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Abstract

Speech coding is a very important area of research in digital signal processing.

It is a fundamental element of digital communications and has progressed at a

fast pace in parallel to the increase of demands in telecommunication services and

capabilities.

Most of the speech coders reported in the literature are based on linear prediction

(LP) analysis. Code Excited Linear Predictive (CELP) coder is a typical and

popular example of this class of coders. This coder performs LP analysis of speech

for extracting LP coefficients and employs an analysis-by-synthesis procedure to

search a stochastic codebook to compute the excitation signal. The method used

for performing LP analysis plays an important role in the design of a CELP coder.

The autocorrelation method is conventionally used for LP analysis. Though this

works reasonably well for noise-free (clean) speech, its performance goes down when

signal is corrupted by noise.

Spectral analysis of speech signals in noisy environments is an aspect of speech

coding that deserves more attention. This dissertation studies the application of

recently proposed robust LP analysis methods for estimating the power spectrum

envelope of speech signals. These methods are the moving average, moving max-

imum and average threshold methods. The proposed methods will be compared

to the more commonly used methods of LP analysis, such as the conventional au-

tocorrelation method and the Spectral Envelope Estimation Vocoder (SEEVOC)

method.

The Linear Predictive Coding (LPC) spectrum calculated from these proposed

methods are shown to be more robust. These methods work as well as the conven-

tional methods when the speech signal is clean or has high signal-to-noise ratio.



Also, these robust methods give less quantisation distortion than the conventional

methods. The application of these robust methods for speech compression using

the CELP coder provides better speech quality when compared to the conventional

LP analysis methods.
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Chapter 1

Introduction

1.1 Speech Coding

Speech coding has been a common area of research in signal processing since the

introduction of wire-based telephones. Numerous speech coding techniques have

been thoroughly researched and developed, spurned further by the advances in

Internet technology and wireless communication [1]. Speech coding is a funda-

mental element of digital communications, continuously attracting attention due

to the increase of demands in telecommunication services and capabilities. Appli-

cation of speech coders for signal processing purposes has improved at a very fast

pace throughout the years in order to allow it to take advantage of the increasing

capabilities of communication technology infrastructure and computer hardware.

Additional background information regarding the advances of speech coding in

communication technology can be attained in [2], [3], [4] and [5].

This dissertation focuses on the area of speech coding. This particular area of

research has become a fundamental necessity due to the bandwidth limitation of

most signal transmission systems. Ideally in speech coding, a digital representation

1



Chapter 1. Introduction 2

of a speech signal is coded using a minimum number of bits to achieve a satisfactory

quality of the synthesised signal whilst maintaining a reasonable computational

complexity.

Speech coding has two main applications: digital transmission and storage of speech

signals. In speech coding, our aim is to minimise the bit-rate while preserving a

certain quality of speech signal, or to improve speech quality at a certain bit-

rate. In addition to these two attributes (bit-rate and speech quality), a speech

coder has to concentrate on other attributes during its design. Importance of

these attributes varies with the application to which the speech coder is used. For

example, speech coders in general have the following attributes: bit-rate, speech

quality, computational complexity, coder delay and sensitivity to channel errors.

However, in broad terms the main goal in designing speech coders is to produce a

naturally sounded reconstructed speech with low bit-rate and system cost.

Most speech coding methods have been designed to remove redundancies and irrel-

evant information contained in speech, thus aiming toward producing high quality

speech with low bit-rates. The optimisation of the bit-rate and quality of the

synthesised signal is closely related, where an improvement of one aspect compen-

sates to the degradation of the other. Hence, the main development issue usually

evolves around the compromise between the need for low rate digital representation

of speech and the demand for high quality speech reconstruction.

Most of the speech coders reported in the literature are based on linear prediction

(LP) analysis. A typical and popular example of this class of coders is the Code

Excited Linear Predictive (CELP) coder. This Linear Predictive Coding (LPC)

method performs LP analysis of speech for extracting LP parameters or coefficients

and employs an analysis-by-synthesis procedure to search a stochastic codebook

to compute the excitation signal. The autocorrelation method is conventionally

used for LP analysis. Though this works reasonably well for clean speech, its

performance deteriorates when signal is corrupted by noise.
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The motivation behind this research is to introduce new methods of power spectrum

envelope estimation for the LP analysis. In general, LP analysis has been used in

the past in a number of applications such as speech coding, speech recognition and

speaker recognition. Its most successful application is perhaps in speech coding

where it is used to estimate the parameters of an all-pole model representing the

envelope of the signal power spectrum [6]. It is highly beneficial to improve the

performance of one of the most widely used time-frequency signal analysis in the

speech compression field of research.

1.2 Research Objective

The objective of the research is to improve the robustness of the widely used LP

analysis method of spectrum estimation in noisy environments. There has been

a wide range of research and numerous publications regarding the performance of

digital speech coding in real-life applications where undesirable noise is introduced

to the system. Most research of signal processing in noisy conditions focuses on ei-

ther the enhancement of speech, detection of pauses in speech, or noise cancellation,

which are dependent or independent to the system. With the aim to achieve the

same goal whilst improving LP analysis, a new method in estimating the envelope

of the noise-corrupted signal’s power spectrum is introduced.

An example of a speech frame affected by noise can be seen in Figure 1.1. It can

be seen that as noise is introduced, the lower-level peaks of the power spectrum

are affected most. Generally, noise affects the power spectrum of speech signal

in 2 areas: a) the space between the harmonic peaks (Figure 1.1a shows the first

few harmonic peaks, marked with circles) and b) the non-formant regions of the

spectrum (area inside the box in Figure 1.1b). Because of this, the LPC spectrum

of such a signal would be severely distorted, as it treats the high and low level

peaks equally.
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Figure 1.1: Power spectrum of speech for (a) clean signal (no noise) and (b) signal

affected by noise (SNR=25 dB).

In order to overcome this problem, three new spectral envelope estimation methods

are proposed; these are the moving average (MA), moving maximum (MM) and

average threshold (AT) method. These methods rely more on the harmonics peaks

and ignore valleys between the harmonic peaks. Hence when noise is introduced,

the estimated envelope of the power spectrum would maintain the general shape of

the power spectrum, whilst not being overly affected by the noise. These methods

are designed to achieve: a) a more robust method for spectral analysis of signals

introduced with real-world noise and b) better performance in terms of quantisation

distortion for application in low bit-rate speech coders.

In this dissertation, simulation results are provided to show that the proposed

methods present more robust methods of LP analysis when speech signal is af-

fected by noise, without degrading its accuracy. In later chapters, the proposed

methods are presented as applications in a low bit-rate compression scheme. Re-
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sults relating to the quantisation performance of its LP parameters are included. It

will be shown that quantisation of the LP parameters calculated using the robust

methods performs better than quantisation of the LP parameters calculated using

the conventional methods.

1.3 Thesis Organisation

A complete outline of the thesis is detailed as follows. Chapter 2 reviews the

background theory of LP analysis and low bit-rate speech coding, specifically the

Code Excited Linear Predictive (CELP) coder. The autocorrelation method of

LP analysis is explained together with the SEEVOC method aimed at improving

the performance of LP analysis. Quantisation of the LP parameters, covering the

different LP parameter transformation methods, is also discussed in this chapter.

Chapter 3 introduces the proposed methods of LP analysis, which includes expla-

nation relating to the methodology and design of each proposed method. This

chapter also investigates the robustness and accuracy of the proposed LP analysis

methods in clean and noisy environments. A brief detail will also be included to

discuss the speech database involved in these simulations. Chapter 4 investigates

the quantisation of the LP parameters for the proposed methods and compares it

to the conventional LP analysis methods. Chapter 5 investigates the application

of low bit-rate speech coders using these robust methods. This thesis will conclude

in Chapter 6, which includes a summary of this dissertation and future work.



Chapter 2

Speech Coding and Linear

Prediction Analysis

2.1 Speech Production

Before studying the manipulation of digitised speech, it is crucial to have a basic

understanding of how speech is produced. Speech is produced when the lungs force

the direction of airflow to pass through the larynx into the vocal tract. In normal

speech production, the air that is driven up from the lungs is passed through

the glottis and vocal tract narrowing resulting in periodic or aperiodic (noise)

excitation.

Parts of the mouth’s anatomy, such as the jaw, tongue, lips, velum (soft palate)

and nasal cavities, act as resonant cavities. These cavities modify the excitation

spectrum that is emitted as vibrating sounds. Vowel sounds are produced with

an open vocal tract with very little audible obstruction restricting the movement

of air. Consonant sounds are produced with a relatively closed vocal tract, from

temporary closure or narrowing of air passageway, resulting in high audible effect

6
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on the flow of air. A very basic model of speech production can be determined by

approximating the individual processes of an excitation source, an acoustic filter

(the vocal tract response) and the mouth characteristics during speech (Figure 2.1)

[7].

Aperiodic

Periodic

Excitation Source Acoustic Filter Mouth Characteristics Speech Signal

Figure 2.1: Basic speech production model.

2.2 Speech Signal

2.2.1 Time Domain Representation

Digital signal analysis of speech waves separates the speech into voiced (contains

harmonic structure) and unvoiced speech (no harmonics structure, resembles white

noise). For voiced speech, the opening and closing of the glottis results in a series

of glottal pulses. This excitation possesses a periodic behaviour, where each glottal

opening-and-closing cycle varies in shape and time period. A string of consecutive

glottal pulses, also referred to as pitch pulses, results in a quasi-periodic excitation

waveform.

An example of speech containing the word [she] can be seen in Figure 2.2. Unvoiced

segments [sh] do not display any periodic behaviour, whereas the voiced segments

[e] contain an obvious periodic behaviour in time domain.
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Figure 2.2: Speech signal [she] in time domain.

2.2.2 Frequency Domain Representation

In general it is understood that the vocal tract produces speech signals containing

all-pole filter characteristics [8]. In speech perception, the human ear normally acts

as a filter bank and classifies incoming signals into separate frequency components1.

In parallel to the behaviour of the human speech perception system, discrete speech

signals may be analysed in its frequency domain, where they are transformed into

sinusoidal waves located at different frequencies simultaneously.

Figures 2.3a and 2.3b show the frequency domain of the segments that form the

word [she]. The three spectrum plots of 20 ms from the unvoiced segment [sh]

show no noticeable harmonic structure. Narrow spectral peaks can be observed

1This is the general assumption of how the human perception system operates, it is not known

for a fact that this case is completely accurate, however this generalisation has been deemed an

accurate enough representation.
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Figure 2.3: Speech signal [she] in frequency domain, (a) segments containing the

unvoiced [sh] and (b) voiced [e] segments.

at periodic frequency intervals in the spectrum plots of the voiced segment [e].

This harmonic structure corresponds to the fundamental frequency of the glottis

excitation.

Technically the human ear is capable of hearing signals ranging from 16 Hz to

18 kHz, depending on its amplitude. However it is known to be most sensitive

for frequencies in the range of 1-5 kHz [9], hence distortion in the high frequency

bandwidths is less noticeable to the human ear than distortion of equal amplitude

in the low frequency areas. It should be noted that the increase of fundamental

frequencies makes the signal less well defined by the more widely spaced harmon-

ics. This is the contributing factor in the difficulty of analysing and sufficiently
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synthesising speech of a female or child in comparison to male speech2.

2.3 Properties of Speech

The non-flat frequency response of the vocal tract provides correlation between

neighbouring samples of the speech signal (short term correlation). It is also ob-

served that during voiced speech, the periodic behaviour of the excitation results

in the correlation between the corresponding samples of neighbouring pitch pulses

(long term correlation).

A short-time window of samples (normally between 20-30 ms duration) is used

to determine frequency domain properties of a signal segment. By assuming such

segments to be stationary, its power spectrum is computed to represent its short-

time spectral analysis. In the spectral domain, the short term correlation provides

the envelope of its power spectrum, while the long term correlation provides the

fine structure of the spectrum [10].

Voiced speech contains a harmonic structure in its power spectrum. As can be

seen in Figure 2.4, the sharp spectral peaks are located at equal frequency intervals

determined by its fundamental frequency. This explains the periodic structure of

its time domain representation.

As mentioned in Section 1.1, bit-rate reduction is achieved by removing redundant

information in speech data. Both correlations mentioned above introduce informa-

tion redundancies in speech signal, which can be exploited using the LPC method

of speech coding. LP analysis can be used to exploit the redundancies present in

the short term correlation (as shown in Section 2.6).

2It has been generally accepted that most male speech signals have a lower fundamental fre-

quency than that of a female or child.
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Figure 2.4: Power spectrum of speech segment [e] over 30 ms time frame.

Two main concerns in manipulating a speech segment are preservation of the speech

content and transmission or storage convenience, in other words quality and size.

The information content of speech should be easily extracted and synthesised from

a speech encoding system. To produce comparable quality between the voiced and

unvoiced speech, it would normally require less bits to encode the voiced speech

than it would the unvoiced speech. This is due to the redundancies contained in

the periodicity of the voiced speech, which can be further exploited.
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2.4 Digital Encoding of Speech Signals

2.4.1 Sampling

Digital speech signals are speech waves recorded and sampled discretely for ease of

use in communication technology. As the digital signal is a discrete representation

of a continuous time signal sequence, it is necessary to represent it as mathematical

functions of a continuous time variable t. Using a sampling period of T (t = nT ),

the discrete-time signal can be represented as xdiscrete(n) = xanalog(nT ).

Aliasing caused by the overlapping of high frequency on low frequency samples

can be avoided by ensuring that the sampling frequency FS is at least twice the

maximum analog signal frequency FN (known as the Nyquist frequency).

FS ≥ 2FN (2.1)

This dissertation focuses on telephone quality narrow-band speech, where analog

signal is digitally sampled at 8 kHz. The conventional choice of sampling bit-rate

for speech has been dictated by the telephone network capacity, band-limited be-

tween 300 and 3400 Hz. Phone lines normally attenuate frequencies above 3.2 kHz,

allowing imperfect low pass filtering. This results in the common usage of speech

signals with sampling frequency of 8 kHz and resolution of 16 bits/sample. Due to

the direct progression from its early development with telephone communication

technology, 8 kHz speech signals are still widely used in digital wireless or cellular

communications. This standard of digitised speech has been deemed an adequate

representation of the analog speech.
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2.4.2 Quantisation

Quantisation is a popular application used in most signal compression methods.

The methodology was developed for use in conventional communication technol-

ogy. It was virtually impossible to transmit exact amplitudes of the signal and

assuming that amplification on repeaters during transmission would not introduce

noise or distortion to the signal. The same case holds for modern communication

technology (i.e. wireless or broadband technology) where a desirable signal com-

pression criterion may not be achieved by transmitting signal amplitudes of high

precision. This is the reason behind applying only a certain number of discrete

amplitude levels to represent the whole signal. This is more commonly referred to

as quantisation.

The quantisation process is normally divided into two procedures: training and

testing. The training procedure consists of an algorithm that processes a set of

codebook samples and classifies them to a desired number of quantisation levels.

The testing procedure then uses the quantisation levels to classify a set of input

samples (separate from the codebook data used in the training procedure). As

the quantisation levels are fixed discrete points, hence no further distortion is in-

troduced to the data during transmission or compression. Therefore quantisation

is one of the most important processes associated with discrete signal processing

for digital transmission or storage purposes. When the signal from a quantisation

process is received at the desired end, it is then decoded to form a series of recon-

structed or synthesised samples, each having exact values as the original quantised

signal before transmission.

Any alterations experienced during the compression of the signal are limited to the

distortion created during the quantisation process, referred to as the quantisation

noise. This noise is obtained when a singular signal or signal sequence is rounded

to the nearest quantisation level.

For data compression purposes, the data that has been classified into the quantisa-
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tion levels will then be represented by integer values associated with the respective

levels. Signal distortion associated with analog signal transmission can then be

avoided by using these discrete integer levels, therefore losing no information dur-

ing the process. The operation of translating the sample points to desired integer

levels has also the added benefit of decreasing the amount of data to transmit or

store, albeit paying the price of degrading the accuracy of each signal point. A

large number of quantisation methods have been developed throughout the years,

but in general it can be based on two techniques: scalar and vector quantisation.

Scalar Quantisation

Scalar quantisation (SQ) is a technique developed to define the representation of a

single signal sample with a single discrete value. Information contained in a string

of signal samples can be compressed by representing it with distinctively less num-

bers of discrete values. The process associated with determining the quantisation

levels has led to the introduction of quite a number of SQ methods, such as the

uniformly spaced quantiser, adaptive quantisers, non-uniform quantisers (based on

the logarithmic scale or the differential model), entropy-coded quantiser, etc.

Adaptive quantisers are SQ methods that adapts to the statistics of the quantiser

input. Application of the LBG algorithm for SQ is a form of adaptive quantisation

and will be explained in further detail in the next section.

Non-uniform quantisers, such as the Laplacian-distribution, γ-distribution, µ-law

method and the optimum Gaussian-distribution technique3, has been developed

thoroughly and used widely through the years (further explanation regarding these

methods can be obtained in [12], [13] and [14]).

Non-uniform quantisers that follow the log-scale behaviour are more commonly

3Lloyd originally introduced this technique, commonly known as the Lloyd-Max quantiser, in

1957 and was further developed by Max in 1960 [11].
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used in speech signals, where the quantisation distortion of the higher-amplitude

signals are usually masked by the louder signals. This in turn would leave the

low-amplitude distortions to suffer more from noise than its larger counterpart.

This particular behaviour of speech signals is what most quantisation processes in

speech coding aim to exploit.

Another method of non-uniform quantisation is the companded quantiser. This

method is based on expanding the region where the probability of the input occur-

ring is high.

The most popular SQ technique, the Lloyd-Max non-uniform optimum scalar quan-

tiser, approaches the design of quantising levels to be concentrated around the

mean of the signal to compensate its Gaussian behaviour. This method is opti-

mised with regards to the input signal’s probability density function. This optimum

scalar quantisation method, mainly used in speech coding, or signal compression in

general, is normally embedded into the Pulse Code Modulation (PCM) technique,

which is a time domain waveform encoding technique designed for digital data

compression. This system is the basic method of producing a quantised version of

an input signal for applications in signal transmission. For an N -bit transmission

encoding system, each sample of the signal is quantised to one of the 2N amplitude

levels.

Spawning from this technique are the Differential-PCM (DPCM), which outputs

a quantised version of the difference between the input signal and the predicted

value of the input at each sample, and the Adaptive-DPCM (ADPCM), where

its prediction coefficients and quantisation levels are varied depending on past

reconstructed signals [15], [16], [17].

DPCM systems have an advantage of having a lower quantiser input RMS (Root

Mean Square) value, thus needing fewer quantising levels to achieve minimum

mean-squared quantising error (MSE). It should be noted here that these methods

would still produce quantising noise; hence the aim is to minimise it accordingly.
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PCM systems generally require more bandwidth and less power than the original

signal. DPCM, and furthermore ADPCM, are more effective than PCM in usage

for transmission or storage of digital signals. Despite that fact, PCM systems are

used more commonly due to its possible usage in more general purposes [18]. This

is much more beneficial when compared to DPCM system’s dependency on signal

characteristics [19].

There are also other time domain techniques developed in association with scalar

quantisation, which include the Delta Modulation (DM) and Adaptive-DM (ADM).

These methods are designed to develop correlation between adjacent samples. DM

method of quantisation is basically a simplified form of the DPCM, where each

quantiser bit is used in conjunction with a fixed first order predictor. ADM method

of quantisation is developed to compensate the slope-overload distortion and gran-

ular noise problems associated with the DM technique [20].

Vector Quantisation

Background

The basic theory for this method of quantisation was first introduced by Shannon

[21], and further developed as a theory of block source coding in [22], with regards to

rate distortion theory. Prominent use of this theory was achieved when Linde, Buzo

and Gray first introduced their vector quantisation algorithm (LBG algorithm) in

[20]. The codebook design using the LBG algorithm is a clustering algorithm

method also known as the generalised Lloyd’s algorithm. Further research into

this theory can also be seen in [23] from which its general design is prominently

used in Chapters 4 and 5.

Vector quantisation (VQ), also known as the block or pattern matching quantisa-

tion, is a process executed when a set of signal values are quantised jointly as a

single vector. It considers a number of samples as a block or vector and represents
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them for transmission as a single code. VQ offers a significant improvement in

data compression algorithms where it minimises further the data storage required

with respect to the methods used in SQ. The disadvantage of this quantisation

method is that there is a significant increase in computational complexity during

the analysis phase or training process. Database memory would also increase with

the introduction of a larger size codebook. Despite its disadvantages, VQ remains

a popular method of quantisation due to its improvements in encoding accuracy

and transmission bit-rate.

VQ encoder maps a sequence of feature vectors to a digital symbol. These sym-

bols indicate the identity of the closest vector to the input vector from the values

obtained from a pre-calculated VQ dictionary or codebook. They are then trans-

mitted as lower bit-rate representations of input vectors. The decoder process uses

the transmit symbols as indexes into another copy of the codebook. Synthetic sig-

nal can then be calculated from the VQ symbols. This classification process may

also be used in speech or speaker recognition systems.

Codebook Computation

The selection criterion of the codebook is the most defining part in designing an

effective VQ coder. In determining the codebook, its vectors are trained to best

represent the data samples, which are specifically designated for the VQ training

procedure. The codebook computation procedure involves allocating a collection

of vectors into what is referred to as centroids. These centroids represent the

signal source and are designed to minimise the quantisation distortion across the

synthesised signal.

The technique used in the design of the codebook, which will be used in the later

chapters, is a combination of the full search codebook method and the LBG vector

quantiser design. This is an exhaustive search, which compares the input vectors to

every candidate vectors of the codebook. Quantisation distortion (Dm) is measured

from the minimum MSE between the centroid Cm and the input vector xi (data at
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the ith vector).

Dm =
1

M

M−1∑
i=0

(
1

N

N−1∑
k=0

d[xik, cmk]

)
(2.2)

where M is the number of input vectors classified to the centroid and N is the

number of points in a vector.

For a B-bit VQ codebook, it would have 2B number of codebook vectors. Each

codebook vector is assigned to a codebook cell Ci (for 0 ≤ i ≤ (2B − 1)). The

training procedure is defined as follows:

1. The first centroid (Ci at i = 0) is determined by averaging the entire input

vectors. This vector consists of the average input vectors with the length of

N (points in the vector), such that Ci = [ci0, ci1, ci2, . . ., ci(N−1)].

2. Ci is then split into two close vectors, Ci + δ and Ci − δ, where δ represents a

small varying constant. These vectors are thus separated such that the new

centroids can be optimised using the mean of the new vectors allocated to its

cell.

3. The input vectors are then classified to the codebook cells by calculating its

minimum distortion,

Dm,i =
1

N

N−1∑
k=0

min
cεαm

d[xik, c] (2.3)

given αm = Ci; i = 0, 1, . . ., m−1, and m is the current number of codebook

cells.

4. Each centroid is recalculated during each iteration process by averaging the

input vectors that are classified into each codebook cell.

5. Selection of centroids is considered optimum when Dm is minimised such that

(Dm−1 − Dm)

Dm

≤ ε (2.4)

where ε represents a fixed positive threshold. Optimum selection of centroids

may be reached when no movements can be observed between the vectors
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used to form the centroids. If the centroids are not yet considered to be

optimum, then the input vectors need to be reclassified (return to step 3).

6. The centroids are then split further (two vectors each) using δ and optimised

also using the same algorithm as above (process repeats from step 3). This is

consistent with the aim to continuously increment the codebook dimension

depending on its allocated bits. These processes (steps 3 to 6) are repeated

until the number of desired codebook vectors is achieved.

Computing the distortion of each cell and reconstructing the centroids globally

will result in a minimised signal distortion. There are certain instances where the

algorithm needs to complete a large number of iterations (number of repetition of

steps 3-5) before reaching below its set threshold. In this case the distortion is

deemed to reach its global minimum when a pre-defined number of iterations has

been completed during the process. Although this approach is sub-optimal, it is

deemed to be an efficient, yet still highly effective, method of VQ training.

VQ Designs

There are a number of different methods in designing a VQ codebook that has been

developed throughout the years in order to produce optimum quantisation results.

These methods are specifically designed to fulfil certain goals or achieve specific

means.

Multistage VQ employs two or more VQ’s consecutively, where each stage codes

the error of its preceding stage. Split VQ separates the input signal into two or

more sub-vectors, with each sub-vector coded with different VQ classes. Gain

shape quantiser is a system where VQ, which is used to code the data vectors,

is used in conjunction with SQ, which is used to code the vector lengths. Tree-

structured VQ partitions the quantiser output to reduce its computational load.

The cascaded likelihood VQ, as proposed in [24], is a sub-optimal vector coding

method specifically designed for use with CELP systems normally operating at
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4.8 kbps. Other methods, to name a few, include the lattice VQ, transform VQ,

product code VQ, trellis VQ and hierarchical VQ (please refer to [23] and [25]).

As the original design of VQ is complex and computationally expensive, most of

the methods mentioned above are aimed to trim the complexity, in some cases

degrading the performance quality. Although SQ is still used in certain areas of

signal coding, VQ is generally applied to most quantisation designs due to its

importance in reducing the compression bit-rate.

2.5 Overview of Speech Coding Methods

2.5.1 Introduction

The main objective in compressing a digital signal is to represent information as-

sociated to the signal as economical as possible whilst retaining parameters suffi-

cient to reconstruct the original signal. Reduction of data storage space or digital

transmission rate should be balanced with the maximisation of synthesised signal

quality, which is to preserve its intelligibility and naturalness for speech signals,

whilst eliminating redundant signal information.

Numerous methods of speech coding have been developed to achieve the goals

stated above. However as the dissertation is focused on the improvements proposed

for LP analysis, thus the compression methods discussed here are the methods

related to LPC design.

The LPC scheme is a common technique used for lossy data compression in signal

processing. This method takes an analysis-by-synthesis approach where it extracts

the needed parameters of a signal by minimising the error of the decoder output.

In extracting the parameters from the signal, the input must be driven in order
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to model the signal sequence. During the analysis stage, the signal’s short-term

correlation is determined using the LP analysis method. The long-term correlation

of the signal is determined using pitch prediction to exploit the periodicity of the

signal. The extracted prediction parameters are then transmitted and used in the

signal reconstruction process at the synthesis stage.

LPC-10 is an early LPC design that employs the use of fixed excitation signals to

drive the input signal (Section 2.5.2). The input signal may also be driven by a

string of impulses, which is provided by an excitation generator. This LPC method

is commonly referred to as the Multipulse Linear Predictive Coding (Section 2.5.3),

which led to the development of the Code Excited Linear Prediction (CELP) coder

(Section 2.5.4).

2.5.2 LPC-10

This method was developed based on the channel vocoder method4. The vocal

tract filter of the input signal is modelled by a single linear filter as oppose to the

use of a bank of filters in the channel vocoder. Synthesised speech can be modelled

from the input signal using either random noise or periodic pulse generator (please

refer to Figure 2.5).

The 2.4 kbit US Government Standard LPC-10 is the most widely used standard

for this method, where an 8 kHz speech signal is divided into frames of 180 samples

(frame length of 22.5 ms). This method has been documented to suffer in noisy

environments [26], whilst suffering from poor sound quality due to the use of only

two excitation signals.

4This method is a conventional analysis-by-synthesis method of speech compression developed

in the late 1930’s [Dudley, 1939].
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Figure 2.5: Basic speech synthesis model of the LPC-10 method.

2.5.3 Multipulse LPC

In this method of LPC, a stream of signals is modelled as the output of an all-pole

filter, driven by an excitation function. As the title of this compression scheme

indicates, the excitation function consists of a pulse sequence containing a small

number of pulses, defined by their location and amplitude. Atal and Remde first

introduced this multipulse excitation approach of LPC in [27]. A detailed discussion

of the multipulse LPC is presented here as this method initiated the development

of the CELP coder, which is prominently used throughout this dissertation.

A sequence of excitation pulses is computed for each frame of the signal. Increasing

the number of excitation pulses would gradually improve the quality of the syn-

thesised signal. However a minimised number of pulses will be needed to ensure

an acceptable synthesised signal quality with an optimum compression ratio. It

has been shown in [7] that only a small number of pulses (4 to 10 pulses) for each

sub-frame are enough to produce an acceptable synthesised signal. Commonly a

setting of 8 pulses per cluster of 64 samples is sufficient in generating the desired
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Figure 2.6: Block diagram of the multipulse coder.

input or residual signal with minimised distortion5 [28].

The main focus in the design of this compression scheme is in determining the

location and amplitude of the pulses. These pulses should closely represent the

actual signal after being fed through a weighting filter. Excitations for the all-pole

filter (or pole-zero filter, depending on its application) are created via an excitation

generator that produces a sequence of pulses at certain locations and amplitudes.

An LP synthesis filter is used to produce the synthetic signal waveform from the

pulses.

Using an analysis-by-synthesis approach, the pulse locations and amplitudes are de-

termined by minimising the weighted mean-squared error created by the difference

between the original and the LP synthesis filtered signal. Each pulse determination

process assumes that previous pulse amplitudes and locations are constant through-

out the search. Although this may not be the most accurate manner in calculating

the pulses, however it is deemed computationally efficient without much degrada-

5For a signal with a sampling frequency of 8 kHz, with 20 ms frame sizes (160 samples) and

an update rate of 4 updates per frame (each frame divided into 4 sub-frames of 5 ms segments),

5 pulses are generally used for each sub-frame.
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tion of accuracy. For m number of pulses and a frame length of N , an exhaustive

search, which involves calculating every possibility of the pulses simultaneously,

would need approximately Nm points of computation (depending on estimation

methodology) in comparison to the chosen manner, which would only need N ×m

computation points.

Pulse Computation

The information content of each pulse contains of two values, its amplitude (βk)

and location (denoted by its position in the frame). Each pulse location number,

referred to as nk for every kth pulse, can be seen in (2.5). The combination of

pulses can be collectively defined as

u(n) =
m−1∑
k=0

βkδ(n − nk) (2.5)

where m is the number of pulses and δn is the Kronecker delta. Referring back to

Figure 2.6, the signal y(n) is obtained by weighting the pulse u(n) with an impulse

response h(n), such that from

y(n) = u(n) × h(n) (2.6)

we get

y(n) =
m−1∑
k=0

βkh(n − nk) (2.7)

Observing from Singhal and Atal [29], the squared error (E) must be minimised

with respect to the pulse amplitudes and locations. Optimum pulse locations are

determined by calculating the minimum error for all the possible locations and its

optimum amplitudes in a set sub-frame [30].

E =
N−1∑
n=0

[s(n) − βkh(n − nk)]
2 (2.8)

for N denoting length of the sub-frame. Solving for

∂E

∂βk

= 0, (2.9)
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we get

βk =

∑N−1
n=0 s(n)h(n − nk)∑N−1
n=0 [h(n − nk)]

2 (2.10)

Substituting βk back into E,

E =
N−1∑
n=0

s2(n) −
∑N−1

n=0 [s(n)h(n − nk)]
2

∑N−1
n=0 [h(n − nk)]

2 (2.11)

As s(n) is the original signal, the second term of the equation would then have to

be maximised. This introduces the autocorrelation (α) and cross-correlation (c)

constants, where

α(nk) =
N−1∑
n=0

h2(n − nk) (2.12)

and

c(nk) =
N−1∑
n=0

s(n)h(n − nk) (2.13)

Pitch Prediction

In linear prediction, there is a period of underlying harmonic called the pitch period.

In general, a transmitter system needs to estimate these pitch prediction coefficients

in order to obtain a better representation of the signal. This information would

also need to be transmitted together with the pulse data.

It has been well understood that the human ear is highly sensitive to pitch errors

[31]. This has brought forth the development of more accurate pitch detection

algorithms. The technique used here employs the autocorrelation (2.12) and cross-

correlation (2.13) functions. This autocorrelation function provides a suitable ap-

proach in predicting the pitch period of the signal. This function should have a

maximum value at each pitch period points. A pre-determined maximum coefficient

is needed to help establish the pitch coefficient. The pitch coefficient is deemed to

be reached when the autocorrelation value is larger than the set threshold.
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2.5.4 CELP

This LPC method is a very common scheme used for low bit-rate data compres-

sion. This lossy scheme has been developed since the early to mid 1980’s (formally

introduced by Atal and Schroeder in [32]), but it has been used prominently only

recently. A collection of random excitation signals is used to drive the vocal tract

filter instead of using a codebook of pulse patterns.

Currently the CELP coder, as a signal compression technique, is very widely used

for speech coding applications. This coder directly supersedes the development of

the multipulse LPC. In general, the CELP coder has been specifically developed

for compression of signals at bit-rate of 4.8 kbps, which is ideal for speech data. A

detailed explanation regarding the operation of this coder is covered in Section 2.7.

The methods discussed in this section and in the two previous sections are very

popular LPC techniques for application in speech coding. However as the focus of

this dissertation is not on the design of the speech coders, then only one method

is used to perform the speech coding simulations applied in later chapters. The

CELP coder is selected over the previous two methods, as it is one of the most

commonly researched and implemented speech coding methods and is deemed to

provide the best quality sounding speech for low bit-rate compression [26].

2.6 LP Analysis

2.6.1 Background Theory

LP analysis of speech is historically one of the most important, and currently

the most popular, speech analysis technique for low bit-rate speech coding. It was

initially developed in the late 1960’s [Atal and Schroeder, 1967] and further studied
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in the early 1970’s with multiple publications ([6], [33], [34] and [35]) researching

this theory. The theory and algorithms surrounding this matter have matured to

the point where they are now an integral part of many real-world adaptive systems.

The generation of each phoneme during speech production is dependent on two

factors: source excitation and the vocal tract shape. Modelling these two factors,

assumed to be independent of each other, is crucial in modelling the speech pro-

duction system. Ideally the vocal tract filter is modelled by a discrete time glottal

excitation signal. LP analysis in speech coding is aimed at modelling the vocal

tract model.

Referring to the name linear prediction itself, this method is based on the theorem

that every predicted value is a result of a linear combination of its past values. The

most popular vocal tract model for LP analysis is the autoregressive (AR) model.

This analysis is a parametric method designed for discrete-time linear stochastic

processes. It is based on a source-filter AR model where the vocal tract filter is

modelled to be an all-pole linear filter.

Impulse Train
Generator

Random Noise
Generator

Pitch Period

Voiced/Unvoiced
Switch

x(n)
X

G

u(n) Time−varying
Filter

Resultant Speech

s(n)

LP Parameters

Figure 2.7: Speech processing model in LP analysis.

Application of LP analysis on speech signals can be used to estimate the basic

speech parameters, such as pitch, formants, spectra and vocal tract area functions,

which in turn can be applied for compression purposes. Speech signals can be

modelled as an output of a linear time-varying system excited by pulses that are
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quasi-periodic (voiced) or random noise (unvoiced). Referring to Section 2.5.2 and

Figure 2.7, the process of generating synthetic speech in LPC is designed to model

such systems accurately.

The distinct advantage of this method is its ability to estimate the important speech

parameters with a reasonable degree of accuracy and efficient computational speed.

This is possible due to the amount of research devoted to this topic [36], [37], [38].

LP parameters, also referred to as LP coefficients, are determined from a finite

sequence of samples by minimising the MSE between the original and its predicted

signal. An example of a standard open-loop LP model can be seen in Figure 2.8.

delay

x(n)

x(n−k)

y(n)

LP Parameters

Figure 2.8: Open-loop AR model.

A mathematical representation of the open-loop LP model can be seen as follows,

y(n) = x(n) + ΣN
k=1akx(n − k) (2.14)

where N is the LP order and ak is the LP parameters.

The resultant error [e(n)] between the actual signal [x(n)] and the linearly predicted

signal [y(n)] is what is quantised for transmission purposes in signal compression

schemes. The filter involved in the determination of e(n) computes its predicted

results from a FIR filter. As the LP model becomes more accurate, the decrease

in the quantisation error provides far less distortion in providing the synthesised

signal. The difference between the true signal and the synthesised signal is called

the LP residual or prediction error.
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A more adaptive closed-loop model takes into account the quantised error signal

into the all-pole filter equation.

x̄(n) = ē(n) − ΣN
k=1akx̄(n − k) (2.15)

For a closed-loop model, ē(n) is the quantised version of e(n). This quantised error

signal is used at the receiver end as an excitation signal to the LP synthesis filter

to compute the synthesised signal x̄(n).

Another approach used in LP analysis is the ARMA (autoregressive moving aver-

age) model. It is the most accurate approach for modelling the vocal tract [39]. It

uses a linear combination of its past outputs in addition to a combination of its

present and past inputs. This pole-zero model can only be derived by solving a set

of non-linear equations. Obviously it is computationally more efficient to solve only

one set of linear equations in an all-pole model. This is the reason why the all-pole

(AR) model is the most commonly used model in LP analysis. The zeros, which

arise in unvoiced and nasal sounds, are thus approximately modelled by poles.

It has also been determined that the human perception system is more sensitive to

spectral poles than zeros, which is another reason why the AR model is popular

for use in speech coding [40]. This leads to the most obvious deficiency of this

model where it assumes speech spectra to be a perfect all-pole model without any

zero present. Nevertheless, the information gathered by the all-pole filters has been

deemed quite successful in predicting a sample as a weighted sum of past samples.

Limitations of the LP Analysis

Most signals in real life show a non-stationary behaviour. The main assumption

involved in LP analysis is that for a narrow finite time frame the signal behaviour

is stationary. This is still known to be the main disadvantage of the LP analysis

method.

The methodology of the LP analysis involves describing large records of data by a
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uniform set of parameters containing its significant process information. Hence, in

speech coding, a set of information computed from LP analysis (LP parameters)

may represent a considerably larger set of speech data. However computing a set of

LP parameters that accurately model the vocal tract filter would be compromised

by its order of analysis (LP order). Clearly a higher LP order would constitute to

a more accurate LP analysis.

Another limitation of LP analysis is introduced by data windowing. The choice

of windowing function will always present a trade-off between time and frequency

resolution (please refer to page 32). Despite these restrictions, spectral estimation

via LP analysis remains very popular because it still provides a very good frequency

and time resolution, and its ease of application for signal compression.

Spectral Analysis

The human auditory system is known to perform spectral analysis upon speech

signal, hence the original motivation in analysing speech in its frequency domain

[41], [42]. The vocal tract produces signals that are more precise and consistent in

frequency domain than in time domain [43].

Spectral analysis applied for use in speech coding examines the behaviour of speech

mainly in its frequency domain by determining relative magnitudes of the different

harmonics of the speech signal. The spectral envelope estimate of a power spectrum

calculated using LP analysis for use in LPC is referred to as the LPC spectrum.

The LPC spectrum offers a concise representation of important signal properties,

which largely simplifies the control of synthesis models.

In processing a digital signal in its frequency domain, the quality of a synthetic

signal relies heavily on how well its LPC spectrum is estimated. Fulfilling the spec-

tral envelope properties is the main requirement need to be reached in developing

a spectrum estimation method. These properties are listed below:
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• Robust. Spectral envelopes should maintain its general shape and character-

istics when introduced to varying environments.

• Envelope shape fitting. Envelope should match the shape associated with

the spectral peaks as close fitting as possible, following the link between the

sinusoidal peaks.

• Smoothness. General shape of the signal magnitude distribution over fre-

quency should be easily achieved with no sudden fluctuation in the envelope.

• Acclimatisation. Spectral envelope should accurately follow the sudden vari-

ations between two consecutive short-time spectral segments.

The importance in performing an accurate analysis of the power spectral can be

seen via the rigorous research devoted to this topic in general [44], [45], [46], with

regards to its robustness (Section 2.6.3) and most importantly in the study of the

AR model [47], [48] and discrete Fourier transform [49].

In order to attain specific characteristics of the power spectrum, each frame of a

speech signal can be parameterised. The source-filter model of speech production

is generally applied as a theoretical model in the speech processing analysis. It

is used to model the physiology of the human speech system. By modelling an

all-pole filter on the resonances of the speech spectrum, filter coefficients can be

obtained. These filter coefficients are what is used to estimate the power spectrum

of a speech frame. These coefficients can be further quantised via a conversion to

spectral parameters for applications in signal compression. This analysis is achieved

via the Fourier analysis.

Fourier Analysis

As developed by Jean Baptiste Joseph Fourier in 1807, the underlying theory be-

hind the development of the Fourier analysis is that a set of sinusoidal waves at
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separate frequency locations can be used to represent a discrete time length of a

speech signal. The reverse process has been shown to be true in a mathematical

sense [50].

It is very common for information to be encoded in the sinusoidal waveforms that

form a signal. Specifically for spectral analysis, the shape of the waveform in

its time domain is not important, as the key spectral information consist of its

amplitude, phase and frequency of the sinusoidal representations. Any waveform

that is assumed to be periodic can be analysed as a combination of the above

mentioned harmonically related exponents. The Fourier transform of speech signals

provide both spectral magnitude and phase with respect to its frequency. The

importance of the Fourier transform in LP analysis is in the design of the power

spectrum, whilst the phase spectrum is relatively unimportant perceptually [51].

In LP analysis, a short-time Fourier transform is used to represent the time-varying

properties of a waveform in the frequency domain. The Fourier transform is defined

as follows,

Xk(f) =
∞∑

n=−∞
w(k − n)x(n)e(−j2πfn) (2.16)

The window function w(k−n) is a real window sequence used to isolate the portion

of the input sequence that will be analysed at a particular time index k.

An ideal window function would acquire a frequency response with a narrow main

lobe, which increases resolution, and no side lobes, which dictates the frequency

leakage. The rectangular window function separates the signal into finite-sized

frames without introducing any weighting. This introduces oscillation at the points

of discontinuity, known as the Gibbs phenomenon.

Many window functions have been generated to improve upon the basic rectangular

window design, such as hamming, hanning, bartlett, blackman, kaiser, etc., each

having different specification with regards to its frequency response. In this disser-

tation, LP analysis was performed on frames weighted with the hamming window.

This window, w(n) in (2.17), was chosen as it provides a good balance between its
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mainlobe width and sidelobe attenuation.

w(n) =


 0.54 − 0.46cos(2πn

N
) ; 0 ≤ n ≤ N − 1

0 ; otherwise
(2.17)

The hamming window is also deemed to be adequate in determining the accuracy

for approximating the transfer function of the vocal tract. This is a crucial aspect

when calculating reflection coefficients for quantisation purposes (Section 2.8.2)

[52].

In speech coding, a frame length of 20 to 30 ms is commonly chosen for LP anal-

ysis. Speech samples are assumed to be stationary for that period of time. This

introduces the use of Discrete Fourier Transform (DFT) for applications in discrete

systems.

The DFT is a widely used analogy for time-to-frequency transformation and is the

central algorithm in most spectrum analysis systems. It is defined in mathematical

terms as follows,

X(f) =
N−1∑
n=0

x(n)e(−j2πfn) (2.18)

Large discrete frame lengths give poor time resolution but good frequency resolu-

tion. As an example, in the speech coder used in Chapter 5, the DFT bandwidth

is chosen to be 50 Hz. Hence an 8 kHz discrete signal constitutes to a frame length

(N) of 160 samples.

DFT coefficients computed from a finite duration of samples are values of the z-

transform at periodically spaced locations around the unity circle. It constitutes a

unique representation of that particular sequence. Although the DFT and Inverse-

DFT (IDFT) relations are developed based on its periodic sequences, it does have

the ability to represent a finite duration of samples.

Application of DFT in real-world systems however is still computationally costly,
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especially for a long stream of discrete signals. This brought forth the development

of the Fast Fourier Transform (FFT). FFT is a form of Fourier transform that is

aimed purely to reduce the computation time required for DFT. The most widely

used FFT algorithm is the radix-2 decimation-in-time and decimation-in-frequency

method [10].

Referring back to Figures 1.1 and 2.4, the frequency components in the power spec-

trum computed via the Fourier analysis can be observed. The lowest frequency

component of the frequency domain is known as the fundamental frequency, while

the others are known to be harmonic frequencies. Usually the harmonics are repre-

sented with a number corresponding to the multiple of the fundamental frequency.

In an ideal periodic signal, the harmonics would be located exactly at fundamental

frequencies apart from each other. In a musical sense, the harmonics numbered by

powers of two represents the octave levels.

Non-periodic waveforms may also be analysed by Fourier means which results in

a complex integral. Disregarding phase, a spectral analysis can still be generated

where the frequency components are not exact multiples of the fundamental fre-

quencies. This would create difficulties during LP analysis, as the further away the

spectral analysis resembles a harmonic model, the harder it is to perceive pitch in

the signal.

When complex waveforms are introduced (for example, speech signals affected by

noise), the Fourier analysis normally gives a statistical answer. It is very possible to

locate a particular frequency component over a large time frame; however allocating

constant amplitude would remain a problem. The probability curve is then what

is normally obtained for the spectral analysis. A narrow-band noise will appear to

be similar to a pitched tone, but for the complete bandwidth the distinction of the

pitch tends to disappear (please refer to Figure 2.3).
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LPC Spectrum

Quality of a decoded synthetic signal via LP analysis depends heavily on how well

the spectral envelope is estimated. The accuracy of the estimation defines how

sufficient the signal properties are captured. The power spectrum, also known as

Power Spectral Density (PSD), is plainly a mathematical representation of amount

of power as a function of frequency. In a mathematical sense, the PSD (symbolically

defined as Pxx(f)) is defined

Pxx(f) =
∞∑

k=−∞
Rxx(k)e(−j2πfk) (2.19)

where Rxx(k) is the autocorrelation function of an input signal. As can be seen,

PSD is defined as a Fourier transform of the autocorrelation sequence in its time

series. In LP analysis, the PSD is normally computed using the periodogram

method of spectrum estimation.

Periodogram Spectrum

Periodogram method of spectrum estimation, or also known as the sample spectrum

method, is the classic way of estimating the power spectrum [Schuster, 1898], [53].

It was originally designed to observe the hidden periodicities in the data.

This method is described using a direct computation of the squared constant multi-

plier of the Fourier transform of its time series. The periodogram spectra Perxx(f)

is based on a direct approach through a Fourier transform on a frame of data,

generally performed through the Fast Fourier Transform (FFT).

Perxx(f) =
1

N

∣∣∣∣
N−1∑
n=0

x(n)e(−j2πfn)

∣∣∣∣
2

=
1

N

∣∣∣X(f)
∣∣∣2 (2.20)

Periodogram spectrum is a direct realisation of the PSD, hence as N → ∞, then

Perxx(f) should ideally resemble Pxx(f) (2.19). However this is not the case, where
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the periodogram is not a true representation of the PSD. Spectral leakage is en-

countered on the spectrum, which is due to the limitation of short-time analysis on

finite-length data. However, as explained by Kay and Marple [54], a statistically

consistent spectrum using this method can only be reached by separating the data

sequence into smoothed segments. Leakage effects that occur due to data win-

dowing can be minimised through the selection of non-uniform weighted windows

(please refer to page 32 for selection of weighting window).

Despite the limitation stated above and its high vulnerability to noise, the peri-

odogram spectrum still provides a very good basis to be used in designing a robust

spectral envelope estimation method. All the proposed methods to estimate the

power spectrum envelope in Chapter 3 are designed to manipulate the periodogram

spectrum of a given signal. This is achieved in order to produce a finite-length set

of filter coefficients that could best map its spectrum shape and characteristics.

This approach is commonly used due to the computational efficiency of the FFT

algorithm.

Bandwidth Widening

Synthesis filters with sharp spectral peaks are known to exist in LP analysis. A

slight expansion of the bandwidth is normally applied to avoid such sharp spectral

peaks. The bandwidth of the formant peaks would need to be widened in the

frequency response using the methodology set out below.

The bandwidth widening (may also be referred to using the terminology bandwidth

broadening) coefficient, γ, can be weighed upon the roots of the all-pole filter model

H(z) such that the new filter model H́(z) can be described as follows,

H́(z) =
1

A(γz)
(2.21)

Its prediction coefficients can then be calculated as follows,

ák = akγ
k (2.22)
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where 1 ≤ k ≤ p and p denotes its LP order.

In speech analysis, bandwidth widening is normally set in the range of 10-25 Hz.

The coefficient γ can be calculated from the desired expansion factor Fbw as follows,

γ = e
−Fbwπ

Fs (2.23)

for sampling frequency Fs.

2.6.2 Conventional LP Analysis Methods

There are a number of methods that can be used in LP analysis to obtain the LP

parameters. These methods are the lattice, covariance and the most commonly

used autocorrelation methods.

Lattice Method

This method incorporates the application of a forward and backward predictor.

Although this method guarantees a stable filter, a considerable amount of storage

space is needed to fulfil the computation process. A popular implementation of

this method for LP analysis by Burg [6], also referred to as the Burg method,

has a disadvantage in its line splitting tendencies and the dependency of the peak

locations on phase. There is also the Recursive Maximum Likelihood Estimation

(RMLE) method, which is similar to the Burg method in a way that it maximises

its likelihood functions as opposed to minimising its prediction error [31].

Covariance Method

Covariance method is an algorithm specified for frame-to-frame basis estimation,

with sets of data limited to 0 ≤ n ≤ N − 1 interval. This method windows the
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residual error signal rather than the actual signal in a way to minimise its error.

For an LP order of p, the signal is assumed to be known for the set of values

−p ≤ n ≤ N − 1. No values outside this interval are needed for computation. This

results in a covariance matrix solution that would be symmetric, however it should

be noted that it is not a Toeplitz 6 matrix.

Although this method guarantees stability in most cases, the inversion of the covari-

ance matrix is computationally expensive. This is the reason behind the selection

of the autocorrelation method for LP analysis in this dissertation.

Autocorrelation Method

Autocorrelation method of LP analysis, or also referred to as the Wiener-Khintchine

theorem, is the most popular method of short-term LP analysis. This method pro-

vides the most computationally efficient manner in determining the LP parameters

with guaranteed stability. It takes advantage of the Toeplitz property possessed by

the autocorrelation matrix.

The autocorrelation function of a signal is the inverse Fourier transform of its

power spectrum. This function represents the correlation between adjacent signal

samples. It measures the similarities between the current signal x(n) with its past

values as a function of time. The autocorrelation function [Rxx(k)] is defined

Rxx(k) = ε[x(n)x(n + k)] (2.24)

where ε is the expectation operator, as can also be seen in (2.28).

6The Toeplitz matrix is a symmetric matrix where all elements along any given diagonal are

equal.
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In matrix form, the autocorrelation function can be represented as follows,


Rxx(0) Rxx(1) Rxx(2) . . . Rxx(p−1)

Rxx(1) Rxx(0) Rxx(1) . . . Rxx(p−2)

Rxx(2) Rxx(1) Rxx(0) . . . Rxx(p−3)

...
...

...
. . .

...

Rxx(p−1) Rxx(p−2) Rxx(p−3) . . . Rxx(0)







α1

α2

α3

...

αp




=




Rxx(1)

Rxx(2)

Rxx(3)

...

Rxx(p)




(2.25)

where p symbolises the LP order and αk the LP parameters. The series of lin-

ear equations above is commonly referred to as the Yule-Walker equation. The

minimum mean square prediction error E can thus be obtained as follows,

E = Rxx(0) −
p∑

k=1

αkRxx(k) (2.26)

Assuming that the process is stationary, the corresponding autocorrelation vector

is then time in-variant. However, as the process is never entirely stationary, the

Yule-Walker equation can only be true for assumed stationary processes, which

is achieved by determining the process samples outside the framing window to

be equal to zero (set of input values are segmented). In general, the selection of

framing windows would also determine the estimation accuracy.

The autocorrelation function preserves information regarding the signal harmon-

ics, formant amplitudes and periodicities, whilst ignoring phase. Applications of

this process are commonly used for pitch detection, voiced and unvoiced speech

determination, and most importantly linear prediction.

2.6.3 Robust Spectral Analysis

Autocorrelation method explained in the previous section is the most popular

method of LP analysis. This method uses an all-pole (AR) model for estimat-

ing the power spectrum of a signal. For a signal that is affected by noise, the AR

model would not be the correct model. The noise-corrupted signal would follow
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a pole-zero (ARMA) model [55]. The ARMA model of LP analysis (proposed by

Atal and Schroeder in [56]) and the denoising of speech using such models have

been researched in [57]. However the perceptual differences between the pole-zero

models and the high-order all-pole models are not significant. For estimating the

spectral envelope of such signals, either an ARMA model for the signal is assumed

or the signal should be cleaned prior to applying the autocorrelation method.

There have been a number of different approaches in designing a robust spectral

analysis method or improving the LP analysis. Examples of such research include

the estimation of noise using past power spectral values [58], the application of a

maximum likelihood estimation algorithm for spectrum estimation [59], a robust

LP analysis design that represents glottal source waves using the hidden Markov

model for application in speech distorted by noise [60], and the SEEVOC method,

which ignores the spectral peaks affected by noise. The SEEVOC method, which is

a method specifically designed for application in noisy environments, is discussed

in further detail in the following section.

SEEVOC Method for LP Analysis

The Spectral Envelope Estimation Vocoder (SEEVOC) method is a technique that

has been proposed to improve the performance of the conventional LP analysis

method. Developed in the early 1980’s, this method uses only the parts of the

FFT-computed spectrum that are least affected by noise. Thus it tries to clean the

spectrum of speech by ignoring the spectral portions more affected by noise. Its

analysis deploys a methodology that ignores the low-level spectral peaks that may

be a result of noise or sidelobe effects [61].

This method seems to perform well on speech signals having low fundamental

frequency. However, for signals having high fundamental frequency, it does not

perform well [62]. Accuracy of its spectral envelope estimate also depends heavily

on a priori knowledge of the average signal pitch (for non-periodic waveforms),
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Figure 2.9: Methodology of the search process in SEEVOC.

which is a complication in real-world applications.

The SEEVOC method focuses on attaining the speaker pitch using an adaptive

search method on the spectral peaks. The successful allocation of these spec-

tral peaks and its associated amplitudes is what determines the robustness of this

method. The frequency response of the vocal tract filter is sampled by the harmon-

ics of the periodic impulse sequence. Spectral peaks are searched inside a certain

interval [α, β] of the Coarse Pitch (CP), which is a small frame adaptively set. The

SEEVOC spectral peak search algorithm is set for a finitely set frame, and done in

a way that the true pitch of the spectrum can be obtained or best predicted.

Determination of search range to locate each spectral peak Wn would be dependent

on the location of the previous peak Wn−1. Using the previous peak as an origin

point of the search, the search procedure would cover the range [Wn−1+α, Wn−1+β].

For a common setting of α = 1
2
CP and β = 3

2
CP, the search range would then be
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limited to CP frequency points. If no distinct peak can be located within the set

range, the search would be continued using Wn−1+CP as the new origin point.

Figure 2.9 illustrates the basic operation of this search.

The spectral peak allocation algorithm is performed together with an interpolation

sequence to develop the desired spectral envelope function. A basic application

of the SEEVOC method normally employs linear interpolation upon the spectral

peaks, which will be the choice for further simulations in LP analysis. Another

option is to perform linear interpolation upon the log spectral domain, however

no significant improvement could be observed or has been reported. A third order

spline interpolation, as proposed in [63], produces a slightly better quality spectral

envelope estimate at the expense of the computational cost.
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Figure 2.10: SEEVOC power spectrum after allocation of peaks.

Figure 2.10 shows the spectral envelope resulted from the SEEVOC algorithm with

linear interpolation. Figure 2.11 compares the SEEVOC spectrum after LP analysis

(SEEVOC-LP) with the autocorrelation method of LP analysis (AM-LP). These
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Figure 2.11: SEEVOC spectral envelope after linear prediction.

figures are presented to aid the understanding of the operation of the algorithm.

These results were computed for a speech segment [e] over a 30 ms time frame.

Coarse Pitch was chosen to be 10 samples with search settings [CP
5

, CP ] and LP

order of 10. If the search range, set by α and β, is too large, then only the largest

peak out of the multiple spectral peaks inside the search area is considered. On the

other hand, a narrow search area would cause the search algorithm to allocate any

peak (does not necessarily constitute a harmonic peak) to its SEEVOC spectrum.

The importance in the selection of CP can be seen in Figure 2.12. The true pitch

(TP) of the signal is calculated by averaging the separation between all the har-

monic spectral peaks. It can be observed that minimum distortion was achieved

when CP approaches closer to TP. Spectral distortion (SD) measurement is per-

formed on the spectral peaks of the FFT-computed power spectrum and the SEE-

VOC spectral envelope after LP analysis. TP was noted to be approximately 6.8
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frequency samples (corresponds to approximately 106 Hz for FFT length of 512

frequency samples), and therefore its SD is noted to be at its minimum for CP in

the range of 5 to 10 frequency samples (consistent with TP). It is therefore crucial

to ensure that the search range is not larger than twice the length of TP.
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Figure 2.12: The effect of CP selection with TP=6.8 frequency samples.

From the above explanation, it can be seen that this method has disadvantages

in needing knowledge of the true pitch of the signal and its dependence on peak

allocation. It has been documented to work well on signals with low fundamental

frequency but not on signals with high fundamental frequency. The spectral peaks

in signals with high fundamental frequency, determined by its harmonic pitch, are

located in close proximity to each other. The choice of CP would need to be as

close as possible to the signal’s TP in order to achieve an effective allocation of

those spectral peaks.

Further discussion regarding the performance of the SEEVOC method in compar-

ison to the autocorrelation method (AM) and the robust LP analysis methods will
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be covered in the later chapters.

2.6.4 Determination of the LP Parameters

The LP analysis produces a spectrum represented by a time-varying all-pole digital

filter, where its transfer function H(z) is represented as follows,

H(z) =
G

1 −∑p
k=1 akz−k

(2.27)

where G represents the gain parameter (determined by its prediction error), p the

LP order and ak the LP parameters.

It is necessary to limit the LP analysis to short-time blocks of filtered signal se-

quences. The order of the LP analysis is normally dictated by the signal’s sampling

frequency. For a speech signal with sampling frequency of 8 kHz, with each 1 kHz

proposed 1 pole and 2 poles allocated for the beginning and end of each analysis

frame, a 10th order LP is normally used (a1, a2, . . ., a10), with a0 = 1.0 (representing

the weighting for the current sample as can be seen in (2.27)).

The approach taken to solve the Yule-Walker equation (2.25) is the Levinson-

Durbin7 algorithm used for the autocorrelation method. This AR method of spec-

tral estimation has also been referred to as the maximum entropy spectral esti-

mation method [Burg, 1975]. This algorithm exploits the Toeplitz property of the

autocorrelation matrix Rxx (please refer to previous section). From (2.24), the

autocorrelation function can be calculated for input signal xi with frame size M .

Rxx(k) =
1

M − k

M−k∑
i=1

x(i)x(i + k) (2.28)

7This recursion was originally developed by Levinson in 1947, to solve the common matrix

problem Ax = b, where A is Toeplitz, symmetric and positive definite and b arbitrary. Durbin in

1960 produced an efficient manner in which to solve the problem, developing the Levinson method

to the recursion that is commonly used now.
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Initially,

a1(1) =
−Rxx(1)

Rxx(0)
(2.29)

and

P1 = Rxx(0) × (1 − |a1(1)|2) (2.30)

Thus for the next steps, for m = 2, 3, . . . , N ,

am(m) =
−
[
Rxx(m) +

∑N
i=2(am−1(i) × Rxx(m − i))

]
Pm−1

(2.31)

Pm = Pm−1 × (1 − |am(m)|2) (2.32)

where N is the LP order, and solving for the LP parameters (for i = 1, 2, . . .,

m − 1),

am(i) = am−1(i) + am(m) × am−1(m − i) (2.33)

a(i) = aN(i) (2.34)

LP analysis treats problems of adaptive linear systems and explains it to sets of

measurements or observations. Such observations in this case are used to analyse

and estimate the power spectrum envelope of a given data set. This analysis would

remove neighbouring sample correlations present in the signal, which ultimately

can be used to estimate the spectral envelope in the frequency spectrum. However,

there are still effective variations in the signal spectrum.

The LP parameters developed from the linear prediction theory perform well as a

spectral analysis tool. The coefficients obtained will vary slowly as time progresses,

following the behaviour of speech itself.
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2.7 Code Excited Linear Prediction Coder

2.7.1 Background Theory

In the past two decades since its introduction, countless number of publications

has been released with the aim to improve the basic design of this coder. However,

as the main area of this research is to achieve optimum performance regardless of

the CELP design, hence the basic design of the coder is chosen to complete the

desired simulations. Research into the improvements proposed for the CELP coder

is done purely to gain more understanding of the subject.

From its early development, the CELP coder was designed to meet requirements

needed for compression of signals below 8 kHz. The original development of CELP

proceeded via the application of VQ in solving the problems of coding the excitation

signals from multipulse LPC. This development has lead to less audible distortion

along with bandwidth requirement for LPC design [64].

Due to the effects of windowing distortion, the window size used for obtaining the

autocorrelation coefficients in LP analysis must include at least two pitch periods

for accurate spectral estimates [52]. Short sequences of the LP residual signal are

most commonly coded via VQ (please refer to Section 2.4.2). The main diagram

for the CELP coder is set out in Figure 2.13.

The operational steps of the CELP coder can be explained as follows:

1. LP analysis. Partitioning of the original signal into short-time frames is done

prior to analysis (normally set to 20 ms). An LP analysis is then performed

on these frames to give a set of LP parameters for each frame to use in the

short term predictor (STP) to estimate the spectral envelope of the data.

2. Memoryless STP. The STP memory for initial conditions is removed to pro-

vide a memoryless STP for subsequent analysis. The filter is defined as
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Figure 2.13: Block diagram of the CELP coder.
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follows,

Aw(z) =
1

(1 +
∑N

k=1 akz−k)
(2.35)

3. Long Term Prediction (LTP) analysis. This analysis is done on sub-frame

lengths of 5 ms (set to be a quarter length of each frame). LTP analysis

is performed on the residual or original signal computed using an inverse

filter with the derived LP parameters, depending on the method used. This

analysis computes the delay (D) and scaling coefficients (β) parameters and

also introduces voice periodicity to the signal.

4. Excitation determination. The excitation can be determined from the two

synthesis parameters found (codebook index and its respective gain). It is

selected from a user-defined codebook, generated from white Gaussian se-

quences. The sequence that provides minimum error between the filtered

Gaussian sequence (synthesised speech) and the original signal is then se-

lected. Thus the selected codebook sequence produces the minimum squared

objective error with its corresponding scaling factors.

5. Reconstruction of synthesised signal. In the synthesiser, the initial conditions

of the filters are restored and the synthesised signal is computed by filtering

the CELP information through the filters without any perceptual weighting.

For signal compression application of the robust LP analysis methods (Chapter 5),

the CELP coder detailed in this section is used for the purpose of simulating its

improvement in terms of quantisation distortion.

2.7.2 Quantisation of Pitch Parameters

Pitch Prediction in LTP Analysis

After LP analysis a long-term correlation still exists. In order to remove the peri-

odic structure of the signal, a pitch prediction process is needed. The LTP analysis
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Figure 2.14: Block diagram of the long term prediction analysis.

exploits the correlation between the samples that are of a pitch period away.

Periodicity of the LP residual can be determined through the application of a pitch

filter, which is dependent on its pitch gain coefficient (approaches unity gain for

exact periodic signals) and lag coefficient (indicating its pitch periodicity) [65].

For a 7-bit CELP encoder applied on speech sampled at 8 kHz, there would be a

possibility of 128 sample delays; hence an update rate of 5 ms will translate to a

delay range of 40 to 167 samples. Determination of the pitch filter parameters is

normally done using a closed-loop analysis-by-synthesis method, however an open-

loop method is still used to determine its initial coefficient settings.

The fundamental formula used to perform the LTP analysis can be seen in (2.36).

This analysis is aimed to model the long-term correlation in the signal residual

after LP analysis by subtracting the LTP parameters. Once the delay D (which

approximates the pitch period or periodicity of the signal) and scaling coefficients

β (which determines the level of periodicity, with 1 corresponding to a ’perfectly’

periodic signal) parameters have been obtained, they would spectrally flatten the
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signal spectrum. The pitch synthesis filter, P (z), is defined as follows,

P (z) =
1

(1 − βz−D)
(2.36)

Using an open-loop method and assuming a single-tap filter, β can be obtained

from the following calculations,

β =

∑L−1
n=0 r(n)s(n − D)∑L−1

n=0 s2(n − D)
(2.37)

where L represents the frame size (please refer to Figure 2.14). The output signal

from the LTP phase would then be

e(n) = r(n) − βs(n − D) (2.38)

where r(n) is the synthesised signal at this point (after pre-emphasis filtering) and

s(n) is the original predicted signal.

Quantisation

No consistent correlation between pitch delay D and pitch gain β exists, hence the

parameters are quantised individually [66]. The typical update rate of 5 ms results

in 200 pitch coefficient updates for every second of speech. The pitch delay is

encoded with a 7-bit quantiser (128 possible pitch delays), which covers the range

of 40 to 167 samples for an update rate of 5 ms.

The pitch gain is treated as vectors, which may be quantised using 1-2 bits to rep-

resent the fractions for short delays. However it is normally quantised with a 3-bit

vector quantiser using the LBG algorithm. This translates to a bit-rate of 2 kb/s

for the pitch information. The VQ codebook is computed using a large collection of

gain coefficients taken from CELP coder simulations performed previously. Origi-

nally the pitch delay is determined from the un-quantised gain factors, then using

that delay value, the optimum quantised pitch gain coefficients can be calculated

by calculating its minimum distortion.
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2.7.3 Quantisation of Gain Parameters

Excitation Codebook

Stochastic codebooks are generally used to model the variations of voiced exci-

tation. Therefore only the index representation of the codebook is needed to be

transmitted, where both transmit and receive ends having identical codebook set-

tings.

Codebook 1/A(z) Synthesized speech

Gain

B(z)

Index

LP parameters

Figure 2.15: Basic block diagram of the codebook computation procedure.

The computation process, which is used for determining the excitation parameters,

uses a codebook formed by random Gaussian noise. This is caused by the fact that

signals after STP and LTP analysis would form into samples having behaviour

similar to Gaussian signals. An obvious obstacle in this choice would be the size

of the respective codebook. A 7-bit codebook would need 27 × Lv of storage data

space, where Lv represents the codebook vector size. To overcome this problem an

overlapping codebook may be used, such that the codebook vectors would shift one

or two data-points from one consecutive vector to another.
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Selection of codebook vector is computed by searching the optimum gain as follows,

Gain(n) =

∑Lv−1
n=0 r(n)c(n)∑Lv−1

n=0 c2(n)
(2.39)

for [∑Lv−1
n=0 r(n)c(n)

]2
∑Lv−1

n=0 c2(n)
= Poptimum (2.40)

where c(n) represents the codebook vector.

As can be seen in Figure 2.15, the process of manipulating the source data and

filtering the excitation involves the use of two filters. The first filter is the AR

filter, which is an all-pole filter, hence the linear filter H(z) = 1
A(z)

. The filter’s

input-output relationship can then be defined as follows,

x(n) +
p∑

k=1

akx(n − k) = y(n) (2.41)

for p filter coefficients.

The other filter is the Moving Average (MA) filter, where the linear filter H(z) =

B(z) is an all-zero filter and

x(n) =
p∑

k=1

bky(n − k) (2.42)

It has been observed that manipulation of codebook dimension does not signif-

icantly improve its performance improvement rate. Improvements are regarded

linear as the dimensionality of each codebook increases. CELP simulation to help

determine the dimension of the codebook can be seen in Figure 2.16. Codebook di-

mension was varied from 1 to 10 bits using codebook vector sizes of 5 ms. The input

signals used are 8 kHz speech samples generated from 3 male and 2 female speakers

reading identical sentences (each spanning approximately 3 seconds). Please refer

to Section 3.5 for description of database used for this simulation. The follow-

ing settings were used: FFT size 512 frequency samples, pitch delay 128 samples,

LP analysis was performed with an order of 10 on a 20 ms frame. A 7-bit ran-

dom Gaussian codebook is chosen to be a reasonable option for further simulations

performed in Chapter 5.
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Figure 2.16: SNR performance for different codebook dimension.

Quantisation

Codebook gain parameters are encoded using a non-uniform quantiser using the

LBG algorithm to compute its quantiser codebook [67]. Allocation of 3-4 bits per

update for the excitation codebook gain parameter is combined with the assignment

of a 7-bit codebook. This results in a bit-rate of 2 to 2.2 kb/s for the codebook

information.
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2.7.4 Quantisation of LP Parameters

Introduction

Quantisation of the LP parameters, and its transformations, utilises the LBG al-

gorithm, as discussed in Section 2.4.2. Quantisation of residual signals using PCM

and VQ methods has been widely applied for transmission purposes. However the

LP parameters that are contained as side information in transmission still poses as

a problem. In LP analysis, the quality and intelligibility of a coded speech relies

heavily on the accuracy of the estimated envelope of the power spectrum, which in

turn determine its LP parameters.

It is known that LP parameters are crucial in spectral analysis as it describes per-

ceptually important spectral peaks in a frequency plane [31], [68]. An accurate

spectral envelope can only be generated after quantisation with minimum degra-

dation of the resolution of the spectral parameters. A considerable amount of

transmission bit is normally needed in order to transmit the LP parameters. It

should be pointed out that for an 8 kHz speech signal with an LP order of 10,

each frame set of LP parameters would normally use between 30 to 60 quantisa-

tion bits, depending on the method of quantisation. For each transmission frame,

that is a considerable amount of information even after quantisation. This has

brought forth continuous study into the area of quantisation for transformed LP

parameters. The basic theory involved with each transformation method will be

discussed, with applications using scalar quantisers simulated. Applications of the

transformation using VQ will be discussed in Chapter 4.

Quantisation Performance Criteria

Observations are made based on the performances of the LP parameters and its

transformations applied with both uniform and non-uniform SQ, described later
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in this section, and VQ, described in Chapter 4. Simulations performed will show

that, as expected, non-uniform SQ provides less quantisation distortion than the

uniform SQ. Both non-uniform SQ and VQ employs the LBG algorithm in its

application for LP parameter quantisation. The performance of quantisation on

the LP parameters is computed using the spectral distortion (SD) measure (2.52)

later discussed in Section 2.8.1.

Minimisation of distortion resulted from the quantisation of LP parameters is cru-

cial in spectral analysis. The all-pole filter design has to remain stable after a

quantisation process. Quantisation of LP parameters often results in small quan-

tisation error that in turn can produce large errors relating to its LPC spectrum

due to the dependency among the parameters. This might affect the stability of

its resultant all-pole filter.

To avoid the prospect of a significant quantisation distortion, a large number of bits

are normally used for the quantisation process, which is not an efficient solution

with respect to its bit-rate. This has developed the necessity of transforming the LP

parameters to separate representations that are less sensitive to the quantisation

distortion and hence ensures the stability of H(z).

In order to measure the performance of the quantisation process, SD is observed

in two separate classifications; that is the average SD for the entire data and the

percentage of outlier frames. A frame is considered to be an outlier frame if its SD

≥ 2 dB. Outlier frames are divided into; a) the SD ranges between 2-4 dB, and

b) SD > 4 dB. A desired performance for the quantisation of LP parameters is

reached when its spectral transparency has been fulfilled, which is defined when:

• average SD � 1 dB,

• no outlier frame > 4 dB,

• number of frames with SD between 2-4 dB is less than 2 % of the number of

total frames.
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It should be noted that quantisation is applied for the LP parameters defined using

the autocorrelation method. The covariance method of LP analysis does not always

produce a stable synthesis filter H(z). Improvements upon this method have been

successful in stabilising H(z) at the cost of degrading the accuracy of the spectral

envelope [64].

Database

Simulations performed in this chapter use the TIMIT database. The speech is re-

sampled at 8 kHz with resolution of 16 bits per sample. A 10th order LP analysis is

performed using the autocorrelation method with analysis applied on 20 ms frames

windowed with the hamming window. A 10 Hz bandwidth widening is applied

(please refer to Section 2.6.1) to compensate the sharp spectral peaks. Just less

than 236 minutes of speech (462 speaker for training, each reading 10 separate

sentences) is used for training, while 28 minutes of speech (168 speakers separate

from the training speakers, each reading 3 sentences) is used for testing. In total

there are 707438 LP vectors used for training and 85353 LP vectors for testing

(ratio approximately 8:1).

Transformation Methods

Quantisation of the LP parameters without any transformation can be observed in

Table 2.1. It can be observed that using the autocorrelation method (AM), an av-

erage SD of approximately 1 dB can be reached with 80 quantisation bits, however

spectral transparency can only be achieved with more bits. The extremely high bit-

rate highlights the obstacle initially mentioned regarding the need to remodel the

LP parameters to different transformations that are more robust for quantisation.

Several transformations have been introduced in order to accommodate the spectral

sensitivity of the LP parameters. It is crucial that these transformations should be



Chapter 2. Speech Coding and LP Analysis 58

Table 2.1: SD performance of mid-level uniform scalar quantiser on LP parameters

using uniform bit allocation.

Number of Average Outliers (%)

bits SD (dB) 2-4 dB >4 dB

70 1.256 16.436 1.370

80 0.693 4.248 0.082

able to map between each LP parameter and its transformed coefficient without

any loss of information. The representations that have been developed and are

covered here are the reflection coefficients, arcsine reflection coefficients (ASRC),

log-area ratio (LAR), and line spectral frequencies (LSF).

Reflection Coefficients

Reflection coefficients are transformation coefficients developed for quantisation

purposes, originating from the Levinson-Durbin recursion. These coefficients are

referred as so due to its relationship to the reflection coefficients of the acoustic tube

models of the vocal tract [69]. This transformation (Ki as the ith reflection coeffi-

cient), also known as the partial correlation (PARCOR) ladder form, is spectrally

less sensitive to quantisation than LP parameters and the all-pole filter stability

is ensured (coefficient range is always inside −1 ≤ Ki ≤ 1 during quantisation).

PARCOR coefficients are transformed from the LP parameters (ai
i) of order p as

defined below,

Ki = ai
i, i = p, p − 1, . . . , 1

ai−1
j =

ai
j+Kia

i
i−j

1−K2
i

, 1 ≤ j < i
(2.43)

Alternately, the reverse process can be defined as follows,

ai
i = Ki, i = 1, 2, . . . , p

ai
j = ai−1

j − Kia
i−1
i−j , 1 ≤ j < i

(2.44)

The PARCOR transformation method is known to have limitations with regards
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to its performance in low bit-rate systems. The quality of the quantised PAR-

COR coefficients depends heavily on the number of bits that can be allocated for

quantisation, which is a significant number (around 40-60 bits per set of 10 coef-

ficients). This has brought forth research into better transformation methods for

LP parameters.

With uniformly spaced SQ following the mid-level uniform PCM method, the fol-

lowing simulations are performed using uniform bit allocation for individual parts8.

Table 2.2: Performance of mid-level uniform SQ on PARCOR coefficients.

Number of Average Outliers (%)

bits SD (dB) 2-4 dB >4 dB

40 1.299 15.430 0.794

50 0.679 2.012 0.001

Table 2.3: Performance of non-uniform SQ on PARCOR coefficients.

Number of Average Outliers (%)

bits SD (dB) 2-4 dB >4 dB

40 1.028 7.506 1.286

50 0.517 1.653 0.098

Non-uniform SQ of the transformation parameters should achieve better perfor-

mance because the parameters do not have a flat spectral behaviour. Specifically

for PARCOR, the distribution of the parameters are more sensitive around 1 than

0, which leads to the understanding that non-uniform quantisation would be more

beneficial for quantising the parameters. A study by Gray and Markel [70] also

explains the effects of non-uniform bit allocation to achieve optimum performance.

The determination of the optimum quantisation bit allocation is generally aimed

to minimise its overall spectral distortion.

8This bit allocation process assumes that all set of coefficients contain equal variance and is

determined by at least 1 bit. As an example, for LP order of 4, a 6-bit quantiser would have an

allocation of bits = [2 2 1 1], 7-bit quantiser would allocate its bits = [2 2 2 1] and so on.
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Arcsine Reflection Coefficients

This non-linear transformation was developed to expand the region near |Ki|=1

[51]. This is done to avoid the quantisation sensitivity for narrow bandwidth pole

representations, which is the disadvantage of the reflection coefficients. The ASRC

coefficients (Ji’s) are defined from the reflection coefficients as

Ji = arcsin(Ki), 1 ≤ i ≤ p (2.45)

Hence,

Ki = sin(Ji), 1 ≤ i ≤ p (2.46)

Table 2.4: Performance of non-uniform SQ on ASRC coefficients.

Number of Average Outliers (%)

bits SD (dB) 2-4 dB >4 dB

40 0.931 4.621 0.554

42 0.700 2.438 0.285

44 0.591 1.295 0.096

46 0.528 0.842 0.049

48 0.481 0.729 0.049

50 0.457 0.714 0.047

Log-Area Ratio

This transformation was developed to exploit the same disadvantages associated

with the reflection coefficients. The LAR coefficients (Li’s) are defined as follows,

Li = log 1+Ki

1−Ki
, 1 ≤ i ≤ p (2.47)

and in turn its reflection coefficients are defined below

Ki = 1−eLi

1+eLi
, 1 ≤ i ≤ p (2.48)
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Table 2.5: Performance of non-uniform SQ on LAR coefficients.

Number of Average Outliers (%)

bits SD (dB) 2-4 dB >4 dB

40 0.900 3.387 0.446

42 0.681 1.783 0.194

44 0.576 0.927 0.070

46 0.513 0.525 0.034

48 0.467 0.445 0.030

50 0.443 0.445 0.029

In [71] it has been observed that for speech signals with preemphasis filtering, LAR

would perform better than PARCOR. However this is not always the case when

applied on signals with different characteristics that may cause the LAR’s to be

unbounded (which can easily be fixed by artificial bounding of the values).

Line Spectral Frequencies

Also known as Line Spectrum Pairs (LSP’s), it was first introduced by Itakura

[72] and further developed in [73], [74], [75], [76]. This transformation method is

a frequency domain representation that takes advantage of the properties of the

human perception system. It exploits the modelling of speech via an all-pole filter.

In [77] it has been observed that the LSF parameter locations are concentrated

around the resonances of the LPC spectrum. If no resonances occur (e.g. silent

frames) the LSF coefficients are distributed evenly throughout the frequency plane.

The root of two polynomials, set out below, defines LSF.

P (z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z) − z−(p+1)A(z−1)
(2.49)

where A(z) represents the pth order minimum phase polynomial, which can be

translated back from the two (p + 1)th order polynomials as follows,

A(z) =
P (z) + Q(z)

2
(2.50)
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Analysis filter A(z) is generated directly from its LP parameters ak,

A(z) = 1 −
p∑

k=1

akz
−k (2.51)

In physical terms, the polynomials correspond to the lossless models of the vocal

tract with glottis closed [P (z)] and open [Q(z)]. The P (z) and Q(z) polynomials

are defined by the property that all zeros are interlaced with each other and lie

on the unit circle resulting in ascending LSF coefficients. Most importantly this

ensures the stability of the all-pole filters. Thus far, this transformation method

has been determined to be the most robust model for use in signal transmission.

Improvements upon LSF on VQ by incorporating perception [78] or error shaping

techniques [79] have also been researched for the purpose of lowering its quantisa-

tion bit-rate.

Table 2.6: Performance of non-uniform SQ on LSF coefficients.

Number of Average Outliers (%)

bits SD (dB) 2-4 dB >4 dB

36 1.185 6.691 1.201

37 1.054 5.153 0.444

38 0.947 3.774 0.212

39 0.863 2.576 0.098

40 0.804 1.807 0.087

Due to the interlacing between the LSF coefficients, another transformation method

that manipulates that aspect has been developed called LSFD’s (LSF Differences)

[73]. This method however is highly sensitive toward channel errors thus produc-

ing large spectral distortion. Although a lot of research has been undertaken to

improve the inferior quantisation performance of the LSFD’s (including research of

specifically design quantisers), it is still considered to be impractical and not com-

putationally efficient. Further discussion regarding the quantisation performance

of the LSF coefficients is set out in Chapter 4.
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2.8 Performance Evaluation Criteria

2.8.1 Spectral Distortion Measure

In determining the quality of an estimated power spectral envelope, its spectral

distortion (SD) is calculated over the power spectrum on a frequency plane as an

objective measure.

SD =

√√√√ 1

N

N−1∑
i=0

(10log10
Pi

P̂i

)
2

(2.52)

where Pi and P̂i are the true and estimated power spectrum respectively. As can

be observed in the above equation, the reduction of the SD dictates the spectral

envelope estimate’s accuracy.

This distortion measure is normally performed upon the power spectrum computed

from 20-30 ms length of speech, or equal to the frame length used for its LP analysis.

This measure will be used to determine the accuracy and robustness of the proposed

methods in Section 3.5.

2.8.2 Quantisation of the LP Parameters

Number of bits allocated for quantisation determines the efficiency of quantisation

of the LP parameters. Generally the number of bits allocated for quantisation

is determined only when the spectral transparency has been achieved. This will

give an equal basis of comparison between the proposed methods and the more

conventional LP analysis methods.

The quantisation process is separated into two sections, training and testing. Train-

ing the codebook involves the use of a pre-defined set of speech samples to generate

training vectors consisting of its LP parameters. These training vectors are classi-

fied accordingly to form the quantisation codebook. Codebook design is dependable
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on the bit allocation settings and quantisation method. A stream of vectors, deter-

mined from a separate set of speech samples to that used for training, is used for

testing. This set of test vectors is quantised according to the codebook computed

from previous training procedure.

The train-test vector ratio of approximately 8:1 is determined to be sufficient for

quantisation of LP parameters [68]. The evaluation of this process can be observed

in Chapters 4 and 5.

2.8.3 Performance of the CELP Coder

In measuring the quality of a synthesised signal, as simulated in Chapter 5, the

mathematical representation signal-to-noise ratio (SNR) is used.

SNR = 10log10

[ ∑M−1
i=0 x(i)2∑M−1

i=0 (x(i) − y(i))2

]
(2.53)

where xi and yi are the samples of the original and synthesised signals respectively,

and M is the signal length. Signal quality would then naturally improve as the

RMS difference is minimised.

In speech coding, SNR is a poor estimate of speech quality especially when a wide

range of speech distortion is introduced. SNR is not specifically designed to model

the subjective attributes of a speech signal; hence determining its speech quality

would be unreliable.

In (2.53), the time domain error of a sequence of speech is weighted equally. This

does not necessarily correspond well with the behaviour of speech where its energy

varies with time. A quick solution to this problem is by applying the SNR calcu-

lation to speech on a frame-by-frame basis, thus weighting each short-time speech

frame independently and then averaging the overall ratio [80]. This Segmental-SNR
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can be defined,

SNRSeg =
N−1∑
j=0

10log10




∑nj

i=(nj−M+1) x(i)2∑nj

i=(nj−M+1)(x(i) − y(i))2


 (2.54)

where the nj’s are the end points of each frame (frame length M) and N is number

of frames.

SNRSeg allows an objective measure of speech quality by assigning equal weight to

loud (large energy) and soft (small energy) portions of speech. Normally to avoid

unnecessary large distortions in speech, silence needs to be identified and excluded

(most likely located at the beginning and end of each sample sequence). It has also

been widely understood that thresholds can be set at its extreme ends of the scale

(e.g. ratios below 0 dB and above 35 dB are left out). This is done because the

ratios outside the set threshold limits are regarded as not offering any contribution

to the overall speech quality [81].

It should be pointed out here that the SNR, and SNRSeg respectively, is only a

mathematical ratio in comparing the performance of a particular speech coder.

Although it is a reasonably reliable mathematical representation of signal quality,

it is still possible to have two synthesised speech samples with one sample having

a worse SNR but better sound quality than the other. In the end, human subjects

would still be needed to gather an subjective quality measurement, especially in

producing synthesised speech.

This introduces the Mean Opinion Score (MOS), which is an average numerical

opinion score for a set of untrained subjects. The MOS is the most commonly

used subjective measure for determining signal quality. It uses human subjects to

determine the quality of speech using a predetermined setting of 1 to 5, with 5

representing excellent quality.
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Robust LP Analysis Methods

3.1 Introduction

The performance of the autocorrelation method of LP analysis has always been

limited when the speech signal is corrupted by noise. A new approach for LP

analysis needs to be designed in order to overcome these limitations, which is

explained in Section 1.2. A number of robust LP analysis methods have been

proposed recently in [82] and [83]. These methods compute the LP parameters in

two steps. In the first step, they manipulate the FFT-computed power spectrum

with the aim of removing the effect of noise. In the second step, they apply the

conventional autocorrelation method on the autocorrelation coefficients computed

by taking the inverse FFT of the clean power spectrum.

Autocorrelation coefficients (Rxx) are calculated from the spectral envelope esti-

mates, such that

Rxx(τ) =
∫ ∞

−∞
Pxx(f)ej2πfτdτ (3.1)

where Pxx(f) represents the distribution of the power spectrum as a function of

frequency. The methodology used to calculate the LP parameters follows the LP

66
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analysis procedure described in Section 2.6.4.

The robust LP analysis methods are aimed at producing spectral envelopes, for use

in speech coding applications, which are more robust than conventional methods

when speech is introduced into noisy environments. The LP parameters should

be able to model the analysis filter, such that the spectrum of the clean signal

is maintained, whilst ignoring the spectral points affected by noise. In LPC ap-

plications, the synthesised signal is produced with less distortion as the spectral

envelope calculated from the LP parameters is less sensitive to the effect of noise.

A robust LPC spectrum should not be estimated by simply locating the spectral

peaks of a power spectrum and calculating its interpolated spectral envelope. This

is not an accurate manner of calculating the spectral envelope since the introduction

of noise would corrupt the lower-level peaks.

In order to minimise the effect of noise on the speech signal for LP analysis, the

robust methods rely more on the harmonics peaks and ignore valleys between the

harmonic peaks. Hence when noise is introduced, the estimated spectral envelope

would maintain the general shape of the power spectrum, whilst not being affected

by noise.

The three methods that are proposed are the moving average, moving maximum

and average threshold method. Selecting the length of the analysis window of each

method introduces a trade-off between the robustness and accuracy of the LPC

spectrum. This will be investigated in the latter part of this chapter.

3.2 Moving Average Method

This method employs the moving average filter to smooth the FFT-computed power

spectrum of the input signal. Using an M -size averaging window, the filter range
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Figure 3.1: Spectral envelope after application of the moving average (MA) method

for M = 25 frequency samples.
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Figure 3.2: MA spectrum after LP analysis.
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can be defined as

w(i) =
N − |i|

N2
(3.2)

for −N ≤ i ≤ N and N = M−1
2

.

Figure 3.1 shows the moving average spectrum after applying the smoothing filter

on the FFT-computed spectrum. Figure 3.2 shows the moving average spectrum

after LP analysis. The simulations were executed on a 30 ms speech segment [e]

with LP order of 10. The moving average window was set to approximately 390

Hz, 25 samples over an FFT matrix length of 512. Further discussion regarding

the performance of the proposed method mentioned here and on the two following

sections will be covered in Section 3.5.

3.3 Moving Maximum Method
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Figure 3.3: Spectral envelope after application of the moving maximum (MM)

method for M = 11 frequency samples.
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Figure 3.4: MM spectrum after LP analysis.

Moving maximum method searches for a maximum level from the FFT-computed

power spectrum of the input signal over a defined range. The maximum point will

then be used to represent a certain interval surrounding that frequency point.

Implementation of the moving maximum method is defined as follows:

• For each spectral point k in the frequency plane, the algorithm searches for

a maximum value in the region of [k − N , k + N ].

• It then replaces the original value of that point with the resultant maximum

value. The span of the moving maximum window would be (2N+1).

The result of this search method before and after LP analysis can be seen in

Figures 3.3 and 3.4. Using the same settings described in Section 3.2, the moving

maximum window is set to approximately 170 Hz over the power spectrum.
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3.4 Average Threshold Method
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Figure 3.5: (a) Spectral envelope after first step of average threshold (AT) search

method; (b) Spectral envelope after fourth AT repetition.

Average threshold method takes into account the benefit of both the moving av-

erage and moving maximum methods. It is based on a repetitive search of the

FFT-computed power spectrum of its moving average spectrum, then taking its

maximum in comparison to its FFT-computed power spectrum.

The methodology for the AT method is as follows:

• The moving average algorithm is applied on the FFT-computed power spec-

trum of the input signal.

• The resultant average spectrum is then combined with the original power

spectrum. The larger value between the two spectral points at any given

frequency locations is then used to form the new average threshold spectrum.
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Figure 3.6: AT spectrum after LP analysis.

• The steps above are then repeated a certain number of times to achieve an

optimum result.

Figures 3.5a and 3.5b show how this method is performed on the FFT-computed

spectrum over a number of repetitions. The envelope spectrum after LP analysis

can be seen in Figure 3.6 for 4 repetitions using moving average window of approx-

imately 330 Hz. This method follows the objective of ignoring the low level peaks

affected by noise to form a robust spectrum.
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3.5 Robustness and Accuracy Analysis

3.5.1 Database

As applied in Section 2.7, the TIMIT 1 (Texas Instruments Massachusetts Institute

of Technology) database is used for almost the entirety of this dissertation. The

simulations use 462 train speakers and 168 test speakers (speakers are taken from 8

major dialects in the United States of America). The male-female speaker ratio is

70:30 across the 630 speakers. Each speaker reads 10 sentences, which is varied from

a selection of 2342 different sentences, where each sentence read by any speaker is

ensured not to sound identical to any of the other sentences. This database covers

all the phonemes, with each phoneme appearing multiple times within different

contexts.

This database, which was originally sampled at 16 kHz with 16-bit resolution, has

been re-sampled at 8 kHz with identical resolution. Spectral envelope estimation

is performed on the FFT-computed power spectrum with length of 512 frequency

samples. A 10th order LP analysis is performed on 20 ms analysis frames unless

otherwise stated. It has been studied in [66] that the performance of the CELP

coder degrades when the order of LP analysis is below 10. Bandwidth widening of

10 Hz is applied (γ = 0.996). The train-test vector ratio of approximately 8:1 is

determined to be sufficient for quantisation of LP parameters in later chapters.

The noise samples from the Aurora2 database are used in our experiments to sim-

ulate real-world noise conditions. The noise samples are varied for different SNR

values (ranging from 35 dB, 30 dB, . . ., -5 dB, -10 dB).

1This database is a joint effort from various US sites under the sponsorship of the Defence Ad-

vanced Research Projects Agency - Information Science and Technology Office (DARPA-ISTO),

released in October 1990.
2This database was created at the Ericsson Eurolab Germany in January 2000. It consists

of background noises that are commonly encountered such as sounds from people dining in a

restaurant, cars and pedestrians on a street, trains, and motor vehicles.
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3.5.2 Procedure

Noised Speech

Noise

Speech Data

FFT−Computed Spectrum

Robust LP Analysis

Clean Spectrum

SD

FFT−Computed Spectrum

Robust LP Analysis

Noised Spectrum

Figure 3.7: Methodology to simulate robustness.

In this chapter, the robustness and accuracy of the moving average (MA), moving

maximum (MM) and average threshold (AT) methods are studied. The effect of

varying the analysis window lengths is investigated for each method. The perfor-

mance of the proposed methods will be compared to the conventional autocorrela-

tion (AM) and SEEVOC methods of LP analysis.

The procedure to determine the robustness of the proposed methods uses the con-

figuration set out in Figure 3.7. SD (2.52) is measured between the spectrum of the

robust LP analysis method on clean speech and the spectrum of the robust method

on speech signal affected by noise. As the level of noise distorting the speech is in-

creased, the LPC spectrum resulting from the proposed method is expected to keep

its general shape. Thus the spectral envelope generated by the proposed methods is

expected to generally maintain its vigour even as the lower-level peaks are masked
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Figure 3.8: Methodology to simulate accuracy for the proposed methods.

by the power of noise. It should be noted that as the aim of this research is not

to ensure complete isolation from noise, hence distortion of the spectral envelope

is still observed as the effect of noise is increased.

The accuracy of the proposed methods in determining the true spectral envelope of

a speech signal is simulated using the methodology displayed in Figure 3.8. In order

to observe the performance of the methods in an objective manner, it is imperative

to compare the methods on an equal plane. The following methodology is applied:
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Figure 3.9: Excitation process to construct synthetic signal from LP parameters.

1. Using the conventional autocorrelation method for LP analysis, a set of LP

parameters is generated from a speech sample.

2. A synthetic speech is generated from the LP parameters (please refer to

Figure 3.9). This is achieved by applying an AR filter H(z) on a string of

impulses, which is defined as follows,

H(z) =
1

1 −∑p
k=1 akz−k

(3.3)

The filter tap of H(z) is set by the LP parameters. The string of pulses is

separated by a pre-defined pitch harmonic. As an example, for an 8 kHz

signal, pulses pitched at 80 samples apart would give a frequency spacing of

100 Hz.

3. An estimated spectrum P̂ is then calculated from the synthesised speech.

4. SD is computed by measuring the distortion between the original spectrum

generated from the LP parameters in the first step and P̂ .
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3.5.3 Results

The following simulations (as displayed in Figures 3.10 to 3.17) were simulated

using 12 seconds of speech, spoken by three different individuals (1 female and

2 male speakers). Noise introduced to the speech was the train sample from the

Aurora database, unless stated otherwise. The synthesised signal for the accuracy

analysis was constructed using a pitch harmonic of 80 samples, which translates to

f0 = 100 Hz.
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Figure 3.10: Robustness analysis of the MA spectral estimation method for speech

signal affected by varying levels of noise.

Figure 3.10 shows robustness analysis for MA method. The noise level was varied

for SNR of 35 dB to 5 dB. Improvement in robustness can be observed as the

analysis window length is increased.

Figure 3.11 shows the accuracy analysis for the MA method of LP analysis. The

size of the analysis window length of the MA method heavily affects the accuracy

of the spectrum. It is concluded that the robustness performed by the MA method

is compensated by the decrease in its accuracy.
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Figure 3.11: Accuracy analysis of the MA spectral estimation method, (a) for

speech affected by noise; (b) closer look at signals with minimum noise introduction.
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Figure 3.12: Robustness analysis of the MM spectral estimation method for speech

signal affected by varying levels of noise.

The above case also holds true for the MM method of LP analysis. The robust-

ness, shown in Figure 3.12, is compensated by the decrease in accuracy, shown in
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Figure 3.13: Accuracy analysis of the MM spectral estimation method, (a) for

varying noise levels; (b) closer look at signals with minimum noise introduction.

Figure 3.13.

Simulations for the AT method uses the restaurant noise, which is a recorded se-

quence of background noise encountered when dining in a restaurant environment.

For a fixed window length, the performance of the AT method can be seen for dif-

ferent number of repetitions. Robust simulation in Figure 3.14 shows an expected

behaviour as the MA and MM methods. As the number of repetition increases, the

accuracy decreases (as shown in Figure 3.15), however the rate of decline in SD is

not as severe as the other two methods. This is consistent with its design method-

ology, where its power spectrum envelope follows the behaviour of the harmonic

peaks more closely as the number of repetition increases.

Clearly there exists a trade-off between the accuracy and its robustness of the

spectrum estimation methods. Figure 3.16 displays the trade-off between the two

aspects for different number of repetitions (SNR = 25 dB). A narrow AT analysis

window provides a less robust spectrum than a wide analysis window.
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Figure 3.14: Robustness analysis of the AT spectral estimation method for speech

signal affected by varying levels of noise (M=49 frequency samples).
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Figure 3.15: Accuracy analysis of the AT estimation method for speech signal

affected by varying levels of noise (M=49 frequency samples).
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Figure 3.16: Comparison of different lengths of analysis window (M) on its (a)

Robustness and (b) Accuracy.

Table 3.1: Relation between the level of noise and the SNR of the speech samples

affected by noise for Figures 3.17 to 3.21.

Level of noise SNR (dB) Level of noise SNR (dB)

0 ∞ 6 10

1 35 7 5

2 30 8 0

3 25 9 -5

4 20 10 -10

5 15

The effect that the choice of number of repetition has on the performance of the

AT method can be observed in Figures 3.17 and 3.18. These results were simulated

on a 30 ms speech sample [e] introduced with Gaussian noise. Each line represents

the performance of this method for repetitions of 1 to 10 times (as marked in the

plots).
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Figure 3.17: The effect of increasing AT repetitions on its robustness for different

levels of noise (please refer to Table 3.1).
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Figure 3.18: The effect of increasing AT repetitions on its accuracy for different

levels of noise (please refer to Table 3.1).
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Figure 3.19: Average SD for 12 s of speech spoken by 3 separate subjects introduced

with ’restaurant’ noise for robust analysis (please refer to Table 3.1).
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Figure 3.20: Robust SD measurements for 30 ms speech vowel [e] introduced with

Gaussian noise (please refer to Table 3.1).
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Figure 3.21: Accuracy analysis of speech [e] with added Gaussian noise (please

refer to Table 3.1).

Comparison between the robust LP analysis methods can be observed in Fig-

ures 3.19, 3.20 and 3.21. The SEEVOC spectrum is computed using CP of 15

frequency samples, with search range [1
2
CP , 3

2
CP ]. The three robust methods ap-

ply an analysis window of 49 frequency samples. The AT method is performed

with 3 repetitions.

It can be seen that using the above settings, the robust methods perform as ac-

curately as the autocorrelation method of LP analysis. AT method is the most

robust method of LP analysis, whilst offering no significant degradation in its ac-

curacy. The simulations performed in this chapter show that the choice of analysis

window length affects the robustness and accuracy of the proposed methods, where

improvement of one performance aspect will lead to the degradation of the other.



Chapter 4

Quantisation of the LP

Parameters

4.1 Scalar Quantisation of LP Parameters

This chapter studies the effect of quantisation on the LP analysis methods. The

scalar quantisation (SQ) method using non-uniform levels (as previously explained

in Chapter 2) is presented in this section, while quantisation of the parameters

using vector quantisation (VQ) will be discussed and simulated in the following

section.

It will be shown in this chapter that the proposed methods are better for quan-

tisation in comparison to the conventional methods. It provides less distortion

when quantisation is performed on its LP parameters. This allows fewer bits to

be allocated during quantisation in order to achieve equal speech quality with the

conventional methods.

As explained in Section 2.7.4, non-uniformly-spaced quantisation levels are chosen

85
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for simulation of SQ on the LP parameters as it provides a more accurate quanti-

sation, as most signals do not show a uniform behaviour. Non-uniform quantising

levels are obtained via the LBG algorithm. The simulations in this chapter were

completed using the following settings:

• Codebook train and test procedure uses the TIMIT database sampled at 8

kHz. Speech data for the test procedure uses the [si] sentences (3 from each

speaker) taken from the TIMIT test database.

• LP analysis order of 10.

• FFT-computed spectrum length equals 512 frequency samples.

• Frame size set to 20 ms.

• Robust LP analysis window � 330 Hz (21 frequency samples).

• AT repetition of 3 and analysis window size equal to MA.

• For the SEEVOC method, CP set to 10 frequency samples (frequency width

� 156 Hz) with search range [1
2
CP , 3

2
CP ].

The robust LP analysis window lengths and AT repetition constant is determined

to provide a good balance between maintaining the accuracy of the LPC spectrum

and achieving robustness when noise is introduced to the speech signal. Please

refer to Section 3.5 for a more detailed explanation.

The importance of transformation of LP parameters can be seen in Tables 4.1

and 4.2. It can be observed that for the autocorrelation method (AM), an aver-

age SD of approximately 1 dB can be reached with 60 quantisation bits, however

spectral transparency can only be achieved with 75 bits. A high number of bits

for quantisation are also encountered with the other methods. This highlights the

need to transform the LP parameters (Section 2.7.4). The LSF transformation is

used for the simulations of LP parameter quantisation.
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Table 4.1: Performance for quantisation of conventional LP parameters (AM) with

no transformation.

Number of Average Outliers (%)

bits/frame SD (dB) 2-4 dB >4 dB

60 1.040 11.351 2.394

65 0.727 6.109 0.920

70 0.576 3.957 0.640

71 0.549 3.634 0.606

72 0.510 3.128 0.475

73 0.468 2.540 0.384

74 0.432 2.067 0.319

75 0.395 1.713 0.260

Table 4.2: Performance for quantisation of LP parameters with no transformation

using SEEVOC and proposed methods.

Estimation Number of Average Outliers (%)

method bits/frame SD (dB) 2-4 dB >4 dB

SEEVOC 60 1.022 11.300 2.405

65 0.703 6.177 0.914

75 0.373 1.778 0.206

MA 60 1.031 11.326 2.438

65 0.718 6.231 0.929

75 0.384 1.720 0.243

MM 60 1.087 12.823 2.716

65 0.760 7.503 1.159

75 0.407 2.302 0.291

AT 60 1.026 11.829 2.333

65 0.702 6.357 0.900

75 0.374 1.853 0.231
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Table 4.3: Quantisation performance of non-uniform SQ using LSF transformation.

Estimation Number of Average Outliers (%)

method bits/frame SD (dB) 2-4 dB >4 dB

AM 35 1.311 9.192 1.616

36 1.185 6.691 1.201

37 1.054 5.153 0.444

38 0.947 3.774 0.212

39 0.863 2.576 0.098

40 0.804 1.807 0.087

SEEVOC 40 0.756 1.595 0.088

MA 40 0.772 1.648 0.090

MM 40 0.759 1.687 0.111

AT 40 0.737 1.542 0.091

The quantisation performance of the autocorrelation (AM), SEEVOC, moving av-

erage (MA), moving maximum (MM) and average threshold (AT) methods with

LSF transformation can be observed in Table 4.3. The average number of bits

needed to achieve spectral transparency is 40 bits/frame, which is a high reduction

in comparison to the results in the previous tables.

4.2 Split Vector Quantisation of LP Parameters

Due to computational complexity and added memory space needed for the quanti-

sation codebook, a computationally efficient method is needed for VQ, especially for

future speech coding applications. Full-search VQ has a very high computational

complexity and requires too much of memory space for the quantisation codebook.

The split VQ design is used to investigate the quantisation performance of the LP

parameters. Though the split VQ approach is suboptimal, it reduces computational

complexity and memory requirements to manageable limits without affecting the



Chapter 4. Quantisation of the LP Parameters 89

VQ performance too much [84], [85].

As the name suggests, this method divides the LP parameters into separate lower-

order partitions. SD calculated from the quantisation of the LP parameters is

minimised by searching for the least distortion in smaller-size vector partitions.

Separation of the LP parameters is done in its root domain, which is determined

to be most accurate, as separation in its time domain would introduce further

distortion in its power spectrum.

The separation of the LP polynomials into two partitions (4 LSF’s in the first

partition and 6 LSF’s in the second) is proposed for a 10th order LP analysis [24].

Non-uniform partitioning is favoured to uniform partitioning due to the higher

priority of achieving less MSE in the low frequency roots, where the larger bulk of

the power spectrum’s accuracy is preserved, than in the high frequency roots.

A block diagram of the split VQ procedure for two partitions can be seen in Fig-

ure 4.1. In this example, M -dimension quantisation codebook is computed from

N input vectors (N >> M). Separating the LP parameters to its low and high

frequency roots forms each lower-order polynomial. The training of Q1 and Q2

is done using the LBG algorithm covered in Section 2.4.2. It is clear from this

example that training the separate codebook partitions must not be computed

from the same set of train vectors, as it must accommodate the splitting of the LP

parameters into non-uniform partitions.

By separating the all-pole filter polynomials A(z) into its low and high frequency

roots, denoted L(z) and H(z) respectively,

1

A(z)
=

1

L(z)

1

H(z)
(4.1)

the indexes of each codebook can then be determined,

j∗, k∗ = argminDLR(
1

A(z)
:

1

Lj(z)

1

Hk(z)
) (4.2)

where j∗ and k∗ are the indices pair for two LP parameter partitions and DLR

is the likelihood ratio distortion, which is dictated either by the minimum MSE
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Figure 4.1: Block diagram of the split VQ for 2 partitions.

of each partition or the average SD of the complete set of LP parameters (2.52).

By determining the minimum likelihood ratio distortion, the indices pair can be

located for each region; j ε 1, 2, . . . , NL and k ε 1, 2, . . . , NH .

The process of selecting the optimum codebook indices can be achieved by checking

every single possible combination from the sets of codebook. Although selecting

individual indices by the minimisation of MSE is generally considered accurate for

selecting the quantised transformed LP parameters, optimum selection can only be

reached by the minimisation of SD. However with the need for large numbers of bit

allocated for quantisation (may reach up to 50 bits per 10 coefficients, depending
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on the quantisation method used), it is computationally expensive to search every

index combination.

The computational time for codebook selection can be largely reduced by searching

the high frequency codebook using a pre-selected low frequency codebook template

and vice versa. Pre-selecting a codebook template is done via individual search of

minimum MSE for each codebook index. The difference between selecting the

codebook using the minimum MSE and the minimum SD is shown in Table 4.4.

As can be seen, only a slight improvement is offered by the minimum SD selection

criterion. Further simulations are completed using the minimum MSE selection

criterion as it offers much lower computational cost.

Table 4.4: Comparison for quantisation performance with different selection crite-

rion for 3 part split VQ at 18 bits/frame with LSF transformation.

Estimation Average Outliers (%)

method SD (dB) 2-4 dB >4 dB

Minimum MSE selection

AM 2.005 43.354 0.759

SEEVOC 1.808 29.471 0.314

MA 1.882 35.351 0.404

MM 1.772 27.435 0.368

AT 1.731 24.382 0.259

Minimum SD selection

AM 1.990 42.478 0.676

SEEVOC 1.800 28.901 0.303

MA 1.874 34.731 0.380

MM 1.766 27.071 0.358

AT 1.725 24.006 0.255

All the simulations in this chapter use LSF transformation with the same settings

as in Section 2.4.2. Uniform bit allocation is used for individual parts. Tables 4.5,
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4.6 and 4.7 show the quantisation performance in terms of average SD using a split

VQ with 2, 3 (3 LSF’s in the first partition, 3 LSF’s in the second and 4 LSF’s in

the third) and 5 (2 LSF’s in each partition) partitions respectively.

Table 4.5: Quantisation performance of different methods for 2 part split VQ at

24 bits/frame.

Estimation Average Outliers (%)

method SD (dB) 2-4 dB >4 dB

AM 1.374 9.088 0.023

SEEVOC 1.220 3.823 0.009

MA 1.276 5.318 0.013

MM 1.186 3.236 0.009

AT 1.154 2.344 0.002

Table 4.6: Quantisation performance of different methods for 3 part split VQ.

Estimation Number of Average Outliers (%)

method bits/frame SD (dB) 2-4 dB >4 dB

AM 26 1.281 6.063 0.027

27 1.164 3.223 0.014

SEEVOC 26 1.150 2.881 0.022

27 1.042 1.291 0.008

MA 26 1.197 3.680 0.021

27 1.084 1.826 0.001

MM 26 1.126 2.485 0.021

27 1.014 1.116 0.006

AT 26 1.095 1.875 0.016

27 0.986 0.751 0.003

Figure 4.2 shows the average SD for VQ with no partition (10th order LP analysis)

for varying bits/frame. It can be seen from these simulation results that all the

robust methods provide better quantisation performance than the autocorrelation
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Table 4.7: Quantisation performance of different methods for 5 part split VQ at

30 bits/frame.

Estimation Average Outliers (%)

method SD (dB) 2-4 dB >4 dB

AM 1.073 1.781 0.022

SEEVOC 0.976 0.926 0.020

MA 1.006 1.082 0.018

MM 0.967 1.066 0.023

AT 0.930 0.716 0.014
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Figure 4.2: Average SD for VQ with no partition.

method. The AT method offers the best performance from all the robust methods.

An improvement of 2-3 bits/frame is observed when comparing the AT method

to the conventional autocorrelation method (AM) of LP analysis. Referring to
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Table 4.8: Performance of the conventional LP analysis methods for 3 part split

VQ.

Estimation Number of Average Outliers (%)

method bits/frame SD (dB) 2-4 dB >4 dB

AM 23 1.531 15.124 0.094

24 1.396 8.929 0.032

25 1.357 8.126 0.029

26 1.281 6.063 0.027

27 1.164 3.223 0.014

SEEVOC 25 1.220 3.900 0.026

26 1.150 2.881 0.022

27 1.042 1.291 0.008

Table 4.9: Performance of the robust LP analysis methods for 3 part split VQ.

Estimation Number of Average Outliers (%)

method bits/frame SD (dB) 2-4 dB >4 dB

MA 25 1.270 5.000 0.030

26 1.197 3.680 0.021

27 1.084 1.826 0.001

MM 25 1.197 3.423 0.022

26 1.126 2.485 0.021

27 1.014 1.116 0.006

AT 21 1.433 8.983 0.083

22 1.399 8.263 0.083

23 1.315 5.771 0.077

24 1.190 2.765 0.019

25 1.164 2.560 0.018

26 1.095 1.875 0.016

27 0.986 0.751 0.003
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Tables 4.8 and 4.9, for 3 part split VQ, an example of 23 bits/frame for the AT

method would result in an average SD that would resemble that of the AM method

with 25 bits/frame. It should be noted also that for the AT method with 23

bits/frame, a significantly less percentage of outlier frames is observed.



Chapter 5

Low Bit-Rate Speech Coding

Application

5.1 Application of the Robust LP Analysis Me-

thods in CELP

The performance of the robust methods for quantisation in low bit-rate speech

coding application is investigated in this chapter. The CELP coder, previously

defined in Section 2.7, is used to simulate the performance of the robust methods.

The settings for the simulations performed in this chapter follow that of the pre-

vious chapter (Section 4.1). The performance criterion for the CELP coder is

performed using the Segmental-SNR, defined in Section 2.8.3, and will be further

represented by the term SNR. Quantisation of the LP parameters is performed on

the LSF coefficients using the split VQ approach. The simulation settings for the

CELP coder are as follows:

• LP analysis order of 10 on a 20 ms frame.

96
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• Pitch delay of 128 samples.

• 7-bit random Gaussian codebook used for determining the excitation param-

eters.

Simulations in this chapter are performed on two separate sets of sentences taken

from the TIMIT test database, described as follows:

• Set 0: compilation of 40 sentences spoken by 38 separate speakers (23 male

speakers and 15 female speakers) randomly selected from the TIMIT test

database. This set of sentences contains 123.24 seconds of speech (6162 frames

of 20 ms length of speech) consisting of 61.6 seconds (3080 frames) of non-

silent speech.

• Set 1: 40 sentences spoken by 2 male and 2 female speakers, each reading 10

sentences, selected from the test database. This set contains of 6815 frames

of speech (136.3 seconds) with 3578 frames of non-silent speech.

The simulations performed in this chapter compare the moving maximum (MM),

moving average (MA) and average threshold (AT) methods to the conventional

autocorrelation (AM) and SEEVOC methods. The SEEVOC method is simulated

using a CP of 10 frequency samples (frequency width � 156 Hz) with search range

[1
2
CP , 3

2
CP ].

Tables 5.1 to 5.3 show the performance of the robust LP analysis methods. For 5

part (30 bits/frame) and 2 part (24 bits/frame) split VQ, the robust methods are

shown to perform better than the AM method in terms of speech quality. Although

the MA method is shown to be most affected by quantisation in comparison to the

MM and AT method (in terms of SD), it offers the highest SNR for both sets of

sentences.

Simulations using various number of bits/frame for the 3 part split VQ also show

identical behaviour to the above case. The conventional LP analysis methods are
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Table 5.1: CELP performance for the different LP analysis methods in SNR (dB).

Set 0

Estimation Without 5 part 2 part

method quantisation (30 bits/frame) (24 bits/frame)

AM 10.37 9.59 9.68

SEEVOC 9.97 9.55 9.55

MM 9.91 9.52 9.56

MA 10.57 9.86 9.93

AT 10.31 9.87 9.94

Set 1

Estimation Without 5 part 2 part

method quantisation (30 bits/frame) (24 bits/frame)

AM 10.14 9.42 9.53

SEEVOC 9.95 9.47 9.53

MM 9.65 9.30 9.35

MA 10.38 9.69 9.77

AT 10.10 9.65 9.72

Table 5.2: CELP performance for 3 part split VQ on Set 0 sentences in SNR (dB).

Estimation Number of bits/frame

method 18 21 24 27

AM 9.21 9.42 9.65 9.90

SEEVOC 9.17 9.39 9.53 9.68

MM 9.19 9.40 9.59 9.67

MA 9.40 9.73 9.91 10.04

AT 9.48 9.71 9.89 10.01

most affected by quantisation, as the degradation of its SNR can be seen as the

number of bits/frame is decreased from 27 to 18 bits/frame. Also the MM and AT
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Table 5.3: CELP performance for 3 part split VQ on Set 1 sentences in SNR (dB).

Estimation Number of bits/frame

method 18 21 24 27

AM 9.04 9.36 9.48 9.68

SEEVOC 9.07 9.32 9.51 9.63

MM 9.09 9.29 9.40 9.51

MA 9.31 9.55 9.74 9.90

AT 9.39 9.54 9.73 9.85

methods offer the most robust methods as the quantisation bits are varied for the

3 part split VQ.

5.2 Noise Introduction

5.2.1 Real World Noise

The introduction of real world noise into the speech samples is simulated using the

babble, street and restaurant noise samples from the Aurora database. Tables 5.4

and 5.5 show the performance of all the methods for speech affected by babble

noise with quantisation using 3 part split VQ.

For speech affected by low-level noise, the MM and SEEVOC methods show a

slightly lower SNR value to the AM method. The level of noise is calculated using

SNR and determined from the clean speech against the speech affected by noise.

However as the effect of noise is increased, the SEEVOC and proposed methods

show a more robust behaviour than the AM method. The proposed methods are

also observed to produce a higher SNR for high-levels of noise. Also the proposed

methods outperform both the AM and SEEVOC methods in terms of robustness
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Table 5.4: Performance for 3 part split VQ on Set 0 sentences with babble noise in

SNR (dB).

Estimation Noise level Bits/frame

method (SNR) 18 21 24

AM 35 dB 9.17 9.43 9.61

30 dB 9.14 9.43 9.61

25 dB 9.01 9.27 9.46

5 dB 6.28 6.34 6.44

0 dB 5.61 5.72 5.79

SEEVOC 35 dB 9.14 9.33 9.55

30 dB 9.13 9.31 9.43

25 dB 8.97 9.16 9.25

5 dB 6.32 6.40 6.46

0 dB 5.64 5.74 5.76

MM 35 dB 9.15 9.40 9.58

30 dB 9.14 9.39 9.55

25 dB 9.08 9.30 9.43

5 dB 6.49 6.58 6.64

0 dB 5.79 5.90 5.93

MA 35 dB 9.37 9.65 9.86

30 dB 9.36 9.61 9.85

25 dB 9.22 9.53 9.73

5 dB 6.44 6.55 6.65

0 dB 5.74 5.83 5.90

AT 35 dB 9.46 9.74 9.87

30 dB 9.46 9.64 9.85

25 dB 9.38 9.54 9.74

5 dB 6.54 6.63 6.73

0 dB 5.83 5.89 5.96
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Table 5.5: Performance for 3 part split VQ on Set 1 sentences with babble noise in

SNR (dB).

Estimation Noise level Bits/frame

method (SNR) 18 21 24

AM 35 dB 9.03 9.30 9.46

30 dB 9.00 9.30 9.44

25 dB 8.90 9.16 9.27

5 dB 6.21 6.36 6.42

0 dB 5.57 5.68 5.75

SEEVOC 35 dB 9.10 9.29 9.44

30 dB 9.07 9.27 9.38

25 dB 8.92 9.12 9.22

5 dB 6.25 6.36 6.43

0 dB 5.60 5.69 5.73

MM 35 dB 9.06 9.30 9.38

30 dB 9.05 9.23 9.35

25 dB 8.95 9.12 9.22

5 dB 6.46 6.50 6.56

0 dB 5.75 5.83 5.87

MA 35 dB 9.28 9.52 9.73

30 dB 9.27 9.53 9.67

25 dB 9.12 9.36 9.51

5 dB 6.35 6.49 6.59

0 dB 5.69 5.79 5.83

AT 35 dB 9.37 9.55 9.73

30 dB 9.32 9.50 9.69

25 dB 9.19 9.40 9.56

5 dB 6.44 6.57 6.63

0 dB 5.77 5.83 5.89
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for applications in speech affected by high-levels of noise.

As the SNR measurement tool is not the most accurate quality measure for speech

coding, the quality of the synthesised speech signal needs to be determined by a

human subject listening directly to the speech. Through this process, it is evi-

dent that for 18 bits/frame there exists a difference in speech quality between the

AM method and the robust methods. Although this cannot be clearly observed

throughout the two speech sets, there are certain sections of the speech where the

quality of speech from the AM method is not as clear as the speech from the robust

methods. This observation was obvious for high levels of noise.

In the cases where the differences in quality are obvious (for example, when speech

is affected by high-level babble noise (5 dB SNR)), the synthesised speech from the

AM method cannot be clearly observed over the noise. Using the robust methods,

the speech outputs are observed to be less distorted, with the actual speech observed

slightly more clearly over noise.

Tables 5.6 to 5.8 show the performance of the LP analysis methods for various split

VQ partition settings when speech is affected by various real world background

noise samples. It can be observed that although the SEEVOC method provides

a slight improvement to the conventional AM method, the robust methods offer

significantly better improvement to the robustness (when speech is introduced into

noisy environments) and synthesised speech quality. In general, the AT method

provides the best SNR improvement, approximately 0.4 dB for varying speech

samples, followed by the MM and MA methods.
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Table 5.6: Performance for 5 (30 bits/frame) and 2 (24 bits/frame) part split VQ

with babble noise in SNR (dB).

Estimation Noise level 5 part 2 part

method (SNR) Set 0 Set 1 Set 0 Set 1

AM 35 dB 9.59 9.41 9.68 9.50

30 dB 9.57 9.39 9.67 9.46

25 dB 9.45 9.26 9.53 9.29

5 dB 6.51 6.44 6.53 6.45

0 dB 5.82 5.77 5.81 5.79

SEEVOC 35 dB 9.54 9.41 9.54 9.48

30 dB 9.42 9.36 9.50 9.41

25 dB 9.28 9.21 9.34 9.26

5 dB 6.45 6.42 6.49 6.44

0 dB 5.80 5.74 5.81 5.74

MM 35 dB 9.51 9.31 9.56 9.33

30 dB 9.48 9.25 9.53 9.30

25 dB 9.41 9.15 9.44 9.21

5 dB 6.68 6.54 6.63 6.60

0 dB 5.91 5.87 5.94 5.89

MA 35 dB 9.87 9.70 9.91 9.75

30 dB 9.83 9.63 9.89 9.67

25 dB 9.71 9.48 9.79 9.56

5 dB 6.66 6.58 6.67 6.58

0 dB 5.92 5.88 5.93 5.88

AT 35 dB 9.86 9.62 9.89 9.72

30 dB 9.78 9.58 9.85 9.66

25 dB 9.73 9.46 9.76 9.53

5 dB 6.75 6.63 6.77 6.64

0 dB 5.98 5.90 5.98 5.91
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Table 5.7: Performance for 3 part split VQ at 27 bits/frame with various real world

noise samples introduced to Set 0 sentences in SNR (dB).

Babble

Estimation Noise level (SNR)

method 35 dB 30 dB 25 dB 20 dB 15 dB 5 dB

AM 9.80 9.79 9.63 9.28 8.58 6.56

SEEVOC 9.62 9.57 9.42 9.08 8.41 6.52

MM 9.65 9.64 9.53 9.27 8.62 6.69

MA 10.03 10.03 9.87 9.54 8.81 6.67

AT 10.01 9.93 9.84 9.48 8.84 6.78

Street

Estimation Noise level (SNR)

method 35 dB 30 dB 25 dB 20 dB 15 dB 5 dB

AM 9.87 9.80 9.53 8.99 7.89 4.56

SEEVOC 9.67 9.60 9.40 8.85 7.80 4.59

MM 9.69 9.67 9.49 9.01 8.04 4.72

MA 10.08 10.04 9.79 9.22 8.10 4.65

AT 10.04 9.99 9.75 9.26 8.13 4.74

Restaurant

Estimation Noise level (SNR)

method 35 dB 30 dB 25 dB 20 dB 15 dB 5 dB

AM 9.82 9.80 9.67 9.30 8.56 6.17

SEEVOC 9.64 9.63 9.47 9.13 8.45 6.18

MM 9.65 9.63 9.54 9.23 8.66 6.36

MA 10.00 10.02 9.88 9.50 8.77 6.32

AT 10.01 9.98 9.86 9.53 8.78 6.39
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Table 5.8: Performance for 3 part split VQ at 27 bits/frame with various real world

noise samples introduced to Set 1 sentences in SNR (dB).

Babble

Estimation Noise level (SNR)

method 35 dB 30 dB 25 dB 20 dB 15 dB 5 dB

AM 9.66 9.59 9.39 9.05 8.41 6.47

SEEVOC 9.58 9.53 9.35 8.96 8.33 6.45

MM 9.47 9.43 9.32 9.04 8.42 6.60

MA 9.87 9.81 9.65 9.29 8.59 6.61

AT 9.82 9.77 9.67 9.31 8.65 6.66

Street

Estimation Noise level (SNR)

method 35 dB 30 dB 25 dB 20 dB 15 dB 5 dB

AM 9.64 9.55 9.34 8.79 7.76 4.58

SEEVOC 9.61 9.51 9.30 8.78 7.75 4.64

MM 9.48 9.48 9.25 8.75 7.81 4.73

MA 9.86 9.81 9.59 9.00 7.94 4.69

AT 9.79 9.76 9.55 9.00 7.96 4.75

Restaurant

Estimation Noise level (SNR)

method 35 dB 30 dB 25 dB 20 dB 15 dB 5 dB

AM 9.66 9.60 9.44 9.11 8.37 6.07

SEEVOC 9.58 9.51 9.36 8.99 8.33 6.11

MM 9.46 9.41 9.32 9.03 8.38 6.25

MA 9.91 9.82 9.68 9.26 8.57 6.21

AT 9.83 9.79 9.62 9.28 8.60 6.29
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5.2.2 Gaussian Noise

Table 5.9: Performance for 3 part split VQ at 18 bits/frame with Gaussian noise

on Set 0 in SNR (dB).

Estimation Noise level (SNR)

method 35 dB 30 dB 25 dB 20 dB 15 dB 5 dB

AM 9.21 9.18 9.01 8.49 7.44 4.38

SEEVOC 9.20 9.12 8.99 8.50 7.54 4.44

MM 9.24 9.17 9.05 8.58 7.62 4.57

MA 9.43 9.36 9.21 8.71 7.65 4.46

AT 9.53 9.46 9.29 8.80 7.80 4.56

Table 5.10: Performance for 3 part split VQ at 18 bits/frame with Gaussian noise

on Set 1 in SNR (dB).

Estimation Noise level (SNR)

method 35 dB 30 dB 25 dB 20 dB 15 dB 5 dB

AM 9.03 8.99 8.78 8.32 7.41 4.39

SEEVOC 9.08 9.02 8.80 8.34 7.43 4.52

MM 9.13 9.09 8.91 8.45 7.55 4.60

MA 9.31 9.21 8.99 8.52 7.56 4.50

AT 9.36 9.28 9.12 8.60 7.65 4.61

Performance of the robust methods when introduced with Gaussian noise can be

observed in Tables 5.9 to 5.14. As observed in the previous section, the AT method

provides the most robust performance. The improvement in speech quality of the

robust methods compared to the conventional methods is more apparent for speech

affected by high-levels of noise. This is more obvious to the human ear for SNR

of approximately 10 to -5 dB (where the noise is generally at the same amplitude

level as the clean speech).

When listening to the speech outputs, it is apparent that the SEEVOC method does
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Table 5.11: Performance for 3 part split VQ with Gaussian noise on Set 0 in SNR

(dB).

Estimation Number of Noise level (SNR)

method bits/frame 35 dB 25 dB 15 dB 5 dB

AM 21 9.40 9.22 7.62 4.46

24 9.66 9.39 7.78 4.54

27 9.87 9.53 7.93 4.57

SEEVOC 21 9.38 9.19 7.63 4.48

24 9.57 9.31 7.73 4.54

27 9.66 9.43 7.76 4.58

MM 21 9.47 9.26 7.86 4.65

24 9.59 9.38 7.95 4.70

27 9.67 9.50 8.00 4.72

MA 21 9.72 9.50 7.82 4.55

24 9.90 9.66 7.98 4.62

27 10.08 9.83 8.09 4.67

AT 21 9.75 9.46 7.95 4.65

24 9.92 9.66 8.08 4.70

27 10.02 9.81 8.15 4.73

not always provide an improvement to the AM method. For high levels of noise

the synthesised speech calculated from the SEEVOC method cannot be clearly

observed over the noise, especially in comparison to the speech calculated from the

AM method. It is noted that the AT and MM methods provide speech outputs

with less audible treble, which provides better speech quality.
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Table 5.12: Performance for 3 part split VQ with Gaussian noise on Set 1 in SNR

(dB).

Estimation Number of Noise level (SNR)

method bits/frame 35 dB 25 dB 15 dB 5 dB

AM 21 9.33 9.06 7.54 4.46

24 9.50 9.16 7.63 4.56

27 9.66 9.37 7.76 4.58

SEEVOC 21 9.32 9.01 7.55 4.54

24 9.46 9.17 7.70 4.61

27 9.55 9.32 7.75 4.64

MM 21 9.28 9.03 7.67 4.67

24 9.38 9.17 7.77 4.74

27 9.46 9.23 7.81 4.76

MA 21 9.50 9.24 7.72 4.58

24 9.72 9.42 7.83 4.65

27 9.88 9.56 7.96 4.69

AT 21 9.58 9.31 7.79 4.65

24 9.73 9.42 7.93 4.70

27 9.86 9.56 8.01 4.76

Table 5.13: Performance for 2 part split VQ (24 bits/frame) with Gaussian noise

on Set 0 in SNR (dB).

Estimation Set 0 Set 1

method 35 dB 25 dB 15 dB 35 dB 25 dB 15 dB

AM 9.73 9.48 7.86 9.55 9.24 7.71

SEEVOC 9.54 9.35 7.79 9.51 9.23 7.72

MM 9.58 9.43 8.01 9.35 9.17 7.81

MA 9.98 9.73 8.06 9.78 9.50 7.90

AT 9.95 9.75 8.13 9.70 9.46 7.95
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Table 5.14: Performance for 5 part split VQ (30 bits/frame) with Gaussian noise

on Set 0 in SNR (dB).

Estimation Set 0 Set 1

method 35 dB 25 dB 15 dB 35 dB 25 dB 15 dB

AM 9.66 9.51 7.91 9.44 9.19 7.71

SEEVOC 9.50 9.31 7.81 9.46 9.17 7.70

MM 9.54 9.38 7.98 9.32 9.09 7.77

MA 9.91 9.65 8.05 9.68 9.42 7.89

AT 9.92 9.68 8.08 9.64 9.44 7.92

5.3 Variation of the Analysis Window Lengths

Table 5.15: SNR performance comparison for 3 part split VQ (18 bits/frame) with

varying analysis window lengths and no noise on Set 0 sentences in SNR (dB).

Estimation Average Outliers (%) SNR

method SD (dB) 2-4 dB >4 dB (dB)

M = 21 frequency samples

MM 1.812 30.867 0.552 9.19

MA 1.917 36.952 0.406 9.40

AT 1.765 26.874 0.389 9.48

M = 7 frequency samples

MM 1.993 43.411 0.552 9.28

MA 2.031 44.677 0.957 9.15

AT 1.993 43.395 0.471 9.29

The effect of varying the analysis window size of the robust methods is inves-

tigated here. The performance of the robust methods is compared for analysis

window lengths of 21 and 7 frequency samples on the FFT-computed spectrum,

translating to approximately 330 and 110 Hz respectively for an 8 kHz speech sig-

nal. Comparison of performance for clean speech can be observed for 3 part (18
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Table 5.16: SNR performance comparison for 3 part split VQ (18 bits/frame) with

varying analysis window lengths and no noise on Set 1 sentences in SNR (dB).

Estimation Average Outliers (%) SNR

method SD (dB) 2-4 dB >4 dB (dB)

M = 21 frequency samples

MM 1.732 24.519 0.147 9.09

MA 1.816 30.858 0.117 9.31

AT 1.673 20.807 0.088 9.39

M = 7 frequency samples

MM 1.892 36.067 0.279 9.16

MA 1.938 38.665 0.572 9.06

AT 1.905 37.080 0.264 9.11

Table 5.17: SNR performance comparison for 3 part split VQ (21 bits/frame) with

varying analysis window lengths and no noise on Set 0 sentences in SNR (dB).

Estimation Average Outliers (%) SNR

method SD (dB) 2-4 dB >4 dB (dB)

M = 21 frequency samples

MM 1.504 12.691 0.243 9.40

MA 1.597 17.218 0.195 9.73

AT 1.464 10.565 0.179 9.71

M = 7 frequency samples

MM 1.656 20.480 0.211 9.54

MA 1.698 23.239 0.097 9.43

AT 1.664 22.233 0.097 9.58

and 21 bits/frame) and 5 part (30 bits/frame) split VQ in Tables 5.15 to 5.20. Ta-

bles 5.21 to 5.24 show the performance when babble and street noise is introduced

to 3 part split VQ.
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Table 5.18: SNR performance comparison for 3 part split VQ (21 bits/frame) with

varying analysis window lengths and no noise on Set 1 sentences in SNR (dB).

Estimation Average Outliers (%) SNR

method SD (dB) 2-4 dB >4 dB (dB)

M = 21 frequency samples

MM 1.435 9.171 0.059 9.29

MA 1.512 11.930 0.015 9.55

AT 1.387 6.750 0.015 9.54

M = 7 frequency samples

MM 1.575 15.671 0.000 9.45

MA 1.938 38.665 0.572 9.06

AT 1.905 37.080 0.264 9.11

Table 5.19: SNR performance comparison for 5 part split VQ (30 bits/frame) with

varying analysis window lengths and no noise on Set 0 sentences in SNR (dB).

Estimation Average Outliers (%) SNR

method SD (dB) 2-4 dB >4 dB (dB)

M = 21 frequency samples

MM 0.982 1.331 0.000 9.52

MA 1.029 1.525 0.000 9.86

AT 0.950 0.828 0.016 9.87

M = 7 frequency samples

MM 1.065 1.866 0.049 9.72

MA 1.090 2.272 0.016 9.65

AT 1.069 1.736 0.049 9.77

Narrow analysis windows are more effective in allocating the spectral peaks of the

FFT-computed power spectrum, thus providing a more accurate LPC spectrum.

However, as investigated in Section 3.5, its robustness suffers when introduced

into noisy environments. Comparing the MM method to the conventional LP
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Table 5.20: SNR performance comparison for 5 part split VQ (30 bits/frame) with

varying analysis window lengths and no noise on Set 1 sentences in SNR (dB).

Estimation Average Outliers (%) SNR

method SD (dB) 2-4 dB >4 dB (dB)

M = 21 frequency samples

MM 0.960 0.939 0.029 9.30

MA 1.002 1.012 0.000 9.69

AT 0.920 0.528 0.000 9.65

M = 7 frequency samples

MM 1.041 1.467 0.000 9.59

MA 1.062 1.790 0.000 9.46

AT 1.045 1.394 0.000 9.55

analysis methods (Tables 5.1 to 5.3), an improvement of approximately 0.2 dB can

be observed for 5 and 3 part split VQ. Although the MM method with narrow

analysis windows is not as robust for speech affected by high-levels of noise, the

quality of speech is still comparable to the AM method.

The robustness of the MA and AT methods is not significantly affected for narrow

analysis windows, although a slight improvement can be seen. However it is noted

that quantisation of clean speech without noise for narrow analysis windows results

in a slightly lower quality speech.
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Table 5.21: SNR performance comparison for 3 part split VQ (18 bits/frame) with

varying analysis window lengths and babble noise in SNR (dB).

Estimation Noise M = 21 M = 7

method level SD (dB) SNR (dB) SD (dB) SNR (dB)

Set 0

MM 30 dB 2.812 9.14 2.988 9.28

20 dB 3.659 8.79 3.826 8.86

10 dB 4.939 7.38 5.090 7.31

0 dB 6.309 5.79 6.454 5.69

-10 dB 7.304 5.53 7.447 5.41

MA 30 dB 2.905 9.36 3.033 9.12

20 dB 3.754 8.94 3.876 8.74

10 dB 5.023 7.42 5.146 7.23

0 dB 6.384 5.74 6.519 5.60

-10 dB 7.370 5.44 7.497 5.37

AT 30 dB 2.743 9.46 2.972 9.21

20 dB 3.583 9.04 3.814 8.82

10 dB 4.844 7.53 5.073 7.33

0 dB 6.225 5.83 6.445 5.68

-10 dB 7.198 5.54 7.436 5.38

Set 1

MM 35 dB 2.614 9.06 2.779 9.17

30 dB 2.957 9.05 3.125 9.12

-10 dB 7.443 5.51 7.604 5.38

MA 35 dB 2.686 9.28 2.832 9.12

30 dB 3.029 9.27 3.172 9.02

-10 dB 7.516 5.41 7.650 5.33

AT 35 dB 2.522 9.37 2.793 9.09

30 dB 2.868 9.32 3.128 9.07

-10 dB 7.340 5.48 7.599 5.35
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Table 5.22: SNR performance comparison for 3 part split VQ (18 bits/frame) with

varying analysis window lengths and street noise in SNR (dB).

Estimation Noise M = 21 M = 7

method level SD (dB) SNR (dB) SD (dB) SNR (dB)

Set 0

MM 35 dB 2.901 9.19 3.056 9.31

30 dB 3.390 9.18 3.548 9.23

0 dB 8.254 3.14 8.258 3.10

-5 dB 8.822 2.28 8.746 2.23

-10 dB 9.166 1.87 9.055 1.85

MA 35 dB 3.028 9.44 3.110 9.15

30 dB 3.540 9.34 3.623 9.15

0 dB 8.285 3.08 8.287 3.05

-5 dB 8.761 2.23 8.758 2.21

-10 dB 9.054 1.85 9.044 1.83

AT 35 dB 2.888 9.53 3.055 9.23

30 dB 3.398 9.44 3.547 9.15

0 dB 8.236 3.14 8.230 3.07

-5 dB 8.745 2.25 8.695 2.22

-10 dB 9.057 1.86 8.979 1.84

Set 1

MM 35 dB 2.795 9.11 2.898 9.21

30 dB 3.198 9.07 3.309 9.17

-10 dB 8.336 1.88 8.177 1.85

MA 35 dB 2.869 9.31 2.948 9.10

30 dB 3.300 9.21 3.370 9.05

-10 dB 8.179 1.85 8.138 1.83

AT 35 dB 2.749 9.35 2.895 9.14

30 dB 3.175 9.33 3.311 9.05

-10 dB 8.209 1.86 8.105 1.85
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Table 5.23: SNR performance comparison for 3 part split VQ (21 bits/frame) with

varying analysis window lengths and babble noise in SNR (dB).

Estimation Noise M = 21 M = 7

method level SD (dB) SNR (dB) SD (dB) SNR (dB)

Set 0

MM 35 dB 2.259 9.40 2.411 9.54

30 dB 2.575 9.39 2.731 9.50

-5 dB 6.846 5.59 4.973 5.52

-10 dB 7.268 5.58 7.408 5.53

MA 35 dB 2.335 9.65 2.454 9.40

30 dB 2.648 9.61 2.768 9.43

-5 dB 6.908 5.53 7.033 5.48

-10 dB 7.345 5.52 7.460 5.47

AT 35 dB 2.195 9.74 2.414 9.53

30 dB 2.512 9.64 2.727 9.53

-5 dB 6.747 5.60 6.962 5.49

-10 dB 7.182 5.58 7.396 5.49

Set 1

MM 35 dB 2.375 9.30 2.524 9.45

30 dB 2.742 9.23 2.885 9.41

-5 dB 6.948 5.52 7.108 5.47

-10 dB 7.415 5.54 7.569 5.50

MA 35 dB 2.437 9.52 2.574 9.31

30 dB 2.805 9.53 2.933 9.28

-5 dB 7.040 5.52 7.171 5.41

-10 dB 7.498 5.51 7.621 5.44

AT 35 dB 2.293 9.55 2.522 9.43

30 dB 2.660 9.50 2.883 9.40

-5 dB 6.861 5.53 7.112 5.46

-10 dB 7.321 5.54 7.559 5.48
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Table 5.24: SNR performance comparison for 3 part split VQ (21 bits/frame) with

varying analysis window lengths and street noise in SNR (dB).

Estimation Noise M = 21 M = 7

method level SD (dB) SNR (dB) SD (dB) SNR (dB)

Set 0

MM 35 dB 2.683 9.45 2.814 9.55

30 dB 3.217 9.46 3.355 9.54

-5 dB 8.788 2.31 8.726 2.25

-10 dB 9.141 1.90 9.026 1.87

MA 35 dB 2.798 9.73 2.885 9.41

30 dB 3.359 9.65 3.430 9.37

-5 dB 8.737 2.25 8.718 2.24

-10 dB 9.034 1.87 9.010 1.86

AT 35 dB 2.682 9.75 2.818 9.55

30 dB 3.230 9.73 3.364 9.54

-5 dB 8.714 2.28 8.660 2.25

-10 dB 9.044 1.88 8.953 1.86

Set 1

MM 35 dB 2.588 9.27 2.673 9.42

30 dB 3.019 9.23 3.107 9.35

-5 dB 7.920 2.33 7.830 2.27

-10 dB 8.306 1.90 8.147 1.87

MA 35 dB 2.651 9.54 2.713 9.34

30 dB 3.107 9.47 3.168 9.20

-5 dB 7.844 2.27 7.794 2.25

-10 dB 8.152 1.87 8.099 1.85

AT 35 dB 2.551 9.55 2.663 9.45

30 dB 2.999 9.50 3.107 9.30

-5 dB 7.846 2.30 7.761 2.26

-10 dB 8.185 1.88 8.061 1.86



Chapter 6

Conclusions

6.1 Summary

This dissertation deals with robust LP analysis of speech in noisy environments.

Three robust LP analysis methods have been investigated for applications in low

bit-rate speech coding. A common approach in the design of the proposed methods

is undertaken. It manipulates the FFT-computed power spectrum of a signal in

order to remove the effect of noise in speech. This is achieved by allocating more

attention on the spectral peaks of the power spectrum, which are least affected by

the introduction of noise.

The three robust LP analysis methods, which are the moving maximum (MM),

moving average (MA) and average threshold (AT) methods, were investigated and

compared to the conventional autocorrelation and SEEVOC methods. These meth-

ods improve the robustness of the conventional methods when speech signals are

introduced into noisy environments. Also, they provide less quantisation distortion

for applications in speech coding.
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6.1.1 Observations on Robustness and Accuracy

The robust LP analysis methods were introduced and explained in Chapter 3.

The performances of its robustness and accuracy were further investigated in Sec-

tion 3.5. With an FFT-computed power spectrum length of 512 frequency samples,

the simulations were performed for varying analysis window lengths, from approx-

imately 50 to 1600 Hz (ranging from 3 to 101 frequency samples for an 8 kHz

speech signal), and the robust spectral analysis methods were applied on speech

with varying levels of real world noise.

It was shown for the MA method that the robustness is compensated by its accu-

racy. As the analysis window length was increased, a steady improvement in its

robustness was observed. Narrow analysis windows (between 3 and 10 frequency

samples) do not show much variation in its accuracy, however an increase of win-

dow length larger than 10 frequency samples would result in a linear decrease in

its accuracy.

The MM method shows a similar behaviour to the MA method. Its robustness

slightly improves as the MM analysis window length is increased. As with the

MA method, this method shows a much better rate of robustness as more noise

is introduced to the speech (Figures 3.10 and 3.12). Simulation on its accuracy

however shows a similar behaviour to the MA method. However, the decrease

rate of its accuracy (as the window length is increased) is much higher for shorter

window lengths (below 50 frequency samples) than for larger window lengths (as

shown in Figure 3.13).

The simulation for the AT method shows the effect of the variations in the analysis

window length and number of AT repetitions. As expected, robust and accuracy

simulations using a fixed number of AT repetition show an identical behaviour

pattern to that of the MA method. If a fixed analysis window length is used

and the AT repetition is increased (from 1 to 10 repetitions) then the robustness

would also increase for varying levels of noise. A narrow analysis window does not
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offer any significant alteration to the robustness or accuracy of the AT method for

varying numbers of AT repetition. However for wide analysis windows, increasing

the number of AT repetition improves its robustness and decreases its accuracy

(Figure 3.16).

Variation on length of the analysis window introduces a trade-off between the robust

method’s robustness and accuracy. For varying levels of noise, the robustness of

the AT method improves at an exponential rate as the number of AT repetition is

increased linearly. This is in accordance with the original design theory of the AT

method, where the vigour of a clean power spectrum is more feasible to maintain

with a higher number of AT repetition when noise is introduced.

Comparing the robust LP analysis methods to the conventional autocorrelation

and SEEVOC methods shows an improvement in its robustness for comparable

accuracy (as shown in Figures 3.20 and 3.21). For robust simulation in high levels

of noise, the AT method offers less SD, up to 3 dB lower, in comparison to the

conventional LP analysis methods. The AT method, followed by the MM and MA

methods, offer the most robust method of LP analysis when the speech signal is

affected by high levels of noise, whilst offering no degradation in its accuracy.

6.1.2 Quantisation Performance

The quantisation of the LP parameters was simulated using split VQ in Chapter 4.

A constant setting is selected for the robust LP analysis methods, where the analysis

window was set to 21 frequency samples and AT repetition set to 3. This provides a

good balance between maintaining the accuracy of the LPC spectrum and achieving

robustness when noise is introduced to the speech signal.

The quantisation performance was measured by determining the minimum MSE

between the test vector partition and the VQ codebook vector partitions. Quan-

tisation selection criterion via the calculation of the minimum SD between the
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complete test vector and the VQ codebook vectors results in a more accurate over-

all quantisation performance (less average SD). However as the improvement in

the average SD of approximately 0.01 dB is at a high cost of computational com-

plexity, thus quantisation is performed using the minimum MSE selection criterion

(Table 4.4).

In observing the quantisation performance, the robust methods have performed

well for applications in scalar and vector quantisation applications. The split VQ

method is applied for varying partitions and the robust method has outperformed

the conventional autocorrelation and SEEVOC methods of LP analysis in terms of

its SD. The AT method is shown to be the best method in terms of quantisation

followed by the MM and MA methods.

For split VQ using 2, 3 and 5 parts for a 10th order LP analysis, the AT method

improves the average SD by approximately 0.2 dB and significantly decreases the

percentage of the outlier frames (frames with SD ≥ 2 dB). By observing the quan-

tisation performance of the AT method in comparison to the conventional autocor-

relation method, equal level of average SD (including its outliers) may be achieved

with 2-3 less quantisation bits/frame.

6.1.3 Low Bit-rate Speech Coding Application

In Chapter 5, the robust LP analysis methods were applied to the CELP coder

in order to simulate the application of the robust methods in low bit-rate speech

coders. A selection of real world and Gaussian noises was added to the speech signal

to simulate the introduction of speech into noisy environments. Speech quality is

determined in a mathematical sense by calculating the segmental-SNR and in an

objective manner via listening directly to the speech.

The robust methods have been shown to produce less quantisation distortion in

comparison to the conventional methods. The methods achieve spectral trans-
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parency with less bits/frame than the conventional LP analysis methods. This

leads to the robust methods having a higher quality synthesised signal output.

Simulation of the MM method using narrow analysis window has been investigated

to provide a higher quality speech without significantly decreasing its robustness

in a noisy environment (Section 5.3). For high noise levels, where the background

noise is clearly evident in speech, the robust methods have been shown to outper-

form both the autocorrelation and SEEVOC methods in terms of speech quality.

Listening to the synthesised speech samples, for high-levels of noise and low bit-rate

of 18 bits/frame, there exists a difference in speech quality between the autocor-

relation method and the robust methods. Although this is not obvious for all

speech signals, speech synthesised using the robust methods are observed to be less

distorted, with the actual speech observed slightly more clearly over noise.

From the simulations detailed in this dissertation, the AT method can be seen to

provide the highest improvement in robustness for situations where speech is intro-

duced into a noisy environment, followed by the MM and MA methods. In addition,

the AT method achieves best performance in terms of quantisation. Experiments

show that all the proposed methods offer improvements in terms of robustness and

quantisation performance over the autocorrelation method of LP analysis. Less

distortion in speech is also observed when the robust methods are applied to the

CELP coder.

6.2 Future Work

In this dissertation, three robust LP analysis methods are proposed for analysing

speech in noisy environments. These methods are found to be very effective for low

bit-rate speech coding. The application of these robust methods on other areas of

speech processing, such as speech recognition and speaker verification, should also
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be investigated, as they would benefit from these methods.

Most speech coding research in noisy conditions focuses on either the enhancement

of speech, detection of pauses in speech, or noise cancellation. Future work may be

concentrated in combining these robust LP analysis methods with other methods

that are aimed to improve the robustness of speech coding systems, such as the

denoising of speech using wavelets, spectral subtraction, Wiener filtering, etc.
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