7]. The equal error rate can be greatly affected by the utterances

used in training and testing the system.

The ASV/I systems can be further classified into text-dependent and

text-independent systems. The former requires the speaker to utter sentences

based around a set of keywords for both training and recognition (testing)

trials.
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Due to the nature of text-dependent systems, someone could easily fool

the system by playing back the recorded voice of a registered speaker [15].

Experience has also shown that humans function in a text-independent fash-

ion. Therefore more focus is made on text-independent systems.

1.2 Contribution

The speech from a given speaker is modeled using spectral modeling tech-

niques such as cepstral coefficients. These methods are extremely useful in

representing vocal tract information. However, supplementary information

based on pitch and intensity information is required to improve their perfor-

mance. It has been shown by Atal [1] that the use of pitch contours as a

feature can in fact improve the recognition performance. Furui [14] showed

that the direct use of pitch can enable the system to better differentiate

speakers, but the results were not very encouraging.

Pitch can not be used directly as a feature in a speaker recognition system

because of the following two main reasons: First, the speech is not always

periodic; only about half of the frames are voiced. Thus, pitch can not be

estimated for half of the frames (i.e. for unvoiced frames). The problem is

how to account for pitch information for the unvoiced frames during recog-

nition phase. Second, the pitch estimation methods are not very reliable.

They classify some of the frames unvoiced when they are really voiced. Also,

they make pitch estimation errors (such as doubling or halving of pitch value

depending on the method).

In order to use pitch information for speaker recognition, we have to over-
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come these problems. We need a method which does not use the pitch value

directly as a feature and which should work for voiced as well as unvoiced

frames in a reliable manner. We propose here a method which uses the

autocorrelation function of the given frame to derive pitch-related features.

We call these features the maximum autocorrelation value (MACV) features.

These features can be extracted for voiced as well as unvoiced frames and

do not suffer from the pitch doubling or halving type of pitch estimation er-

rors. Using these MACV features as supplementary features with the cepstral

features, the speaker identification error is reduced by 45%.

1.3 Outline of Thesis

The major goal of this thesis was to derive a set of source-based features

that would improve the recognition accuracy of a text-independent speaker

identification system.

Chapter 2 outlines the current state of speaker recognition technology. It

begins with a brief overview of speech production as a means of explaining

feature extraction, leading to an overview of many common classification

methods used in modern day speaker recognition systems.

Chapter 3 outlines a text-independent GMM-based speaker identification

system developed for evaluating the effectiveness of various feature sets. It

begins with an overview of the corpra used during experimentation, an in

depth look at the feature extractors used in evaluating the system, and the

method of training the system. The chapter concludes with an outline of the

system’s performance.
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The fourth chapter covers the importance of pitch in speaker identifica-

tion and describes many simple pitch extraction methods used today. The

use of pitch as a feature is shown to give extremely poor results. The use of

voicing information is proposed and a more complex method, called power

difference in spectra of subband (PDSS), is covered. Finally, the MACV fea-

tures proposed here as a simpler and more effective features for representing

pitch and voicing information are described.

The final chapter concludes the thesis with a summary and a list of pos-

sible directions for further work in this area.



Chapter 2

Text-independent Speaker

Identification

The current day speaker identification system (shown in Fig. 2.1) consists of

five different sections: signal acquisition, feature extraction (front-end pro-

cessing), pattern matching and classification, decision logic and enrollment.

This chapter attempts to explain the current state of speaker identifica-

tion technology. It begins by explaining the process of speech production

in humans and addresses key audible cues used by listeners in identifying

speakers. Using these relationships it will explain how speaker identification

systems are able to use these features in identifying speakers. Several meth-

ods used in speaker identification are explained, highlighting the difference

between template and stochastic models. The chapter concludes with a brief

summary.

8
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Figure 2.1: A basic speaker identification system.

2.1 Speech and Feature Extraction

Speech is a complex signal. This section will attempt to shed some light on

the subject, by showing how speech is produced and how speech is represented

by speaker identification systems in the form of feature vectors.

2.1.1 Speech Production

The vocal system can be thought of as an acoustic tube terminating at the

mouth on one end and the vocal cords at the other as can be seen in Fig. 2.2.

In the average male, the vocal tract is approximately 17 cm in length, and

the cross-sectional area of the vocal tract varies from zero (complete closure)

to approximately 20 sq. cm [47]. Speech is produced by acoustically exciting

the vocal tract, including the cavities of the mouth and nose (Fig. 2.3). Air

enters the lungs via the normal breathing mechanism and is expelled through

the trachea which causes the vocal cords to vibrate. The quasi-periodic pulses

are then modulated by the pharynx, the mouth cavity, and sometimes the

nasal cavity to produce speech [1]. The shape of the vocal tract is continually
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Figure 2.2: Acoustic tube model of speech production.

changing due to the position of the tongue, the jaw and the lips and in most

cases all sound is radiated from the lips except for nasal consonants which

radiate from the nose [61]. The nasal consonants defined by /m/,/n/, and

/η/ are produced by constricting the vocal tract at some point along the oral

passage way, lowering the vellum to allow coupling with the nasal cavity and

allowing the sound to be radiated via the nostrils. The mouth then acts as a

resonant cavity trapping the acoustic energy at natural resonant frequencies.

Sounds are generally classified by their mode of excitation, consisting of

three important modes; voiced, unvoiced and plosives. Voiced sounds are

produced as a result of exciting the vocal tract with a series of periodic

pulses. An example of voiced sounds include vowels, semi-vowels, voiced

stops and nasal consonants. The period of excitation is determined by the

mass and tension of the vocal cords and is usually in the range of 60 to

400 Hz. Unvoiced sounds are produced when the vocal tract is excited by a

noise-like turbulent flow of air at a point of constriction. Examples include
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Figure 2.3: Speech production mechanism [78].

fricatives like f, s, sh, etc . Lastly plosives are generated by making a complete

closure of the vocal tract, building pressure and releasing it abruptly. Plosives

include stop consonants like b, p, g, t.

Listeners use many perceptual cues when recognizing speakers, cues that

range from high level cues to low-level cues [51]. High level cues relate to

semantics and linguistics of speech, including word usage, pronunciation,

and other non-acoustic properties. These are thought to be related to life

experiences incorporating place of birth, upbringing and education. These

cues are commonly referred to as traits and are not always present in the

speech signal. Low level cues are related to the speaker’s vocal tract and

voice source characteristics. These cues can be extracted from the speech

signal through acoustic measurements.
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A speaker is identified by both the physiological and behavioral charac-

teristics in their voice. These characteristics are represented by the vocal

tract characteristics (spectral envelope) and the voice source characteristics

( supra-segmental features) [15]. The vocal tract characteristics are generally

represented by linear prediction coefficients or cepstral coefficients.

2.1.2 The Linear Prediction Coefficients

The linear prediction coefficients (LPCs) capture the information about the

short-time spectral envelope of speech. Although the LPCs represent impor-

tant speech characteristics such as formant frequency and bandwidth, they

are independent of pitch and intensity information [1]. A study undertaken

by Atal [3] shows the effectiveness of LPCs in a speaker identification role.

The modern day LP feature extractor, Fig. 2.4, consists of five major sec-

tions, preemphasis, frame blocking, windowing, autocorrelation analysis and

LPC computation. This section outlines the role of these functional blocks

in converting the speech signal to the LP coefficients [47].

Preemphasis Filtering

The digital speech s(n) is captured by an analog-to-digital converter (ADC)

at a sampling frequency fs. The signal is then filtered by a first order FIR

filter in the form of

H(z) = 1 − αz−1 , (2.1)

where α typically lies in the range of 0.9 to 1.0 and reflects the degree of

preemphasis. Preemphasis has the advantage of spectrally flattening the

signal and making it less susceptible to finite precision effects at a later stage.
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Figure 2.4: The LP feature extractor.

Fig. 2.5 shows the frequency response of a preemphasis filter with α = 0.95.

It should be noted that at ω = π the filter response is 32 dB higher than at

ω = 0. The phase response of the filter is unimportant as it has no effect on

the perception of the speech.

The output of the preemphasis filter can be related to the input by the

difference equation

ŝ(n) = s(n) − αs(n − 1) n = 0, 1, 2, . . . , N − 1 (2.2)

Preemphasis should generally be applied to voiced speech, but the slight

negative effect on unvoiced speech does not warrant limiting preemphasis

[69]. LP feature extractors preemphasize the entire speech signal using a

constant value of α. However it is also possible to apply preemphasis using

a frame dependent value of α. i.e.

H(z) = 1 − α(n)z−1 , (2.3)

where α(n) is a function of frame number. Normally in this scenario the
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Figure 2.5: The frequency response of the preemphasis filter.

α(n) is dependent on the ratio of the first two autocorrelation values of the

current frame.

Frame Blocking

The resulting preemphasized signal is blocked/split into equal frames of

length N. The start of each frame is offset from the start of the previous

frame by L samples, as illustrated in Fig. 2.6. The start of the second frame

begins at L and the third would begin at 2L and so on. It can be seen that if

L ≤ N then adjoining frames will overlap, and the LP spectral estimates will

show a high level of correlation. In a system where the sampling frequency

is 8 kHz, typical values of L and N are 80 and 160 respectively, which are

related to a frame length of 30 ms with an update of 10 ms. If we define xi

as the ith segment of the sampled speech ŝ and I frames are required then
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Figure 2.6: How the parameters N and L are utilized in the frame blocker.

the frame blocking process can be described as

xi(n) = ŝ(Li + n) n = 0, 1, . . . , N − 1 , i = 0, 1, . . . , I − 1 (2.4)

Windowing

In the short-term analysis of the speech signal, a rectangular window is im-

plicitly used. This causes a spectral-leakage type of distortion in spectral

analysis. The main reason for this is that the rectangular window has an

abrupt discontinuity at the beginning and at the end of a frame. This dis-

tortion can be reduced by using a tapered window function w(n). There

exist many different windowing functions, Table 2.1 lists some of them. The

resulting windowed segment is defined as

x(n) = xi(n) w(n) n = 0, 1, . . . , N − 1 (2.5)
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Name of Time domain

window Sequence

Rectangular 1

Bartlett 1 −
2|n−M−1

2
|

M−1

Blackman 0.42 − 0.5cos 2πn
M−1 + 0.08cos 4πn

M−1

Hamming 0.54 − 0.46cos 2πn
M−1

Hanning 1
2

(

1 − cos 2πn
M−1

)

Kaiser
I0

[

α

√

(M−1
2 )

2
−(n−M−1

2 )
2

]

I0[α(M−1
2 )]

Lanczos

{

sin[2π(n−M−1
2 )/(M−1)]

2π(n−M−1
2 )/(M−1

2 )

}L

L > 0, 1, |n − M−1
2 | ≤ αM−1

2 , 0 < α < 1

Tukey 1
2

[

1 + cos
(

n−(1+α)(M−1)/2
(1−α)(M−1)/2 π

)]

α(M − 1)/2 ≤
∣

∣

∣n − M−1
2

∣

∣

∣ ≤ M−1
2

Table 2.1: A summary of some common windowing functions used in the LP

feature extractor.
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Autocorrelation Analysis

The autocorrelation analysis is used to extract important harmonic and for-

mant properties from the speech. The autocorrelation function is a special

case of the cross-correlation function [49] and is defined as:

R(i) =
1

N

N−i−1
∑

n=0

x(n)x(n + i) i = 0, . . . , p , (2.6)

where p is the LP analysis order and typical values range from 8 to 16. The

zeroth element of the autocorrelation R(0) provides a measure the of energy

of the speech segment, and can be used for discarding silent frames.

LPC computation

The next functional block converts the p+1 autocorrelation coefficients into

the LP coefficients. If we assume that the vocal tract is excited by a white

noise signal having zero mean and unit variance, we can then represent the

vocal tract by a pth order auto regressive (all-pole) model of the form

H(z) =
G2

p

1 +
∑p

k=1 ap,kz−k
(2.7)

The unknowns in this equation (G2
p, ap,k , k = 1, 2, . . . , p) are solved using

the following two equations

R(0) = G2
p +

p
∑

k=1

ap,kR(k) (2.8)

and

R(j) = −
p

∑

k=1

ap,kR(j − k), j = 1, 2, ..., p. (2.9)

These equations (2.8 and 2.9) are commonly referred to as the Yule-Walker

equations. It is possible, due to the Toeplitz nature of the matrix of autocor-

relation coefficients, to solve these equations using a recursive method. The
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most popular and well known of these recursive methods is the Levinson-

Durbin algorithm.

The Levinson-Durbin algorithm is initialized as:

a1,1 = −
R(1)

R(0)
(2.10)

P1 = R(0)(1 − a2
11) (2.11)

and recursively implemented for m = 2, . . . , p by

am,m = −
R(m) +

∑m−1
i=1 am−1,iR(m − i)

Pm−1

(2.12)

am,i = am−1,i + am,mam−1,m−i (2.13)

Pm = Pm−1(1 − a2
m,m) (2.14)

On completion of the algorithm, the final solution for the LP coefficients is

given as

ai = ap,i, 1 ≤ i ≤ p. (2.15)

G2
p = Pp (2.16)

A by-product of the Levinson-Durbin algorithm are the reflection (or, PAR-

COR) coefficients km, m = 1, 2, ..., p, defined as follows:

ki = ai,i, 1 ≤ i ≤ p. (2.17)

The reflection or PARCOR (partial correlation) coefficients are directly

related to the non-uniform cross-sections of an acoustic tube used to model

the vocal tract (see Fig. 2.2). The vocal tract can be considered as a cascade

of p cylinders of equal length with various cross-sectional areas A1, A2, . . . , Ap.

When air passes through the tube, the difference in cross-sectional areas
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causes reflection at the boundaries, where the reflection coefficients are de-

noted by km [47]. The reflection coefficients are related to the LP coefficients

in a non-linear fashion, but provide all the information about the all-pole

filter similar to the LP coefficients. They have been found to be useful for

speech coding.

Other equivalent representations of LP information include log area ra-

tios, inverse sine PARCORs, cepstral coefficients, etc. Among all these LP

representations, the cepstral coefficients representation has been found to

provide best performance for speech and speaker recognition and, hence,

currently used for these applications.

2.1.3 Cepstral Coefficients

The cepstral coefficients provide a better alternative to the LP coefficients

for speech and speaker recognition [25, 17, 3]. The cepstral coefficients can

be derived either through LP analysis or Mel filter-bank analysis [47]. The

former method generates features which are more commonly known as the LP

cepstral coefficients. The M LP cepstral coefficients can easily be calculated

from the p LP coefficients by

c0 = ln G2
p (2.18)

cm =
mapm −

∑m−1
k=1 apkcm−k(m − k)

m
, 1 ≤ m ≤ p (2.19)

cm =

∑m−1
k=1 apkcm−k(m − k)

m
. p < m ≤ M. (2.20)

Alternatively, the Mel filter-bank cepstral coefficients (MFCCs) [47, 11] are

calculated by taking the short-term power spectrum of the signal. The spec-

trum is then filtered with a set of 20 triangular windows used to simulate
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critical band filtering. The windows are approximately 300 mels wide ( mels

define the unit of measure in the mel-scale) and are spaced 150 mels apart

and are sometimes referred to as mel scaled filters. However they only weight

spectral values, they do not filter time domain signals. The relationship be-

tween the mel scale spectrum and the frequency spectrum is approximately

given by,

Mel(f) = 2595 log(1 +
f

700
) (2.21)

If the resulting log energy of the signal obtained from the kth filter is

denoted by Xk and M cepstral coefficients are required, then the MFCCs are

derived through a discrete cosine transform (DCT) of the form

cn =
20
∑

i=1

Xkcos

[

n

(

k −
1

2

)]

, n = 1, 2, . . . , M. (2.22)

The complete MFCC extractor is shown in Fig. 2.7. The zeroth cepstral

coefficient c0 represents the average power of the frame and is usually not

used; the c1 coefficient reflects the distribution of energy between the high

and low frequencies and the remaining coefficients show the fine spectral

detail.

Cepstral Weighting

The performance of the cepstral coefficients can be improved by windowing

the M cepstral coefficients with a liftering window wm given by [29]:

wm =
[

1 +
M

2
sin

(

πm

M

)]

, m = 1, 2, . . . , M. (2.23)

The function of this window is to deemphasize the lower and higher order

cepstral coefficients. The lower order coefficients are deemphasized because
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Figure 2.7: The complete MFCC feature extractor.
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they get affected by spectral tilt and slowly varying additive noise distortion.

The higher order cepstral coefficients are given less weight because they are

not as effective for speaker recognition as the low order coefficients.

2.1.4 The Temporal Derivative of Cepstral Coefficients

The cepstral coefficients have been found to be a good representation of local

spectral properties. This information can be extended to include temporal

information; both first and second derivatives have been known to greatly

improve the performance of an ASI system in which there exists a session

variation (due to quality or time) between the trained and testing speech

[73]. The temporal derivatives capture the information about change over

many adjacent feature vectors. Though the cepstral derivative for the n-th

frame can be obtained by subtracting the preceding cepstral vector c(n− 1)

from the current cepstral vector c(n), it is not very effective. Instead the

first-order derivative is computed as the slope of the least squares linear fit

over a finite window [47]; that is

∆cm(n) =

∑Θ
k=−Θ kcm(n + k)

∑Θ
k=−Θ k2

, m = 1, 2, . . . , M. (2.24)

where Θ defines the length of the window (a typical value is Θ = 3). These

first-order derivatives of cepstral coefficients are called the delta cepstral

coefficients. The second-order derivative of cepstral coefficients ∆∆c(n) (also

known as delta-delta or acceleration coefficients) are computed by taking

the first-order derivative of the delta coefficients. The temporal derivatives

are used to extend the original feature vector; i.e., the final feature vector

o(n) consists of not only cepstral coefficients but the delta and acceleration
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coefficients also. Thus, the final 3M-dimensional feature vector o(n) for the

n-th frame is given by

o′(n) = (c′(n), ∆c′(n), ∆∆c′(n)), (2.25)

where the prime denotes the transpose of a vector.

2.2 Pattern Matching and Classification

Speaker identification is basically a pattern classification problem preceded

by a feature extraction stage [49]. Given a sequence of feature vectors rep-

resenting the given test utterance, it is the job of the classifier to find out

which speaker has produced this utterance [9]. In order to carry out this

task, the acoustic models are constructed for each of the speakers from its

training data. In the classification stage, the sequence of feature vectors rep-

resenting the test utterance is compared with each acoustic model to produce

a similarity measure that relates the test utterance with each speaker. Using

this measure, the speaker identification system recognizes the identity of the

speaker.

Various types of classifiers have been used for speaker identification.

These can be grouped into either template or stochastic based classifiers.

This section covers the classifiers in both groups, beginning with template

ones.

2.2.1 Template Models

Template model based classifiers are considered to be the simplest of all

classifiers. Thus it is understandable that the earliest classifiers belonged to
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this group. The most common of the template models used dynamic time

warping and vector quantization.

Dynamic Time Warping

Dynamic time warping (DTW) was deployed in the earlier classifiers used for

speaker identification. It is useful for text-dependent speaker recognition. It

was a very popular method used in the 1980s [69]. However it has now been

displaced by HMMs.

Due to changes in speaking rate, a speaker speaking the same text twice

exhibits timing differences in two utterances. The problem of time alignment

is addressed by the DTW algorithm through warping a template (or model)

in an attempt to align key similarities between test utterance and training

templates. The DTW algorithm also combines both the warping and distance

measurement into one simple procedure [65, 66, 70].

Using the Bellman optimality principle, DTW is able to find an optimal

path through the numerous possibilities that exists in comparing a test ut-

terance with the training template. Given a reference (training) template

R and a test utterance T consisting of NR and NT frames respectively, the

DTW is able to find a function m = w(n) which maps the time axis n of T

to the time axis m of R.

DTW searches frame by frame through T to find the best frame in R in

which to make the comparison

D = min
w(n)

[

T
∑

n=1

d(T (n), R(w(n)))

]

, (2.26)

where d is a measure of the distance between the nth frame of T and the
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w(n)th frame of R, and D is considered as the distance corresponding to the

best path or best match.

Given a sequence of feature vectors representing the test utterance, DTW

is able to measure the best-match distances of the test utterance from all

the reference templates. The system evaluates these distances and makes a

decision about speaker identification in favor of the speaker whose reference

template produces the lowest distance. DTW is used extensively in text-

dependent speaker identification systems [9].

Vector Quantization

The DTW-based method is used for text-dependent speaker recognition. If

the aim is to perform text-independent speaker recognition, one possible

method could be to use all the feature vectors of a given speaker occur-

ring in the training data to form this speaker’s model. However, this is not

practical as there are too many feature vectors in the training data for each

speaker [61]. Therefore, a method of reducing/compressing the number of

training vectors is required. It is possible to compress the training data by

using a VQ (Vector Quantization) codebook consisting of a small number of

highly representative vectors, that efficiently represent the speaker-specific

characteristics [72, 74]. Note that the VQ-based classifiers were popular in

earlier days for text-independent speaker recognition, but these days they

are replaced by Gaussian mixture model based classifiers.

A formal method of constructing the VQ codebook is given in [34]. A

conceptual illustration is included here in Fig. 2.8. Consider a set of I

training feature vectors (x1,x2, . . . ,xI) of one particular speaker. These are
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shown by blue dots in a two dimensional Euclidean space in Fig. 2.8(a).

Suppose that we want to represent these vectors in terms of a codebook

consisting of NC code vectors (where NC < I). This is done as follows:

The feature vectors are initially grouped into a single partition, where

the border of this partition is shown by a green dashed ellipse (Fig. 2.8(b)).

The partition is then assigned a centroid Cp (in red), representing the mean

of the partition (Fig. 2.8(c)). i.e.

Cp =

∑I
i=1 xi

I
, (2.27)

The centroid is then split to form the following two new code vectors (Cs1

and Cs2) (as shown in Fig. 2.8(d)):

Cs1 = (1 − ǫ)Cp

Cs2 = (1 + ǫ)Cp ,

where ǫ refers to the splitting factor and is typically in the range of 0.001 to

0.0001. Using these two code vectors, the training vectors x1,x2, . . . ,xI are

encoded in terms of these two code vectors using a Euclidean distance mea-

sure and two new partitions are created by regrouping the training vectors to

each of the two code vectors. Centroids for these two partitions are computed

and are used as new code vectors. This process of partitioning and centroid

computation is continued until the average distortion between centroids and

training vectors is minimized (Fig. 2.8(e)). If the Euclidean distance between

the jth code vector Cj and the ith feature vector xi is denoted by d(xi,Cj),

then the average distortion of the I feature vectors is computed as follows:

D =
1

I

I
∑

i=1

min
1≤j≤M

d(xi,Cj) (2.28)
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Figure 2.8: The process of VQ codebook generation; the features are shown

by blue dots, the group boundary in green and the centroids are in red.
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The two code vectors are split into four code vectors and the same process of

partitioning and centroid computation is repeated to find four code vectors.

Using this binary splitting procedure, we can compute the VQ codebook with

NC code vectors (Fig. 2.8(g)).

One codebook with NC code vectors is computed for each of the NS

speakers enrolled in the training phase. During the recognition phase, the

feature vectors y1,y2, . . . ,yL representing the test utterance are encoded in

terms of their nearest code vectors from the code book of each of the NS

speakers. The total distortion for the ith speaker is computed by

Di =
L

∑

l=1

min1≤j≤NC
d(yl,C

i
j), (2.29)

where Ci
j is the j-th code vector of the i-th speaker’s code book.

Once these NS distances are computed, the speaker identification system

classifies the test utterance to a speaker whose VQ codebook results in the

least distortion; i.e.,

i∗ = arg min1≤i≤NS
Di. (2.30)

2.2.2 Stochastic Models

Currently, most of the speaker recognition systems are based on stochastic

models. Stochastic models provide better flexibility and more meaningful

results in the form of probabilistic scores [69]. In a stochastic model based

classifier, the pattern matching procedure requires the computation of the

likelihood of a test utterance given the speaker model.

Let λs be the stochastic model for the s-th speaker derived from the

training data of this speaker. We will have NS stochastic models for the
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NS speakers (one model for each speaker). Let Y = (y1,y2, . . . ,yL) be

the sequence of the feature vectors representing the test utterance (having L

frames). Our aim is to identify the speaker who has spoken this test utterance

from the group of NS speakers. This is done by computing the probability

p(Y |λs) = p(y1,y2, . . . ,yL|λ
s), (2.31)

for s = 1, 2, ..., NS and deciding the identity of the speaker on the basis of

s∗ = arg max1≤s≤NS
p(Y |λs). (2.32)

If there is no correlation between the feature vectors of successive frames

(i.e., they are independent), then Eq. (2.31) can be written as follows:

p(Y |λs) =
L

∏

i=1

p(yi|λ
s), (2.33)

Thus, our task is to compute the probability of a test vector given the speaker

model; i.e., p(yi|λ
s).

There are a number of methods recently proposed in the literature to

compute this probability. The major ones are the Gaussian Mixture Model

[51, 52, 53], the Hidden Markov Model [9], and Neural Networks [10]. These

methods are briefly explained in the following sections.

Gaussian Mixture Model

The Gaussian Mixture Model (GMM) based method is used for text-independent

speaker recognition. The GMM was developed in 1990 by Reynolds [51], and

from the very start it showed promise in obtaining a high level of accuracy

in text-independent applications. The motivation for the GMM comes from
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the need to model the acoustic space of a speaker in terms of a few acoustic

classes (each class representing approximately one phoneme) in a simple and

reliable manner [53]. This is done by assuming the probability of a feature

vector of the nth frame p(yn|λ
s) to be a linearly weighted mixture of M

multidimensional Gaussian probability density functions (PDFs); i.e.,

p(yn|λ
s) =

M
∑

i=1

ps
i b

s
i (yn), (2.34)

where bs
i (yn) is the Gaussian PDF associated with the i-th mixture compo-

nent (or, acoustic class) with mean µs
i and covariance matrix Σs

i ; i.e.,

bs
i (yn) =

1
√

(2π)D|Σs
i |

e−
1
2
(yn−µs

i
)′(Σs

i
)−1(yn−µs

i
). (2.35)

Here D is the dimensionality of the feature space. The mixture weights

ps
i , i = 1, 2, ..., M , in Eq. (2.34) satisfy the constraint

∑m
i=1 ps

i = 1. The

covariance matrix used in Eq. (2.35) is assumed to be diagonal. This is done

for the following two reasons [53]: 1) It reduces the computational load, and

2) The cepstral features (normally used in speaker recognition systems) show

a high degree of independence.

Collectively the s-th speaker’s GMM model is represented by M compo-

nents each consisting of ps
i , µ

s
i , Σ

s
i (see Fig. 2.9); i.e.,

λs = {ps
i , µ

s
i , Σ

s
i}, 1 ≤ i ≤ M. (2.36)

Since most of the spoken languages have about 30 to 40 phonemes, the value

of M in a GMM is normally taken to be 32. The process of computing the

probability of a feature vector given a GMM model is illustrated in Fig. 2.10.

For estimating the speaker model parameters from the training data,

the expectation-maximization (EM) algorithm [53, 60, 59] is used. The EM
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Figure 2.9: One component of a GMM speaker model.
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Figure 2.10: The process of computing the probability of a feature vector

given a GMM model [53].



CHAPTER 2. TEXT-INDEPENDENT SPEAKER IDENTIFICATION 32

algorithm uses a maximum likelihood procedure for computing the GMM

model parameters. It consists of two steps: an E-step (Expectation) and

a M-step (Maximization). Let us assume that we have I feature vectors

x1,x2, ...,xI for a given speaker in the training data. The GMM model

parameters for this speaker are initialized using a k-means algorithm, much

like the one used in VQ. The EM algorithm for computing the GMM model

parameters for the given speaker is given below. Note that we have dropped

the speaker specific superscript s for clarity reasons.

The E-Step: Posterior probabilities are calculated for all the training feature

vectors of the given speaker using

p(i|x(n), λ) =
pibi(x(n))

∑M
k=1 pkbk(x(n))

(2.37)

The M-Step: The M-step uses the posterior probabilities from the E-Step to

estimate model parameters as follows:

p̂i =
1

I

I
∑

n=1

p(i|x(n), λ), (2.38)

µ̂i =

∑I
n=1 p(i|x(n), λ)x(n)
∑I

n=1 p(i|x(n), λ)
, (2.39)

and

Σ̂i =

∑I
n=1 p(i|x(n), λ)(x(n) − µi)(x(n) − µi)

′

∑I
n=1 p(i|x(n), λ)

(2.40)

Set pi = p̂i, µi = µ̂i and Σi = Σ̂i, and iterate the sequence of E-step and

M-step a few times till convergence is reached. On each iteration of the EM

algorithm, the variance is limited by a variance floor to reduce singularities

in the final model [55]. The iterative process is normally carried out 10 times,

at which point the model is assumed to converge to a local maximum.



CHAPTER 2. TEXT-INDEPENDENT SPEAKER IDENTIFICATION 33

Hidden Markov Model

A stochastic model usually used for modeling sequences is the Hidden Markov

Model (HMM) [47]. The HMM-based classifiers are useful for text-dependent

speaker recognition. The HMM consists of two embedded stochastic pro-

cesses as each observation (feature) vector is also a stochastic function of

each state. The underlying stochastic function is not directly observable (it

is hidden) and the HMM can only be viewed through another set of stochas-

tic processes that produce the observation [69]. The HMM is a finite-state

machine in which each state has an associated PDF for the feature vector.

A simple 5 state HMM is shown in Fig. 2.11. The states are connected

by a transition network, which allows transition from one node to any node

in the network including itself. The transitional probabilities aij define the

probability of moving from one state to the next. The first and the last

states are non-emitting states; having self-transitional probabilities of zero

associated with them. For each emitting state, the sum of all possible N

transitional probabilities must equal one, i.e. a transition must occur from

each state [50]. That is
N

∑

j=1

aij = 1 (2.41)

When the i-th state is visited at the nth frame (i.e.; q(n) = i), it produces a

feature vector y(n) with probability p(y(n)|q(n) = i).

The probability of a sequence of the feature vectors Y = (y1,y2, . . . ,yL)

representing the test utterance (having L frames) conditioned on model λs

is given earlier by Eq. (2.31). This equation can be rewritten for the case of
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Figure 2.11: A simple left to right HMM

HMM as follows:

p(Y |λs) =
∑

q(1),q(2),...,q(L)

L
∏

n=1

p(yn|q(n), λs)p(q(n)|q(n − 1), λs), (2.42)

This probability can be computed in a computationally efficient fashion us-

ing the forward-backward algorithm [30, 50]. In the test phase, the Viterbi

algorithm is used for this purpose which is even faster than the forward-

backward algorithm. HMM-based systems have shown performance better

than the conventional template-based text-dependent speaker recognition

systems [69].

2.2.3 Neural Networks

Classifiers based on Neural Networks (NN) are used in both text-dependent

and text-independent speaker identification and speaker verification systems

[4, 5, 44, 43]. The NN is extremely efficient at learning complex mappings

between inputs and outputs and is able to approximate posterior probabil-

ities for the trained classes. The NNs are able to approximate non-linear
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decision surfaces and exhibit a high level of parallelism. The NN consists

of small functional units (neurons) that are interconnected to produce the

desired global transfer function of the NN. There exist many forms of neural

networks, these include the multi-layer perceptron (MLP) [43], the radial

bias function (RBF) [44], and learning vector quantiser (LVQ) [22, 4]. The

most common of these is MLP.

The MLP consists of an input layer, a number of hidden layers and an

output layer (see Fig. 2.12) . The input layer is a non-functional layer

responsible for fanning the inputs to all neurons in the hidden layer. The re-

maining layers however are functional characterised by their weighted inputs

and non-linear (activation) functions. Each neuron in the output layer relates

directly to a class. Input is fed into the MLP via the input neurons and each

output neuron contains the resulting posterior probability for that particular

class. The input is then classified into the class whose corresponding output

neuron has the highest score.

In speaker recognition, the neural networks can take many forms. The

two most common are: 1) a single MLP is trained with Ns output neurons,

where Ns is the number of trained speakers, and 2) a MLP is trained for each

speaker ( a total of Ns MLPs) containing two output neurons relating to the

trained speaker and the rest of the population.

The MLP is trained using the error back-propagation algorithm [10]. The

error back-propagation algorithm is iterative in nature, where the weights of

the MLP are refined during each iteration. Initially the weights of the MLP

are set randomly in the range of -0.5 to 0.5. The algorithm is performed in

two passes, the forward pass and the backward pass.
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Figure 2.12: A two layered neural network

During the forward pass all the training vectors and there corresponding

labels are presented to the MLP and an overall error is found. The output

of the kth output neuron given the nth training vector (yn) is

Ok(n) = f





∑

i

wki f





∑

j

wijyn(j)







 , (2.43)

where the summation j is over all input neurons and summation i is over all

hidden neurons. Here wij is the weight associated with the connection of the

ith neuron of given layer with the jth neuron of the of the preceeding layer.

The activation function is a sigmoid-like function

f(x) =
1

1 + e−x
. (2.44)

If we let dk(n) represent the desired output of the kth output neuron given
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the nth training vector, then the total-squared error of the MLP is defined as

E =
∑

n

∑

k

(Ok(n) − dk(n))2 (2.45)

During the backward pass the weights are modified to minimise the error,

starting at the output layer and following into to the hidden layer. The

process of calculating E in the forward pass and refining the weights in the

backward pass is iterated numerous times until the MLP weights converge

to a local minimum error.

During testing, each of the L feature vectors Y = (y1,y2, . . . ,yL) are

given as input to the MLP. For the nth input feature vector (yn) the corre-

sponding output of the neural network Ok(n) is generated, this is directly

related to the posterior probability p(λs|yn). If we assume that the a priori

probability of each speaker is same, then the probability of sequence Y for a

given model λs is

P (Y|λs) =
L

∏

n=1

p(λs|yn) (2.46)

This probability is then used for speaker identification using Eq. 2.33.

2.3 Summary

The way speech is produced is important in understanding how features rep-

resent the cues used by listeners in identifying speakers. Speech is produced

by acoustically exciting the vocal tract including the cavities of the mouth

and nose. Listeners use many perceptual cues when recognizing speakers,

cues that range from high level cues, such as semantics and linguistics of the

speech to low level cues represented by both vocal tract properties and voice

source characteristics.
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In modern day speaker recognition systems, the cepstral coefficients rep-

resenting the smooth power spectral envelope of speech are used as features.

These features can be extracted from the speech signal through Linear pre-

diction (LP) analysis. The linear prediction coefficients (LPCs) are derived

from the speech signal using five functional steps: preemphasis, frame block-

ing, windowing, autocorrelation and LPC computation. The LPCs are then

converted to cepstral coefficients using a recursion relation.

Alternatively the cepstral coefficients can be derived using a Mel filter

bank analysis. This can be carried out in the following four steps: 1) Com-

pute the energy (or, power) spectrum using the fast Fourier transform algo-

rithm, 2) Warp the frequency axis nonlinearly to mel scale, 3) Construct a

bank of triangular-shaped filters covering the mel frequency axis uniformly

and apply them to the energy spectrum to get the output energies of individ-

ual filters, and 4) Compute the cepstral coefficients through discrete cosine

transform (DCT) of the logarithm of the filter-bank energies.

The zeroth cepstral coefficient c0 represents the average power of the

speech segment and is usually not used. Only M cepstral coefficients from

c1 to cM (where M is typically 10) are used as features. It has been observed

that the first and second order temporal derivatives of the cepstral vector se-

quence are useful for speaker recognition. Therefore, the cepstral coefficients

are concatenated with their first and second derivatives and the extended set

of 3M coefficients are used as features.

Given a sequence of feature vectors representing the test utterance, it

is the job of the classifier to carry out speaker identification. For this, it

needs to model each of the NS speakers enrolled at the training phase for
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speaker identification. This model should represent the feature space of a

given speaker in a compact, accurate and reliable manner. These models are

computed from the training data. In the test mode, the speaker identifica-

tion system compares the sequence of feature vectors representing the test

utterance with each of the NS speakers’ models and decides the identified

speaker to be the one whose model shows maximum similarity.

Depending on the type of models used to represent the speakers, the

classifiers used for speaker identification can be grouped into two major

types: template-based and stochastic model based classifiers. Template-

based classifiers are considered to be the simplest classifiers. The most com-

mon template-based classifiers are based on Dynamic Time Warping (useful

for text-dependent speaker recognition) and Vector Quantization (useful for

text-independent speaker recognition). Stochastic models provide more flex-

ibility and better results. The stochastic model based classifiers use the

Gaussian Mixture Model (useful for text-independent speaker recognition),

the Hidden Markov model (useful for text-dependent speaker recognition),

and Neural Networks to model a speaker’s acoustic space.

The Gaussian Mixture Model (GMM) based classifier is used in our thesis

for carrying out speaker identification experiments. The details of the GMM-

based system and the speaker identification experiments are covered in the

following chapter.



Chapter 3

System Description and

Performance

This chapter outlines the text-independent speaker identification system de-

veloped here, including the training and testing conditions and the perfor-

mance of the system in identifying speakers.

This chapter will also outline the components of the speaker identification

system and their key operating parameters. Initially, speech is transformed

by means of signal processing methods into frame-based acoustic features.

Each speaker is represented by one Gaussian Mixture Model which is com-

puted from his/her training data. During testing the GMM based models are

used to compute speaker likelihoods. These likelihoods are used to classify

the speakers so that a decision on the identity of the speaker can be made.

This chapter begins by explaining the corpora used in evaluating the

effectiveness of the speaker identification system which is used throughout

the remainder of this thesis.

40
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3.1 Corpus

Closed set identification was conducted using TIMIT, NTIMIT and the three

IISC databases. These databases were chosen for various reasons. Firstly,

the TIMIT databases are widely used and publicly accessible, facilitating our

need to compare our results with those of others. Secondly, these databases

consist of natural continuous speech which closely resembles real life condi-

tions.

3.1.1 TIMIT Database

TIMIT (Texas Instruments Massachusetts Institute of Technology) [19]

database allows identification to be done under almost ideal conditions.

Therefore, any recognition errors that occur should only be caused by over-

lapping speaker distributions [54]. The TIMIT database consists of 630

speakers, 70 % male and 30 % female from 10 different dialect regions in

America. Each speaker has approximately 30 seconds of speech spread over

ten utterances. The speech was recorded using a high quality microphone

in a sound proof booth at a sampling frequency of 16 kHz, with no session

interval between recordings.

The speech is designed to have a rich phonetic content, which consists of

2 dialect sentences (SA), 450 phonetically compact sentences (SX) and 1890

phonetically diverse sentences (SI). The dialect sentences developed by SRI

are spoken by all speakers and were designed to show the variability intro-

duced by the different dialects of the speakers. The phonetically compact

sentences were designed by MIT and their purpose was to provide a good
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coverage of phoneme pairs. Each speaker reads five of these sentences and

each sentence is read by seven speakers. The speakers spoke three phoneti-

cally diverse sentences that were directly acquired from existing text sources

- Brown Corpus and the Playwrights dialog.

3.1.2 NTIMIT Database

NTIMIT consists of exactly the same speech as TIMIT that has been passed

through a local or long distance telephone loop. Through the use of an

“artificial mouth”, each sentence was directly coupled to a carbon button

telephone. The speech was then relayed to a local or long distance central

office where it was looped back and recorded. The NTIMIT database can be

considered to be TIMIT speech suffering from a degradation due to carbon

button transducers and actual telephone line conditions.

3.1.3 IISC Database

The IISC database is a new database just recently developed by the Indian

Institute of Science [81]. It is a multi-channel database that is able to

show the effect of the transmission channel on the accuracy of a speaker

identification system. The databases consists of three smaller databases,

IISC-Microphone, IISC-Mobile and IISC-Cordless. The original database

IISC-Microphone was recorded using a BPL telephone instrument that was

placed directly in front of the speaker, approximately 0.5 metres from the

mouth. The speech was pre-amplified using both the amplifier in the BPL

and the one in a Creative Labs AWE 64 sound card that was used to digitize
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the speech at a sampling frequency of 16 kHz, with a bit resolution of 16

bits.

Each of the IISC databases consists of 80 speakers, 37 female and 43 male,

from four different regions in India. The database is subdivided further into

words and sentences. The words directory consists of three repetitions of a

77 word vocabulary spoken in isolation. The sentences directory consists of

10 sentences, each approximately 1 minute long containing 20 independent

sentences borrowed directly from TIMIT.

3.2 Speaker Recognition System Parameters

All experiments used 24 seconds of speech to train the system, during TIMIT

experiments the SX and SI files were concatenated to produce one 24 second

utterance containing 8 sentences for each speaker. The remaining two SA

files were used as two independent tests segments. Unless otherwise stated

only one dialect directory of the TIMIT/NTIMIT databases was used, due

to time constraints. The training for the IISC databases was achieved using

the first twenty four seconds of the first speech file in each speaker’s directory

and the first three seconds of the second and third file were used for testing.

Having acquired the testing or training utterances, it is now the role of

the feature extractor to extract the acoustic features from the speech.

3.2.1 Feature Extraction and Parameter Estimation

In this thesis, we investigate the use of the following two feature sets for

speaker identification: 1) the LPCC feature set and 2) the MFCC feature
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set. This section will briefly describes the extraction of these features from

the speech waveform.

LPCC Feature Extractor

To reiterate, the LPCC feature extractor consists of six functional blocks [47]:

preemphasis, frame blocking, windowing, autocorrelation and LPC compu-

tation, and lastly cepstral conversion.

Preemphasis

The preemphasis section is implemented by the difference equation

ŝ(n) = s(n) − αs(n − 1) , (3.1)

where α is the preemphasis coefficient and is set here to 0.95.

Frame Blocker

The frame blocker splits the entire speech utterance into segments to carry

out frame-wise analysis. The signal for the i-th frame is given by

xi(n) = s(iL + n) n = 0, 1, . . . , N − 1 (3.2)

The parameters for this section are N and L, where N specifies the length

of the frame and L specifies the offset between adjacent frames. In order to

maintain a constant frame size of 30ms and an update of 10ms, the values

of L and N are database dependent due to inconsistent sampling frequencies

between databases. The parameters used are shown in Table 3.2.1.

Windowing

By tapering the start and the end of each frame using a windowing function

(w(n)), it is possible to reduce the effect of spectral leakage caused by the
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Database L (10ms) N (30ms)

TIMIT 160 480

NTIMIT 80 240

IISC-Microphone 160 480

IISC-Mobile 160 480

IISC-Cordless 80 240

Table 3.1: The database dependent values of the L an N parameters of the

frame blocker.

discontinuities present at the ends of the framed speech. The window is

applied to the segmented speech through

x̂i(n) = xi(n) w(n) n = 0, 1, . . . , N − 1 (3.3)

We use a Hamming window function for this purpose. It is given by

w(n) = 0.54 − 0.46 cos

(

2πn

N − 1

)

n = 0, 1, . . . , N − 1 (3.4)

Autocorrelation analysis

The windowed signal is used to compute the autocorrelation coefficients.

R(m) =
N−m−1

∑

n=0

x̂i(n)x̂i(n + m) m = 0, 1, . . . , p. (3.5)

(Note that we have dropped the frame subscript here to simplify the nota-

tion.)

LPC computation

The p+1 autocorrelations are converted to LPC coefficients using the Levinson-

Durbin algorithm, included for completeness as
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For m=1:

am,m = −
R(1)

R(0)
(3.6)

Pm = R(0)(1 − a2
11) (3.7)

For m=2,3,. . .,p:

am,m = −
R(m) +

∑m−1
i=1 am−1,iR(m − i)

Pm−1

(3.8)

am,i = am−1,i + am,mam−1,m−i (3.9)

Pm = Pm−1(1 − a2
m,m) (3.10)

Cepstral Conversion

The LPCs are converted to cepstral coefficients using the relation,

c0 = ln Pp, (3.11)

cm =
−mapm +

∑m−1
k=1 apkcm−k(m − k)

m
, 1 ≤ m ≤ p, (3.12)

cm =

∑m−1
k=1 apkcm−k(m − k)

m
. p < m ≤ M. (3.13)

The zeroth cepstral coefficient c0 represents the average power of the speech

segment and is usually not used. Only M cepstral coefficients from c1 to cM

are used as features. We set M = p.

Table 3.2 lists all the key parameters and the value chosen in implement-

ing our system.

MFCC feature extractor

The MFCC feature extractor [47] converts an utterance into a sequence of

MFCC feature vectors. It consists of exactly the same preemphasis, frame
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Section Parameter Value used

preemphasis α 0.95

frame blocker N 480 (TIMIT)

240 (NTIMIT)

480 (IISC-Microphone)

480 (IISC-Cordless)

240 (IISC-Mobile)

L 160 (TIMIT)

80 (NTIMIT)

160 (IISC-Microphone)

160 (IISC-Cordless)

80 (IISC-Mobile)

windowing w(n) 0.54 − 0.46cos 2πn
M−1

autocorrelation and LPC analysis p 8, 10, 12

cepstral conversion M p

Table 3.2: Summary of operational parameter for the LPCC feature extrac-

tor.
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Database Frame Size FFT order

NTIMIT 240 256

TIMIT 480 512

IISC-Mobile 240 256

IISC-Microphone 480 512

IISC-Cordless 480 512

Table 3.3: FFT order used for various databases.

blocking and windowing section explained in the LPCC feature extractor.

The windowed speech segment is converted to power spectrum via an FFT

algorithm and the the number of points used in the FFT algorithm is taken

as the power of 2 greater than the frame size. Table 3.3 shows the length

of the frames generated by the frame blocker and the corresponding FFT

order used for each database. The resulting power spectrum is windowed by

a set of 20 triangular filters equally spaced by 150 mels and each 300 mels

wide. The power for each window is calculated, denoted by Ek, where k is

the window number. A discrete cosine transform is then applied as

ĉ(n) =
K
∑

k=1

(log Ek) cos
[

n

(

k −
1

2

)

π

K

]

(3.14)

resulting in L cepstral coefficients, typically values for the cepstral order used

were 8, 10, and 12.

3.2.2 Speaker Modeling

Each speaker is modeled using one Gaussian Mixture Model (GMM) with 32

mixture components. Each mixture component is characterized by its weight,
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Triangular window # Lower Cutoff Center Frequency Upper Cutoff

1 0 100 200

2 100 200 300

3 200 300 400

4 300 400 500

5 400 500 600

6 500 600 700

7 600 700 800

8 700 800 900

9 800 900 1000

10 900 1000 1149

11 1000 1149 1320

12 1149 1320 1516

13 1320 1516 1741

14 1516 1741 2000

15 1741 2000 2297

16 2000 2297 2639

17 2297 2639 3031

18 2639 3031 3482

19 3031 3428 4000

20 3482 4000 4595

Table 3.4: The triangular filters used in MFCC calculation.
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mean vector and (diagonal) covariance matrix. As described in Section 2.2.2,

the GMMs are trained using the EM algorithm [53] with an original model

(λ0) derived by a k-means algorithm. Ten iterations of the EM algorithm

were used and a variance floor [55] of 0.3 is enforced on the models during

each iteration. These models are then used to identify the speaker from the

given test utterance.

3.3 Performance of the Speaker Recognition

System

This final section provides results for the MFCC and LPCC coefficients when

used with TIMIT and IISC databases.

Since this is a speaker identification system and we are ultimately con-

cerned with its ability to identify speakers, the performance of the system

is measured using the identification error. The identification error can be

described as

% identification error =
# incorrectly identified segments

total # of segments
× 100%

(3.15)

The system is tested using the following parameters. Their effect on the

performance of the system is shown by the identification error.

• The Number of Gaussian Mixture Components

The system is tested using 8, 16, 32, and 64 mixture components per

speaker using 10 LPCC coefficients, the results are shown in Table 3.5.
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Database 8 mixtures 16 mixtures 32 mixtures 64 mixtures

IISC-microphone 20% 18.75 % 13.75 % 11.875 %

IISC-mobile 18.125 % 14.375 % 10.625 % 8.13 %

IISC-cordless 10.625 % 8.75 % 7.5 % 6.875 %

NTIMIT 46.06 % 34.22 % 27.64 % 23.69 %

TIMIT 0 % 0 % 0 % 0 %

Table 3.5: The effect of the mixture size on the performance of the system.

Table 3.5 shows that the mixture size greatly affects the ability of the

GMM system to successfully separate speakers under non-ideal condi-

tions. The TIMIT/NTIMIT experiments used only 36 speakers from

the same dialect region, with TIMIT producing an identification error

of 0% in all cases. The performance of the system using 32 mixtures,

and including the entire 630 speakers of the TIMIT database, the iden-

tification error was found to be 0.46%. A result that is confirmed by

Reynolds [54].

• Type of Features Used

The system is finally tested using the two feature extractors (LPCC

and MFCC) separately. The performance of the LPCCs and MFCCs

are shown in Table 3.6 and Table 3.7, respectively. The LPCC features

are seen to be better suited for speaker identification. The number of

the features had a significant effect on the performance of the system.

Even though the MFCC features are not as suited as the LPCC features

they do perform adequately in this role. An increase in the number of



CHAPTER 3. SYSTEM DESCRIPTION AND PERFORMANCE 52

Database 8 LPCCs 10 LPCCs 12 LPCCs

IISC-microphone 23.12 % 13.75 % 13.75 %

IISC-mobile 15.63 % 10.63 % 8.13 %

IISC-cordless 13.75 % 7.5 % 6.25 %

NTIMIT 32.9 % 27.64 % 26.32 %

TIMIT 1.42 % 0 % 0 %

Table 3.6: The system performance using LPCC coefficients.

Database 8 MFCCs 10 MFCCs 12 MFCCs

IISC-microphone 26.86 % 20.63 % 15.25 %

IISC-mobile 14.48 % 12.5 % 12.5 %

IISC-cordless 13.13 % 10 % 6.88 %

NTIMIT 31.58 % 26.32 % 22.58 %

TIMIT 5.39 % 5.39 % 5.39 %

Table 3.7: The system performance using MFCC coefficients.
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the features has a positive effect on the system’s performance when

used on low quality speech.

To summarize the performance of the system, increasing the mixture size

reduces the identification error, the LPCC feature outperforms the MFCC

feature and the order of the feature has a significant effect on the system. The

system showed an exact performance match with the system implemented

by Reynolds [54].

3.4 Summary

Using the speech included in corpora such as TIMIT, NTIMIT, and the

IISC databases, it was possible to conduct closed-set speaker identification

experiments using a text-independent Gaussian Mixture Model System. The

databases were chosen due to their availability and variation in speech quality.

The system was trained using 24 seconds of speech and two independent tests

of three seconds of speech was used for each speaker.

The performance of the speaker identification system is investigated for

two different feature sets (LPCC and MFCC). Also, the effect of mixture size

in GMMs is evaluated.

Since we are only concerned with the ability of the system to identify

speakers, the performance of the system was measured using the identifica-

tion error. The system showed that the identification error was inversely

proportional to an increase in both the mixture size and the number of the

features used. The system also showed that the LPCC coefficients functioned

better for speaker identification than MFCCs and the order of both features
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had no effect when used on clean speech. The speaker identification system

showed an identification error of 0.46% over the entire TIMIT database, the

result obtained by Reynolds [54].

Even though the LPCC coefficients performed reasonably well, certain

additions can be made to these features to increase the performance of the

system. The following chapter covers the use of pitch and voicing information

in a speaker identification system and illustrates the performance achieved.



Chapter 4

Using Pitch and Voicing

Information

So far we have used the information contained in the power spectral envelope

(in the form of cepstral coefficients) for speaker identification. Though the

cepstral coefficients perform quite well for speaker recognition, we can im-

prove the performance by using source related features such as pitch period,

shape of the glottal pulse, etc. When speech signal is voiced (or, periodic),

the pitch frequency corresponds to the frequency of vocal chord vibrations.

Its value is low for adult male speakers and high for female speakers and

children.

The pitch frequency is an extremely important property of speech. Also

known as the fundamental frequency (f0), it defines the periodicity of a

speech signal [46]. Pitch is considered to be one of the important properties

used by humans in identifying a person from his/her voice. In addition to

pitch value, amount of voicing (or, periodicity) in the speech signal is also

55
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important for determining the identity of a speaker. Pitch has an important

advantage over spectral information that it does not suffer due to the fre-

quency characteristics of the transmission system. In this thesis, an attempt

is made to utilize this pitch and voicing information for automatic speaker

identification.

Most of the current speaker recognition systems use the cepstral coef-

ficients as features. The use of pitch and voicing information is not very

common in the current speaker recognition systems. This is because pitch

information cannot be reliably extracted, and is not always present in the

speech signal. A few studies have been reported in the literature where the

pitch value has been used in a straight-forward manner for speaker identifica-

tion. When speech utterances are carefully selected so that all the frames in

an utterance are voiced, the pitch feature works reasonably well for speaker

identification [1]. But, when the speech utterances have both voiced and

unvoiced frames, the speaker identification performance reported by Furui

[14] as well as shown in this thesis is very poor.

The two main reasons why the direct use of pitch as a feature does not

work for speaker recognition are listed below. First, the speech is not always

periodic; only about half of the frames are voiced. Thus, pitch can not be

estimated for half of the frames (i.e. for unvoiced frames). The problem is

how to account for pitch information for the unvoiced frames during recog-

nition phase. Second, the pitch estimation methods are not very reliable.

They classify some of the frames unvoiced when they are really voiced. Also,

they make pitch estimation errors (such as doubling or halving of pitch value

depending on the method).
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In order to use pitch information for speaker recognition, we have to

overcome these problems. We need a method which does not use the pitch

value directly as feature and which should work for voiced as well as unvoiced

frames in a reliable manner. We propose here a method which uses the

autocorrelation function of the given frame to derive pitch-related features.

We call these features the maximum autocorrelation value (MACV) features.

These features can be extracted for voiced as well as unvoiced frames and do

not suffer from the pitch doubling or halving type of pitch estimation errors.

Using these MACV features along with the cepstral features, the speaker

identification performance is improved by 45%.

The goal of this chapter is to illustrate ways of incorporating pitch and

voicing information into a speaker recognition system. It begins with pitch

period used in a straight-forward manner as feature for speaker identifica-

tion. For this, we experiment with a number of pitch estimation methods

and provide speaker identification results. Then, we explore ways to extract

the pitch and voicing information in an indirect manner. For this, Hayakawa

et al. [23] have recently proposed a method which tries to determine har-

monicity in a number of subbands from the spectrum of the LP residual

signal. The resulting features are called the Power Difference of Spectra in

Subband (PDSS) features. We describe this method briefly and use it for

speaker recognition. Finally, the method of extracting MACV features is

described. These features are used for speaker identification and the results

are described.
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4.1 Using Pitch Value as a Feature

In this section, we use the pitch period (or, frequency) in a straight-forward

manner as a feature for speaker identification. For this, we experiment with

a number of pitch estimation methods and provide speaker identification

results.

In 60’s, the pitch extraction methods involved low pass filtering the speech

to remove all the higher harmonics and measure the pitch frequency using

simple means from the first harmonic. These methods had numerous prob-

lems, main one being the absence of first harmonic in certain speech sig-

nals like telephone-speech signal which is band-limited to 200-3400 Hz and

may not have the first harmonic [46]. Since then, more sophisticated pitch

extraction methods have been developed. These include the autocorrela-

tion method, the cepstrum method, the absolute magnitude difference func-

tion (AMDF) method, the harmonic peak method, the maximum likelihood

method, etc. Here we use only the autocorrelation and the AMDF methods

for estimating the pitch period. The pitch period is used as a feature for

speaker identification and the results are reported.

4.1.1 Autocorrelation method

In the absence of the fundamental frequency, it is quite common to search

the signal for periodicities using the autocorrelation function [46]. The au-

tocorrelation function of signal s(n) is defined as:

Rss(k) =
∞
∑

n=−∞

s(n) s(n + k) (4.1)
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If the signal is periodic with period equal to P samples, then the autocor-

relation function will show a peak at a lag equal to P. The autocorrelation

function of a periodic signal will also be periodic with the same period.

Other important properties of the autocorrelation function include [49]:

• It is an even function; i.e., Rss(k) = Rss(−k).

• The maximum value of the autocorrelation function is at k = 0; i.e.,

Rss(k) ≤ Rss(0).

• Rss(0) is equal to the energy for deterministic signals and the average

power for random and periodic signals.

The way the autocorrelation function represents periodicity is an impor-

tant feature. Computing the autocorrelation function of a signal with a

period P will result in maxima at samples 0,±P,±2P,±3P, . . .. The auto-

correlation function does not depend on the phase of the signal. The period

of the signal can be found by finding the location of the first maximum (see

Fig. 4.1) [81] [48]. The simplest autocorrelation-based pitch extractor can

therefore be outlined as

1. Given a speech segment s(n), n = 0, 1, 2, . . . , N − 1, compute its auto-

correlation function.

Rss(k) =
1

N

N−1−k
∑

n=0

s(n)s(n + k), k = 0, 1, ..., N − 1.

2. Normalize the autocorrelation function by the power of the segment

(Rss(0)); i.e.,

R̄ss(n) =
Rss(n)

Rss(0)
n = 0, 1, . . . , N − 1. (4.2)
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Possible Pitch Value (166Hz)

n

R
(n

)

Region of possible pitch values

Figure 4.1: The autocorrelation function of 30 ms segment of vowel sound

/i/.
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Feature IISC-Microphone IISC-Cordless IISC-Mobile TIMIT NTIMIT

Used Id. Error (%) Id. Error (%) Id. Error (%) Id. Error (%) Id. Error (%)

Pitch (1)

Auto. method 91.3 90.0 91.9 86.9 92.1

Table 4.1: The performance of the autocorrelation method.

3. Discard the portion of the autocorrelation function outside valid pitch

values; i.e.,

R̂ss = R̄ss(2ms ≤ k ≤ 16ms) (4.3)

4. Using the remainder of the segment locate the maximum peak. The

location of this peak is the estimate of pitch period.

5. The normalized amplitude of the pitch peak is compared to an experi-

mentally derived threshold. If the peak exceeds this threshold, then it

is considered to be a voiced frame and the pitch value is kept, otherwise

the pitch value is discarded.

Using the text-independent GMM system outlined in Chapter 3, the

performance of the autocorrelation method was evaluated on the TIMIT,

NTIMIT and IISC databases. The pitch values were used to both train and

test the system, which consisted of 8 Gaussian mixtures per speaker. The

results of the experiments are shown in Table 4.1.

The system performance is extremely poor while using the autocorrelation

method. The identification error does not fall below 86% and ranges up to

92%.
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Figure 4.2: The use of a clipper in the autocorrelation pitch extraction

method.

The performance of the autocorrelation method can be improved through

the use of non-linear processing. Non-linear processing enables the removal

of information that would normally confuse the pitch extraction method,

like the low amplitude sections of the speech signal. The high amplitude

portions of the speech tend to contain most of the pitch information, therefore

any non-linear processing that can remove the lower portions, should in fact

improve the performance of the pitch extractor. Non-linear processing is

achieved in the time domain with center clipping and cubing. We investigate

the center clipping and cubing operations for improving the pitch estimation

performance and use the resulting pitch values for evaluating the speaker

identification performance.

Center Clipping: As the name suggests, low portions of the speech signal

are removed through center clipping [46] [71] [12]. The peak amplitude

of the speech signal determines the clipping point and all portions of speech

below this threshold (T ) are removed. The clipped speech is then passed to

an autocorrelation (see Fig. 4.2), whose values are typically zero for most

lag times, with large peaks at the pitch periods. The clipper is incorporated

into the system as shown in Figure 4.2.
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Figure 4.3: The center clipping functions used throughout our experiments

are shown in (a),(b) and (c), (d) illustrates the transfer function used in the

cubing method.

The performance of three such clippers were evaluated, these included

clippers C1, C2, and C3, whose input-output transfer functions were defined

as (see Fig. 4.3)

C1(x) =



























x − T x > T

0 |x| ≤ T

x + T x < −T

(4.4)

C2(x) =



























1 x > T

0 |x| ≤ T

−1 x < −T

(4.5)
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Feature IISC-Microphone IISC-Cordless IISC-Mobile TIMIT NTIMIT

Used Id. Error (%) Id. Error (%) Id. Error (%) Id. Error (%) Id. Error (%)

Base 91.3 % 90.0 91.9 86.9 % 92.1 %

C1 91.25 % 88.23 % 94.38 % 90.79 % 85.53 %

C2 88.23 % 88.23 % 91.25 % 86.85 % 88.16 %

C3 89.37 % 88.23 % 91.25 % 89.48 % 84.21 %

Cubing 91.63 % 89.37 % 92.5 % 90.79 % 88.16 %

Table 4.2: The performance of the enhancements to autocorrelation method.

C3(x) =



























x x > T

0 |x| ≤ T

x x < −T

(4.6)

Figure 4.4 includes an example of the clipper C1, whose clipping point

was set at 50% of the peak amplitude. Figure 4.4 (a) and (b) show the 30 ms

speech segment of sound /i/ preceding and following clipping, and (c) and

(d) show the corresponding autocorrelation function of the unclipped and

clipped speech segment respectively.

The performance of these clippers was evaluated using the text-independent

GMM system outlined in Chapter 3. The performance over NTIMIT, TIMIT

and IISC databases was evaluated.

The clipping point for all clippers was set to 30% of the peak amplitude

of the speech segment. Each speech segment was windowed by a 30 ms

Hamming window, which had an update of 10 ms. The speech was clipped

using either the C1, C2 or C3 clippers and a 30 ms autocorrelation function

was derived. The maximum peak locations (pitch values) were used as single

element features that were used to train eight GMM mixtures per speaker.

The performance of the clippers is shown in Table 4.2 compared with the

results of the base autocorrelation function.
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the original speech sample.
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(d) The autocorrelation function of

the clipped speech sample.

Figure 4.4: An example of center clipping, showing the effect on the auto-

correlation function.
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Table 4.2 shows that nonlinear clipping methods have limited success and

no method is able to perform well over all databases. The last row of Table

4.2 shows the performance of the cubing method.

Cubing: The cubing operation is realized by passing the speech signal

through a non-linear system, whose transfer function is defined by y(t) =

x3(t), shown in Fig. 4.3(d). It enhances the high amplitude portions of the

speech with respect to low amplitude portions, without the need to maintain

an adjustable threshold [1]. The speaker recognition performance is evalu-

ated using the pitch value obtained by the autocorrelation method with the

cubing operation. The results are shown in Table 4.2. Like the clipping

operation, the cubing operation does not show any improvement in speaker

identification performance.

4.1.2 Average Magnitude Difference Function Method

The average magnitude difference function (AMDF) method, first consid-

ered by Moorer [41] and Ross (et al) [64] in 1974, is thought to be more

efficient than the autocorrelation function as it removes the need for costly

multiplications [49].

The AMDF function can be used for pitch extraction in the following

manner:

1. Given a speech segment s(n), n = 0, 1, 2, . . . , N−1, compute its AMDF

function.

γss(k) =
1

N

N−1−k
∑

n=0

|s(n) − s(n + k)|, k = 0, 1, ..., N − 1.
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2. Normalize the AMDF function by the power of the segment; i.e.,

γ̄ss(n) =
γss(n)

∑N
n=0 s(n)2

(4.7)

3. Keep only the portion of the AMDF function relating to valid pitch

values; i.e.,

γ̂ss = γss(2ms ≤ k ≤ 16ms) (4.8)

4. Using the remaining segment find the location of the minimum dip,

which is considered as an approximation of the pitch frequency.

5. The normalized amplitude of the pitch dip is compared to an experi-

mentally derived threshold. If the dip is lower than this threshold then

it is considered to be a voiced frame and the pitch value is kept, other-

wise the pitch value is discarded and the frame is considered unvoiced.

The performance of the AMDF pitch extractor was evaluated using the GMM

speaker identification system outlined in Chapter 3. The speech was preem-

phasized and split into 30 ms frames with a 10 ms update. The speech was

then windowed with a Hamming window and the pitch values extracted us-

ing the method outlined above. The pitch values were used to train eight

Gaussian mixtures per speaker and the results of the experiment are shown

in Table 4.3.

The performance of the AMDF method was comparable with the autocorre-

lation method, resulting in identification errors in the range of 90% to 79%.
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Feature IISC-Microphone IISC-Cordless IISC-Mobile TIMIT NTIMIT

Used Id. Error (%) Id. Error (%) Id. Error (%) Id. Error (%) Id. Error (%)

Pitch (1)

AMDF method 90.0 98.3 93.1 82.9 79.0

Table 4.3: The performance of AMDF pitch extractor.

4.2 The Use of Voicing Information

This chapter up to now has covered the use of pitch in automatic speaker

identification. However, using pitch as a feature is plagued with problems.

Pitch is an unreliable feature, which is illustrated in the preceding section

by the poor speaker identification performance for the autocorrelation and

AMDF methods.

The two main reasons why the direct use of pitch as a feature does not

work for speaker recognition are listed below. First, the speech is not always

periodic; only about half of the frames are voiced. Thus, pitch can not be

estimated for half of the frames (i.e. for unvoiced frames). The problem is

how to account for pitch information for the unvoiced frames during recog-

nition phase. Second, the pitch estimation methods are not very reliable.

They classify some of the frames unvoiced when they are really voiced. Also,

they make pitch estimation errors (such as doubling or halving of pitch value

depending on the method).

In order to use pitch information for speaker recognition, we have to

overcome these problems. We need a method which does not use the pitch

value directly as feature and which should work for voiced as well as unvoiced

frames in a reliable manner. We propose in this thesis a method which

captures the periodicity characteristics of speech signal in an indirect manner

in the form of voicing information. We use the autocorrelation function of



CHAPTER 4. USING PITCH AND VOICING INFORMATION 69

the given frame to derive this information. In the literature [23, 77], various

methods to extract this type of voicing information have been proposed and

successfully applied for speaker recognition. One such method based on the

LPC residual spectrum is PDSS (Power Difference of Spectra in Subband)

features [23]. In order to put our method in proper perspective, we compare

its speaker recognition performance with that of the PDSS method. We

describe the PDSS method first, followed by our method.

4.2.1 Power Difference of Spectra in Subband

The spectrum of the LPC residual signal is obtained by applying the inverse

LPC filter to the speech segment. The harmonic structure of the LPC resid-

ual spectrum is captured by the PDSS features. The procedure for extracting

the PDSS features from the speech signal is outlined below.

1. Generate the LPC residual signal using p (=10) linear prediction coef-

ficients.

2. Increase the frequency resolution of the spectrum by appending an

efficient number of zeros to the signal prior to calculating the power

spectrum.

3. Subdivide the spectrum into M bands, each having a bandwidth of

about 500 Hz.

4. For each band, calculate the ratio of the geometric to arithmetic mean

and subtract it from one as follows:

V (i) = 1.0 −

[

∏Hi

k=Li
P (k)

] 1
Ni

1
Ni

∑Hi

k=Li
P (k)

, i = 1, 2, ..., M, (4.9)



CHAPTER 4. USING PITCH AND VOICING INFORMATION 70

where V (i) is the ith element of the PDSS feature set, P represents the

power spectrum, Li is the lower boundary of the ith subband and Hi

the upper boundary, and Ni = Hi − Li.

The ratio of geometric to arithmetic mean is a measure of spectral flatness.

For example, if the spectrum is flat then,





Hi
∏

k=Li

P (k)





1
Ni

=
1

Ni

Hi
∑

k=Li

P (k) (4.10)

and V (i) will be equal to zero, otherwise the values of the PDSS can exist

anywhere in the range of 0 to 1. Thus, the PDSS features represent the

dynamic range of individual bands. It is conjectured in [23] that when speech

is periodic, the dynamic range within a band will be large. Thus, the PDSS

features capture the voicing information in an indirect manner.

Using the speech contained in the IISC-Mobile database, this feature set

was evaluated using the system discussed in Chapter 3. The PDSS features

were derived from a 30 ms framed section of speech that was updated every

10 ms. Using the above algorithm, the PDSS feature set was evaluated for

speaker identification for values of M ranging from 1 to 7. The performance

of the feature was shown with and without the presence of LPCC coefficients

in Fig. 4.5(a) and Fig. 4.5(b), respectively.

From Fig. 4.5(a), it can be seen that the PDSS feature set works ex-

tremely well in this application, as shown by the abrupt linear decrease in

the identification error. However, the improved performance is not as obvious

when the PDSS is used in conjunction with LPCC coefficients. Figure 4.5(b)

shows a minor difference of only 3.7% when an additional 5 PDSS features

are used.
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Figure 4.5: The speaker identification error when, (a) the PDSS feature is

used alone and (b) with LPCC coefficients.

The last test performed on this feature set related to its computational

complexity. The time taken to generate the feature set was average over

all speakers. It took on the average 600 ms seconds to compute the PDSS

features from the one second utterance, using a Dell Dimension PIII-800

system. Thus, this method is computationally very expensive.

4.2.2 The Maximum Autocorrelation Value (MACV)

Features

We propose here a simple and reliable method for extracting voicing infor-

mation from the speech signal. We use the autocorrelation function of the

given frame to derive pitch-related features. We call these features the max-

imum autocorrelation value (MACV) features [81]. These features can be

extracted for voiced as well as unvoiced frames and do not suffer from the

pitch doubling or halving type of pitch estimation errors.

The MACV features are derived from the speech signal as follows:
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1. Given the speech signal s(n), compute the autocorrelation function

Rss(n) using,

Rss(n) =
1

N

N−1−n
∑

k=0

x(k)x(n + k) (4.11)

2. Normalize the autocorrelation function by its mean power, (the auto-

correlation value at n=0); i.e.,

rss(n) =
Rss(n)

Rss(0)
(4.12)

3. Since the lower section of the autocorrelation function is used to gen-

erate the cepstral coefficients and the upper section is considered unre-

liable, we maintain only the portion of the normalized autocorrelation

function between the values of 2 ms and 16 ms. With the reduced

autocorrelation sequence, we perform the following steps:

i. Divide the remaining autocorrelation into N equal segments.

ii. For each of the N segments locate the maximum value.

iii. These N maximum values correspond to the N elements of the

MACV feature set.

This process is best illustrated in Fig. 4.6. The MACV features can be

thought of as an N point approximation of the mid-section of the autocorre-

lation function.

The MACV feature set was used for speaker identification using the

TIMIT, NTIMIT and IISC databases. The speech was split into 30 ms

segments with an update of 10 ms, it was windowed and a corresponding 30

ms autocorrelation function derived.
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Figure 4.6: The MACV feature extractor.

In order to show that the MACV features contained additional informa-

tion not present in the LPCC coefficients, a test was conducted to show the

effect of using MACVs as an additional feature to the LPCC coefficients.

The identification error for the system was first found using only 12 LPCC

coefficients and repeated with the addition of 5 MACV coefficients on all of

the above mentioned databases.

To show the improved performance when using MACV features the re-

duction in the identification error with respect to the error obtained using

only 12 LPCCs was calculated. This reduction was defined as,

% reduction =
% identification errorLPCC − % identification errorMACV

% identification errorLPCC
×100%

(4.13)

The results for this experiment are shown in Table 4.4.

Table 4.4 illustrates that the addition of the MACV feature improves the
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Database 12 LPCC 12 LPCC + 5 MACV Reduction in 5 MACV

Used Id. Error (%) Id. Error (%) Id. Error (%) Id. Error (%)

IISC-Microphone 13.8 7.5 45.5 76.3

IISC-Mobile 6.3 5.6 10.0 80.6

IISC-Cordless 21.3 15.6 26.5 90.0

NTIMIT 21.6 13.2 39.2 61.8

Table 4.4: The performance of the MACV and LPCC features.
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Figure 4.7: The speaker identification error when, (a) MACVs are used alone

and (b) with LPCC coefficients.

identification error by up to 45%, and performs consistently well across all

the databases.

We varied the number of the MACV features from 1 to 10 and its effect

on the identification error with and without the assistance of the LPCC

coefficients is shown in Figure 4.7(a) and Fig. 4.7(b), respectively. The

identification error of the system when using 12 LPCCs is shown in Fig.

4.7(b) by a straight line at 13.7 %. The jagged line shows the added benefit

of including the MACV features. With only one MACV element the system

performance is increased by 3%, an improvement of 21 %. At the optimal

configuration of 5 MACVs, the performance of the system is increased by

45%. As can be expected, this feature set incurs very little computational
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cost, requiring only 80 ms of computation time to generate features for one

second of speech.

4.3 Summary

Pitch is an important property of speech as it represents the periodicity

of a speech signal. Pitch is a very important feature used by listeners in

identifying speakers. However, it is very rarely used in the current speaker

recognition systems as it cannot be reliably extracted, and is not always

present in the speech signal. In this chapter, we have tried to utilize this

pitch and voicing information for speaker identification.

In our experiments, we first investigated the use of the pitch value directly

as a feature. We have used the following methods for estimating the pitch

value:

• The autocorrelation method,

• The autocorrelation method incorporating nonlinear functions such as

center clipping and cubing,

• and the AMDF method.

These methods results in identification errors in the range of 86% to 94%,

which are very high. Thus, the use of pitch as a feature in a straight forward

manner does not provide a satisfactory solution.

The two main reasons why the direct use of pitch as a feature does not

work for speaker recognition are listed below. First, the speech is not always

periodic; only about half of the frames are voiced. Thus, pitch can not be
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estimated for half of the frames (i.e. for unvoiced frames). The problem is

how to account for pitch information for the unvoiced frames during recog-

nition phase. Second, the pitch estimation methods are not very reliable.

They classify some of the frames unvoiced when they are really voiced. Also,

they make pitch estimation errors (such as doubling or halving of pitch value

depending on the method).

In order to overcome these problems, we have proposed here a simple

and reliable method which captures the periodic property of speech signal

indirectly in the form of voicing information. We have used the autocorre-

lation function of the given frame to derive pitch-related features. We have

called these features the maximum autocorrelation value (MACV) features.

These features can be extracted for voiced as well as unvoiced frames and do

not suffer from the pitch doubling or halving type of pitch estimation errors.

Using these MACV features along with the cepstral features, we have shown

that the speaker identification performance is improved by 45%. We have

compared the speaker recognition performance of our method with another

method (PDSS method) recently reported in the literature. Our method

compares favorably with respect to this method.



Chapter 5

Conclusions

This chapter summarises the key issues and results covered in this thesis,

and a few suggestions are made for possible directions for future research in

this area. In this thesis, we have focused on feature extraction for speaker

identification. We have addressed their limitations and suggested possible

solutions for improving them

5.1 Summary

In this thesis, the Gaussian Mixture Models (GMMs) have been used for

text-independent speaker identification. The GMM based systems are most

commonly used and have shown great success in this area. Each speaker

in the training set is represented by one GMM. GMMs are created using

a k-means clustering algorithm, optimised by the expectation-maximisation

(EM) algorithm. Closed-set identification experiments are conducted us-

ing the GMM models on speech data from the TIMIT, NTIMIT and IISC

77
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databases. These databases are chosen because of the large amount of con-

tinuous speech they contain under a wide variety of conditions. The TIMIT

databases are especially chosen due to their wide use and availability, serving

as a means to compare our results with those of others.

The performance of the GMM system has been evaluated using two fea-

ture sets: LPCC and MFCC. The LPCC features have achieved an identifi-

cation error of 0.46 % over all dialects in the TIMIT database and 0 % over

a single dialect. However other databases have shown that the feature had

room for improvement with identification errors ranging from 6 % to 26 %.

The MFCC features have been found not to be as good as the LPCC

features. They have resulted in a slight degradation in system performance

with an identification error of 5 % for a single dialect directory in TIMIT

and a range of 7 % to 22 % for other databases. However, an improvement

in identification error is noticed when using the NTIMIT database, this sug-

gested that the MFCC coefficients are more suited to non-ideal conditions.

However their performance is limited using clean microphone quality speech.

The LPCC and MFCC features were used extensively in the current

speaker recognition systems, due to their ability to capture the spectral prop-

erties of the vocal tract. The performance of these features can be improved

using additional information such as pitch and voicing. The pitch frequency

is an extremely important property of speech and is utilized by human lis-

teners to recognise speakers.

The performance of the pitch value as a feature has been evaluated using

two common methods: the autocorrelation method and the average magni-

tude difference method. The pitch period is extracted from a 30 ms seg-
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ment of speech, updated every 10 ms. A corresponding 30 ms autocorre-

lation/AMDF function is computed and the pitch location extracted. The

pitch values are used to generate 8 Gaussian mixtures per speaker model and

closed set speaker identification is performed. The use of pitch as a feature

has resulted in limited success, ( even when nonlinearities such as center clip-

ping and cubing functions are used in conjunction with the autocorrelation

method of pitch estimation). The identification errors achieved are extremely

large in the range of 86 % to 92 %.

Using pitch as a feature is plagued with problems: pitch is an unreliable

feature to extract; it is not always present in speech; and it suffers from

voiced-to-unvoiced and unvoiced-to-voiced classification errors. The use of

voicing is a more worthwhile approach, since voicing information can be easily

and reliably extracted. When speech is periodic the amount of voicing will

be high; when it is not periodic, it will be small. The following two methods

have been used for extracting voicing information: the PDSS method and

the MACV method.

The PDSS method is based on the LPC residual spectrum of the signal

and represents the harmonic structure of the spectrum. For deriving PDSS

features, the speech signal is analysed with a 30 ms segment with a 10 ms up-

date and transformed to its power spectrum by using a 8192 point FFT. The

PDSS features have shown promising results when used alone in achieving an

identification error as low as 45 %. However they provide a minimal improve-

ment when used with LPCC coefficents, only increasing the performance of

the feature by 21 %.

The MACV method uses the autocorrelation function computed from the
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speech signal. Using a 30 ms speech segment with a 10 ms update, a 30 ms

autocorrelation function is derived. The lower portion of the autocorrelation

function is already used in the current speaker identification systems in the

form of LPCC of MFCC features. The higher portion (2 ms to 16 ms)

contains information about voicing and periodicity. The upper portion of

the autocorellation function is split into N segments (where N = 5). The

maximum values in each segment of the autocorrelation function is picked,

and these form the MACV features. The performance of these features when

used alone has been found comparable with PDSS. However, when used in

conjunction with LPCC coefficients, the performance is improved by 45%.

Not only are the MACV features more reliable than current methods, they

can be extracted from the speech signal in an extremely simple manner.

Thus, we can conclude that though cepstral coefficients as features are

reasonably suited for speaker identification, their performance can be im-

proved through the addition of voicing information.

5.2 Future Direction

The current methods of feature extraction, even though they appear to func-

tion reasonably well, are inadequate in representing speech. The cepstral

coefficients are extremely good at representing vocal tract properties. How-

ever, they are unable to represent voicing information. This thesis has shown

the poor performance of pitch as a feature, due to the problems associated

with extracting it reliably. The use of the more general voicing information

offers a possible solution to these problems. However, more extensive work
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on voicing features is needed. In this thesis, the autocorrelation function

has been used to represent voicing information. The cepstrum function also

provides this voicing information and should be investigated in future. The

MACV features employed in this thesis use the maximum value of N = 5

segments of the upper portion of the autocorrelation function for extracting

voicing information. Alternative ways of representing the upper portion of

the autocorrelation function can also be investigated.
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