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Abstract 
 
 
 
In this dissertation a number of novel algorithms for dimension reduction and statistical 

pattern recognition for both supervised and unsupervised learning tasks have been 

presented. Several existing pattern classifiers and dimension reduction algorithms are 

studied. Their limitations and/or weaknesses are considered and accordingly improved 

techniques are given which overcome several of their shortcomings. In particular, the 

following research works are carried out: 

 

• Literature survey of basic techniques for pattern classification like Gaussian 

mixture model (GMM), expectation-maximization (EM) algorithm, minimum 

distance classifier (MDC), vector quantization (VQ), nearest neighbour (NN) and 

k-nearest neighbour (kNN) are conducted. 

• Survey of basic dimensional reduction tools viz. principal component analysis 

(PCA) and linear discriminant analysis (LDA) are conducted. These techniques 

are also considered for pattern classification purposes. 

• Development of Fast PCA technique which finds the desired number of leading 

eigenvectors with much less computational cost and requires extremely low 

processing time as compared to the basic PCA model. 

• Development of gradient LDA technique which solves the small sample size 

problem as was not possible by basic LDA technique. 

• The rotational LDA technique is developed which efficiently reduces the 

overlapping of samples between the classes to a large extent as compared to the 

basic LDA technique. 

• A combined classifier using MDC, class-dependent PCA and LDA is designed 

which improves the performance of the classifier which was not possible by using 

single classifiers. The application of PCA prior to LDA is conducted in such a 

way that it avoids small sample size problem (if present). 
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• The splitting technique initialization is introduced in the local PCA technique. 

The proposed integration enables easier data processing and more accurate 

representation of multivariate data. 

• A combined technique using VQ and vector quantized principal component 

analysis (VQPCA) is presented which provides significant improvement in the 

classifier performance (in terms of accuracy) at very low storage and processing 

time requirements compared to individual and several other classifiers. 

• Survey on unsupervised learning task like independent component analysis (ICA) 

is conducted. 

• A new perspective of subspace ICA (generalized ICA, where all the components 

need not be independent) is introduced by developing vector kurtosis (an 

extension of kurtosis) function. 
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Chapter 1 
 

1   Introduction 
 

Humans naturally recognize or classify given objects in their environment. This tendency 

of recognition or classification is due to some adaptation process in human brain which is 

a gift of nature to the mankind. We take this adaptation process for granted until we come 

to feed a machine for the same purpose. A five year old kid can efficiently recognize 

several objects given to him/her. For the same recognition purpose, even a powerful 

computer may struggle to give decisions or perform some actions accordingly. This is 

how we can appreciate the power of human brain which performs several thousand 

processes in a blink of eye which could be difficult for sophisticated computers or 

automated systems. Though the performance of machines is still lacking as compared to 

the human brain, it has several emerging applications in speech recognition, face 

recognition, forensic science (e.g. fingerprint recognition), banking, multimedia 

communication, bioinformatics and so on. 

 

Pattern classification plays a major role in everyday life. The evolving computational 

demand makes this field very challenging and thus open for research. When several 

multidimensional feature vectors are involved with scarce number, it makes the 

implementation of the pattern classifier quite impossible. This limitation is usually 

referred as the curse of dimensionality. Efforts are undergoing to reduce the complexity 

in an efficient manner and at the same time achieve sufficient level of classification 

accuracy. 

 

Pattern classification can be subdivided into two main categories, namely, supervised 

learning and unsupervised learning. In supervised learning task the state of the nature of 

feature vectors are known, which are used to find class models or parameters. These class 

models (or measured parameters) are stored for the later use in the classification phase for 

characterization of test features or patterns. Whereas, in unsupervised learning the state of 
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the nature is not known and learning is done by some similarity measurement. Here no 

training data (known or labelled feature vectors) is given.  

 

The framework of canonical pattern recognizer system (considering the supervised 

learning case) is illustrated in figure 1.1. The aim of the pattern recognizer is to classify 

an input data as one of the c classes (in a c-class problem). This is done in two steps: a 

feature extraction step and a pattern classification step. In the feature extraction step, the 

input signal (or data) is analysed and feature vectors are measured where each feature 

vector has d attributes or dimensions. The d-dimensional feature vector x is processed by 

parameter measurement block which produced at its output a parameter T. This parameter 

could be a type of vector, matrix, some transformation, or a combination of all. The type 

of output depends upon the type of pattern classifier used. The measured parameter or 

class model T is stored for the later use for the classification phase. In the classification 

phase again the raw data or signal is processed through a feature extractor block and 

provides a test pattern or feature vector at its output of dimension  d. This test vector x is 

processed by a distance measurement block where the stored class models are utilized to 

compute distances (or probabilities/likelihood)δ . The measured distanceδ is then 

processed by the comparison block which uses minimization/maximization criterion 

(which depends on the classifier used) for associating a class label to the test pattern x. 

The class that satisfies the extremum criterion for x is considered to be the recognized 

class. 

 
 

Figure 1.1: Framework of canonical pattern recognition system 

Feature 
Extractor 

Distance or  
Parameter 

Measurement
Comparison 

    x 
feature
vector 

  δ or T 
distance or
parameter

Recognized 
class 

Class models (measured 
parameter T during training 
session) 

raw 
data 

Pattern Classifier 
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1.1 Organization of Thesis 
 

In this dissertation the pattern classifier section of the recognition system has been 

investigated in detail. Several machine learning corpuses (with previously extracted 

features) and state-of-the-art feature extractors are incorporated in the study. The 

dissertation concentrates more on the supervised learning task, however, some 

unsupervised learning tasks like independent component analysis (ICA) have also been 

explored. The pattern classification methods of several pattern classifiers are analysed 

and their constraints/limitations, weaknesses and strengths have been discussed. The 

novel algorithms are developed with improved performances as compared to the existing 

techniques. Particularly, the following things have been presented in the respective 

sections: 

 

Chapter 2: This section reviews Gaussian mixture model (GMM) for pattern 

classification. A description of pattern classification is given for supervised learning 

tasks. Then expectation-maximization (EM) algorithm is briefly presented. Some of the 

weaknesses of GMM are also discussed. Then the basic linear classifiers namely 

minimum distance classifier (MDC), vector quantization (VQ), nearest neighbour (NN) 

and k-nearest neighbour (kNN) are discussed. Their training and classification phases are 

illustrated to understand the functionality of the techniques. Furthermore, two basic 

dimension reduction and/or pattern classification techniques namely principal component 

analysis (PCA) and linear discriminant analysis (LDA) are discussed. Their 

characteristics including drawbacks are briefly illustrated. 

 

Chapter 3: The basic PCA (eigenvalue decomposition based PCA) method is very time 

consuming when dealing with high dimensional feature vectors. This restricts the 

practical applications of such technique. In this section an efficient method of computing 

principal component analysis (PCA) is presented that overcomes the drawbacks of basic 

PCA method. The algorithm finds the desired number of leading eigenvectors with a 

computational cost that is much less than that of the eigenvalue decomposition (EVD) 

based PCA method. The mean squared error generated by the proposed method is very 
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similar to the EVD based PCA method. This ensures that there is negligible compromise 

in the quality or resolution of compressed data when compared to the basic PCA method.  

Chapter 4: This section presents a novel technique that overcomes the drawbacks 

introduced by the conventional linear discriminant analysis (LDA) technique. The LDA 

technique utilizes eigenvalue decomposition (EVD) method which is adversely affected 

by the small sample size problem. The presented technique is capable in finding the 

discriminative features especially for small sample size problem. The technique is based 

on gradient descent algorithm but does not require any learning rate parameter. It also 

avoids discarding the null space of within-class scatter matrix and between-class scatter 

matrix which may have discriminative information useful for classification. 

 

Chapter 5: This chapter presents a rotational transform which rotates the individual 

classes in the original feature space in such a way that the overlapping between the 

classes in the reduced feature space is further minimized, which is not possible by LDA 

technique. As a result the classification performance significantly improves which is 

demonstrated using several corpuses. 

 

Chapter 6: This section presents a technique based on the combination of minimum 

distance classifier (MDC), class-dependent principal component analysis (PCA) and 

linear discriminant analysis (LDA) which gives improved performance as compared to 

other standard techniques when experimented on several machine learning corpuses.  

 

Chapter 7: This section explores a technique that can be easily integrated in the local 

PCA design and is efficient even when the given statistical distribution is unknown. The 

initialization using this proposed splitting technique not only splits and reproduces the 

mean vector but also splits the orientation of components in the subspace domain. This 

would ensure that all clusters are used in the design. The proposed integration with the 

reconstruction distance local PCA design enables easier data processing and more 

accurate representation of multivariate data. A comparative approach is undertaken to 

demonstrate the greater effectiveness of the proposed approach in terms of percentage 

accuracy. 
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Chapter 8: This section presents a technique that is a combination of Vector Quantization 

(VQ) and vector quantized principal component analysis (VQPCA) techniques. The 

propose linear combined distance (LCD) technique is effective and outperforms all the 

presented techniques in this section in terms of getting high classification accuracy at 

very low data storage requirement and processing time. This would allow an object to be 

accurately classified as quickly as possible using very low data storage capacity. 

 

Chapter 9: This section describes unsupervised learning technique namely independent 

component analysis (ICA) in solving blind source separation problems. Its basic theories 

and concepts are discussed. 

 

Chapter 10: This section presents a new perspective of subspace independent component 

analysis (ICA). The notion of a function of cumulants (kurtosis) is generalized to vector 

kurtosis. This vector kurtosis is utilized in the subspace ICA algorithm to estimate 

subspace independent components. One of the main advantages of the presented 

approach is its computational simplicity. The experiments have shown promising results 

in estimating subspace independent components. 

 

The work presented in this dissertation resulted in several research articles (Sharma and 

Paliwal, 2006, 2006b, 2006c, 2006d, 2000e, 2000f; Sharma et al., 2005, 2006, 2006b; 

Sharma, 2004, 2005). The following are the summarised academic outcomes: 
 

 

1.2 Major and Original Contributions of this Thesis 
 

Several original contributions have resulted from the research reported in this thesis. 

These contributions can be summarized as follows: 

 

1. A Fast-PCA based method is proposed which computes the desired leading 

eigenvectors with a significantly much less computational cost than the 
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traditional PCA technique. The performance degradation by Fast-PCA is 

negligible. 

2. A gradient-LDA based method has been proposed that overcomes the 

singularity problem of the conventional LDA when the training data is scarce. 

This method does not discard the null space of within-class scatter matrix and 

between-class scatter matrix which may have discriminative information useful 

for classification. 

3. A new concept of rotational transform in LDA is proposed which rotates the 

individual classes in the original feature space in such a way that the 

overlapping between the neighbouring classes can be minimized. The 

experimentation shows promising outcomes. This further reduction of 

overlapping of samples is not possible in the conventional LDA technique. 

4. A unified framework of MDC, class-dependent PCA and LDA is proposed. The 

combined technique shows encouraging classification results when compared 

with several state-of-the-art techniques. 

5. An extension of VQPCA technique is proposed. It not only splits and 

reproduces the mean vector but also splits the orientation of components in the 

subspace domain. The proposed technique enables easier data processing and 

more accurate representation of multivariate data. 

6. A combined technique using VQ and VQPCA has been proposed.  The 

proposed technique (called LCD) is effective and outperforms all the presented 

techniques in chapter 8 in terms of getting high classification accuracy at very 

low data storage requirement and processing time. This would allow an object 

to be accurately classified as quickly as possible using very low data storage 

capacity. 

7. A new perspective of subspace independent component analysis (ICA) is 

proposed. The notion of a function of cumulants (kurtosis) is generalized to 

vector kurtosis. This vector kurtosis is utilized in the subspace ICA algorithm to 

estimate subspace independent components. One of the main advantages of the 

presented approach is its computational simplicity. The experiments have 

shown promising results in estimating subspace independent components. 
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Chapter 2 

 

Gaussian Mixture Models, Basic Linear Models and 

Global Models for Pattern Classification and/or 

Compression 
 

2.1   Abstract 
 

In this chapter we first review Gaussian mixture model (GMM) for pattern classification. 

The model is discussed for supervised classification tasks. Then expectation-

maximization (EM) algorithm is briefly presented. Some weaknesses of GMM are also 

discussed. Next we present a survey on some of the basic linear models which are used in 

pattern classification and/or data compression. The models discussed are minimum 

distance classifier (MDC), vector quantization (VQ), nearest neighbour (NN) and k-

nearest neighbour (kNN). Furthermore, two most commonly used techniques in 

dimension reduction and/or pattern classification namely principal component analysis 

(PCA) and linear discriminant analysis (LDA) are illustrated. Their characteristics 

including drawbacks are briefly discussed. The purpose of this chapter is to give an 

understanding of the functionalities of some of the basic classifiers. 

 

 

2.2   Introduction 
 

The pattern classification task can be subdivided into two main categories namely 

supervised learning and unsupervised learning. In supervised learning a known set of 

feature vectors or data is given which is used to train the classifier. Training a classifier 

means to find some informative parameters that characterize a given set of features in 

some meaningful manner or sense. Thereafter, these parameters are used in finding 
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information about unknown test feature vectors. Whereas in unsupervised learning no 

such known feature vectors are given. 

 

Thus a supervised learning can be subdivided into a training phase and a classification 

phase or testing phase. In this chapter we firstly present Gaussian mixture model (GMM) 

for pattern classification and discuss some of its properties including its weaknesses. 

Then expectation-maximization (EM) algorithm is also discussed. EM algorithm can be 

used to estimate parameters in cases where not all the information about the feature 

vectors is given. 

 

Next we looked at the four basic types of classifiers namely minimum distance classifier 

(MDC), vector quantization (VQ), nearest neighbour (NN) and k-nearest neighbour 

(kNN). MDC is the most simple and inexpensive classifier among them. It is single 

prototype classifier i.e. it provides only one parameter (vector or scalar) for each of the 

presented class. The natural generalization of MDC is VQ where each class is represented 

by multiple prototypes. In the NN classifier all the trained dataset is considered to be the 

prototypes or parameters, which will be used during the classification phase. The class 

labelling of a feature vector x is associated with the class label of the nearest parameter 

(usually Euclidean distance measure is used). The extension of NN is kNN where feature 

vector x is associated to the class label of the k-nearest parameters. 

 

Furthermore, we considered some dimensionality reduction techniques. Dimension 

reduction is an important aspect in several applications like image recognition, data 

transmission etc. The features that are very difficult to handle in high dimensional space 

are reduced (usually) to a more manageable lower dimensional space. Principal 

component analysis (PCA) and linear discriminant analysis (LDA) are perhaps the most 

commonly used techniques in dimension reduction. These techniques are also used in 

pattern classification and/or recognition. The purpose of PCA is to give a lower 

dimensional feature space that best represents the original features. On the other hand, the 

purpose of LDA is to give a lower dimensional feature space that best discriminate the 

classes. The discriminative power of LDA makes it popular in pattern classification 
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applications. Both the techniques give global linear transforms. 

 

This chapter is subdivided into three main section namely A) Gaussian mixture models 

for pattern classification B) basic linear models for classification and compression, and 

C) global models for dimensionality reduction and pattern classification. These sections 

are illustrated consecutively as follows: 

 

 

A)   Gaussian Mixture Models for Pattern Classification 
 

In this section we elaborate basic theories and concepts of Gaussian mixture model for 

pattern classification purposes. 

 

2.3   Pattern Recognition and Bayesian Decision Theorem 
 

This section presents Bayesian decision theory to the problem of pattern recognition or 

classification in supervised learning tasks. We discussed the class labelling or allocation 

of the membership of an unlabelled feature vector to one of the classes or categories 

previously trained. The supervised classification procedure can be subdivided into two 

main phases namely the training phase and the testing or classification phase. In the 

training phase the classifier is made to learn by known categories of patterns or feature 

vectors and in the classification phase unknown feature vectors which were not part of 

the training dataset are assigned class label of the nearest category of trained feature 

vectors. For example, one typical classification problem could be in the following form.  

 

‘Given an observation of fruits, you are asked to identify which fruit is it? apple or 

mango.’  

 

Humans can very easily answer such a question by watching the fruits. Now let us say the 

classification process is carried out in a closed room and the observer is not able to see 

the fruits. In this case one can only guess based on some a priori knowledge of the fruits. 
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Imagine that the existence of apple is higher than mango in the nature. Then the answer 

will be biased towards apples.  

 

To give a mathematical representation for the above problem, let us denote two classes 

appleC =1 and mangoC =2 ; and suppose a priori probabilities are of these classes 

are )( 1CP and )( 2CP respectively. If the decision has been made purely based on a priori 

probability where )()( 21 CPCP > then the selected class will be 1C . 

 

To further extend our discussion, let us assume some measurement x which represents 

some characteristic of a given class (e.g. x is weight of fruits). Now we slightly modify 

the question as: 

 

‘Some measurement x is given, investigate the likelihood of x corresponding to the given 

classes 1C and 2C .’ 

Intuitively this will generate two probabilities defined as follows: 

 

a) )|( 1Cxp   probability of x given class 1C  (weight of apple) 

b) )|( 2Cxp  probability of x given class 2C  (weight of mango) 

 

These probabilities are known as class conditional probability density function or in short 

pdf. The pdf for two classes are depicted in figure 2.1, where apple is uni-model and 

mango is bi-model i.e. a class having two varieties of mangoes. After solving the a priori 

probability and pdf the probability theorem can be yielded as follows. 
 

2.3.1   Probability Theorem 
 

Given the observation x, what is the probability that the observed event was due to class 

jC  ( 21,=j )? In other words, we seek the conditional probability )|( xCP j . These 

probabilities are frequently called a posteriori probability. 
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Figure 2.1: Probability density function of two-class model 

 

 

The decision of class selection will be based on a posteriori probability. The following 

Bayes rule will help us to evaluate the a posteriori probability: 
 

)(
)()|(

)|(
xp

CPCxp
xCP jj

j =        2.1 

 

where )(xp is the probability of occurrence of x and can be expressed as: 

 

∑=
jall

jj CPCxpxp
 

)()|()(        2.2 

 

It can be observed from equation 2.1 that if )|()|( xCPxCP 21 > then x belongs to 1C or 

else to 2C . In other words, one can maximize the a posteriori probability which will give 

the best or optimal recognition performance. The following theorem elaborates optimality 

criteria. 
 

2.3.2   Optimality Theorem 
 

Given an observation x, maximizing a posteriori probability )|( xCP j will lead to optimal 
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recognition performance. 

 

Now let us generalize the problem for K classes and define the following terms: 

 

Class set or state of nature },...,:{ KjCS j 21== and d-component (dimension) feature 

vector also known as pattern T
21 ),...,,(x dxxx= .  

 

The membership of unlabelled feature vector x to one of the K classes can be found by 

using optimality theorem as follows: 

 

 x)|(maxarg
,...,, jKj

CPk
21=

=        2.3 

 

where k is the argument for which )|( xCP j  is maximum. Equation 2.3 can be simplified 

by using Bayes rule (equation 2.1), i.e. 

 

 
(x)

)()|(x
maxarg

,...,, p
CPCp

k jj

Kj 21=
=       2.4 

    )()|(xmaxarg
,...,, jjKj

CPCp
21=

=       2.5 

 

since (x)p does not depend on the variable j it can be removed. If all the classes are 

equally likely (i.e. KCP j /)( 1= ) then equation 2.5 turns to be 

 

 )|(xmaxarg
,...,, jKj

Cpk
21=

=        2.6 

 

Equation 2.5 is the criteria function for maximum likelihood decision. 

 

The first step in a classifier design is the training phase or encoding session, where the 

classifier is trained with respect to its models. In this respect, two problems can be 

addressed: 
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(i) How to find a priori probability )( jCP ? 

(ii) How to find pdf )|(x jCp ? 

 

The first problem of finding )( jCP can be solved by collecting all the objects available to 

the classifier, and for the second problem, )|(x jCp can be computed using ‘histograms’. 

The pdf computation based on histograms is generally referred as non-parametric method. 

Whereas, the pdf computation based on some known distribution (e.g. Gaussian) is 

known as parametric method. The next section deals with Gaussian mixture model 

(GMM) for a classifier design.  

 

 

2.4   Gaussian Mixture Models 
 

The parametric form of Gaussian models is a function of mean and covariance of input 

feature vectors x. The parametric form can be denoted as: 

 

 Σ)µ,|(x)|(x NCp j =         2.7 

 

where the operator )(•N is the distribution;µ andΣ are mean and covariance of the 

observed feature vectors respectively. For scalar patterns, covariance in equation 2.7 

becomes variance and is represented (usually) by 2σ . 

 

Suppose we have a given d-dimensional training data },...,:{x Mii 21==ξ  and we model 

the distribution by Gaussian model then equation 2.7 will be: 

 

 µ)](xΣµ)(xexp[
||)(

)|(x // −−−
Σ

= −1T
2
1

2122
1

dp
π

λ     2.8 
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where ξ∈x and model parameter λ represents mean and covariance i.e. Σ}{µ ,=λ . The 

next thing is to train the data. 
 

2.4.1   Training Problem  
 

Given a training dataξ , how to compute the parameters µ andΣ . 

 

Assuming the feature vectors of the training datasetξ are independent then equation 2.8 

can be written as: 

 

 )|(x)...|(x)|(x)|( λλλλξ Mpppp 21=       2.9 

 

Taking log both the sides of equation 2.9 which gives likelihood ofξ : 

 

 ∑
=

=
M

i
ipp

1
)|(x)|(log λλξ        2.10 

 

By substituting equation 2.8 in equation 2.10 we have: 

 

∑
=

− −−−−−=
M

i
ii

dp
1

1T
2
1

2
1

2 2 µ)](xΣµ)(x|Σ|loglog[)|(log πλξ   2.11 

 

We then use equation 2.11 to determine the model that provides maximum likelihood i.e. 

 

 0=∇ )|(log λξλ p         2.12 

 

where λ∇ is the gradient (derivative) of likelihood with respect to the model Σ}{µ ,=λ .  

 

Assuming Σ is invariant with respect toµ , then equation 2.11 and 2.12 can be solved as 

follows: 
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               ∑
=

=
M

i
iM

1

1 xµ        2.14 

 

For Σ , assume µ is invariant wrt Σ , then: 

 Let 1−= ΣA  

 02
1

T
2
1

2
1

2∑
=

Σ =−−−+−=∇
M

i
ii

d AAp µ)](xµ)(x||loglog[)|(log πλξ  

 0
1

T
2
11

2
1∑

=

− =−−−=∇
M

i
iiA Ap ]µ)µ)(x(x[)|(log λξ        2.15 2 

              
[ ]

∑

∑

=

=

−−−=

=−−−=

M

i
ii

M

i
ii

M
1

T

1

T 0

µ)µ)(x(xΣ

µ)µ)(x(xΣ
 

          ∑
=

−−=
M

i
iiM

1

T1 µ)µ)(x(xΣ       2.16 

 

Equations 2.14 and 2.16 will give maximum likelihood of the model. GMM can be used 

to estimate parameters where not all the information of parameters is present (Bilmes, 

1997; Dempster et. al., 1977; Ghahramani, 1994; Ghaharamani and Jordan 1994; 

Ormoneit and Tresp, 1995).  

                                                 
1 For derivation the gradient matrix property AbAbbb 2T =∇ )( is used, where b is a vector and A is a 
matrix. 
2 The gradient matrix properties TT bbAbbA =∇ )( and 1−=∇ AAAA |||| are used. 
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2.5   Expectation Maximization (EM) Algorithm 
 

In case not all the information is given then EM algorithm could be used to estimate the 

remaining parameters. It has two steps. First step is the E-step where expected value of 

the parameters based on the observed data is found. Second step is the M-step where 

maximum likelihood from the observed parameters is found. This is an iterative 

procedure and both the E and M steps are repeated until the convergence is obtained. To 

illustrate EM-algorithm assume X is the observed data and s is the missing data, then the 

algorithm can be defined as: 

 

i) E-Step  

],|)|,([log)|( )()( kk spEQ λλλλ XX=     2.17 

where Q is an auxiliary function and )(kλ is an initial estimate. 

 

ii) M-Step 

Maximizing the auxiliary function 

)|(maxarg )()( kk Q λλλ
λ

=+1      2.18 

 

Maximizing the auxiliary function will maximize the likelihood. Let the predefined 

threshold for convergence beε and initial model parameter be 0λ  then procedure of EM 

algorithm is illustrated in table 2.1. 

  

TABLE 2.1: The Expectation-Maximization Algorithm 

1.   initialize 00 ←k,,ελ  
2.    do 1+← kk  
3.      E-step: compute )|( )(kQ λλ  
4.      M-step: )|(maxarg )()( kk Q λλλ

λ
←+1  

5. until ελλλλ ≤− −+ )|()|( )()()()( 11 kkkk QQ  
6.   return )(ˆ 1+← kλλ  
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2.6   Drawbacks of GMM 
 

1) Robust estimation by this approach is difficult if very little training data is 

presented. 

2) The parameters estimation from GMM through EM algorithm has a disadvantage 

that it could end the iterative process at a local optimum value; therefore the 

initial setting is very important. 

3) GMM method is computationally expensive. 

4) As for the speech, GMM does not take into account the acoustic diversity of 

different phonetic events encountered during recognition (Park and Hazen, 2003). 

5) The identification accuracy drops considerably when presented with noisy speech 

(Park and Hazen, 2003). 

6) In GMM, acoustic features are converted from a source speaker to a target 

speaker by minimizing mean square error. Its drawback is that the converted 

features are overly smooth and this makes the reconstructed speech unclear (Chen 

et. al., 2003). 

 

 

B)   Basic Linear Models for Classification and Compression 
 

In this section we illustrate some of the basic linear classifiers used for classification 

and/or compression purposes. 

 

2.7   Conventional Classifiers 
 

This section briefly describes the four types of classifiers namely Vector Quantization 

(VQ), Minimum Distance Classifier (MDC), Nearest Neighbour (NN) and k-Nearest 

Neighbour (kNN). In all the discussions ωi denotes the state of nature or class label of ith 

class in a c-class problem, χ denotes the set of n train samples, },...,,:{ cii 21==Ω ω be 

the finite set of c states of nature and let θ ′be the class label of train pattern or prototype 



 19

such that Ω∈′θ .The set χ can be separated by class into c subsets  χ1, χ2,…, χc with the 

samples in χi belonging to ωi: 

 
χ },...,,{ nxxx 21=  where ∈jx Rd (d-dimensional hyperplane)  

χ
i⊂ χ  and  χ1∪ χ2∪…∪ χc = χ  

 

Let ni denote the number of samples in the subset χi, therefore nn
c

i
i =∑

=1
. Figure 2.2 

illustrates the class labelling of a test pattern and the relationship between the label of 

prototype )(θ ′ and the label of class )(ω . The prototype could be a train pattern, a centroid, 

a transform depending upon the type of classifier is used. In figure 2.2 two-class problem 

is considered where each class consists of 3 prototypes. Each of the class is assigned a 

unique label namely pω and qω such that Ω∈),( qp ωω . The class labels of the prototypes 

are kji θθθ ′′′ ,, and nml θθθ ′′′ ,, such that: 

 

   kjip θθθω ′=′=′=  and 

   nmlq θθθω ′=′=′=  

 

The class label of prototype is assigned to a test pattern x which is the closest to the 

prototype based on some distance measurements or conditional probabilities. Therefore if 

(x)L  denotes the class label of a test pattern x then from the figure qlL ωθ =′=(x) . 

 

Figure 2.2: Class labelling of a test pattern in a two-class problem 
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2.8   Vector Quantization 
 

Vector Quantization is a conventional technique for data compression (Gray, 1984) and 

also applied in pattern classification/recognition applications. For compression, a set of 

continuous or discrete vectors is transformed into a stream of low rate digital sequence 

suitable for communication or storage via digital link. A vector quantizer estimates a 

feature vector extracted from audio, video or any statistical data by one of the encoded set 

of centroid vector of a disjoint region known as codewords or reference vectors of the 

quantizer. The set of codewords is known as codebook of the system. A distortion 

measure is associated with each of the vector quantizer. The most common distortion 

measures used are Euclidean distance, Holder norm, Minkowski norm, weighted-square 

distortion and general quadratic distortion (Linde et. al., 1980). The other distortion 

measure which arises in speech compression system has a hybrid form of distance 

measure, consisting of a positive semi-definite symmetric matrix (Itakura and Saito, 

1986; Chaffee, 1975). 

 

A VQ technique is applied in several areas of pattern compression and recognition, which 

include speech coding or speech compression (Makhoul et. al., 1985), in speaker 

recognition (Soong et. al., 1987) and in image coding or image compression (Akansu and 

Kadur, 1990; Antonini et. al., 1991; Aravind and Gersho 1986; Barba and Hanen, 1993; 

Cosman et. al., 1996). In pattern recognition/classification the VQ technique partition 

each class into several disjoint regions where these regions are estimated by its own 

centroids.  

 

An iterate process for updating codewords of VQ is called generalized Lloyd (Gersho and 

Gray, 1992) algorithm also known as LBG algorithm after Linde, Buzo and Gray who 

presented an illustrative design of vector quantizer (1980). VQ technique can also be 

referred as local classifiers since they partition each class into several local regions and 

estimate each region by a prototype. The aim of VQ is to find the codebook that 

minimizes the expected distortion between feature vector x and the centroid of the 

disjoint region.  
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To explain a LBG algorithm for compression purpose (assuming one class only), suppose 

a d-dimensional ( dR ) set of n feature vectors χ is given, where VQ performs lossy data 

compression by mapping a vector set χ into N centroid or codewords 

( },...,,:{µ NjA j 21== ) which is the best estimate of their corresponding disjoint 

regions or Voronoi regions }...,,:{ NjCS j 21== , for nN < . For N level quantizer, the 

quantity dNR /)(log 2=  is defined as a rate of the quantizer in bits per sample. Here the 

distortion measure )µ(x, jd is a d-dimensional Euclidean distance between the feature 

vector x and the centroid jµ . The performance of VQ is the measure of minimum 

expected distortion of feature vector x and the centroid of a disjoint region 

 

   )]µ(x,min[
,... jNj

dED
1=

=       2.19 

 

The operator ][•E of equation 2.19 represents expectation with respect to x. By 

considering all the mentioned terms above, the LBG algorithm3 can be yielded as 

follows: 
 

 

2.8.1   LBG Algorithm 
 

Step 0. Choose the desired level N. Define threshold error 0>ε , initial average distortion 

∞→1D and initial centroid ∑=
x
xµ

 
1

1
alln

. Set the variable level 1←M  and 1=j . 

Step 1. Split reproductive vectors as ]µ,[µµ εε −+= jjj . Update level MM 2← . 

Step 2. Compute distortion 2 ||µx||)µ(x, jjd −=  for Mj ,...,,21=  and obtain minimum 

distance )]µ(x,[min
,...,,min jMj

d
21=

=δ . Find all feature vectors kC∈x  for ]arg[ minδ=k . With 

                                                 
3 Three methods for designing a quantizer are described in the classic paper by Linde et. al. (1980), namely 
(i) quantizer algorithm for known distribution, (ii) quantizer algorithm for unknown distribution by 
defining initial codebook, and (iii) quantizer algorithm using splitting technique. In this report only method 
(iii) is considered for implementation. 
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the obtained new regions update centroid ∑
∈

=
jCj

j n x
xµ 1  where jn denotes number of 

feature vectors in the Voronoi region jC . Iterate this process until ε≤−− fff DDD /)( 1  

where fD is from equation 2.19 and f is some iterative number. Follow next step with the 

improved reproductive vectors }{ jA µ= . 

Step 3. Iterate step 1 and step 2 until M equalizes the value of N. 

 

It can be observed that the distortion fD  reduces along with the number of iterations and 

converges to some finite value after which the difference between the two successive 

fD is very small. The iterative process is conducted for the entire set of training vectors 

and could be very time consuming if the training feature vectors are very large.  

 

Note the above sequence is given only to train the quantizer. Once the optimum 

codewords or quantized levels }{ jA µ=  are obtained, any vector outside the training set 

x with optimum nearest-neighbour rule is applied for the estimation. 

  

Figure 2.3 depicts LBG algorithm on a small dataset of 12 vectors in a 2-dimensional 

space (represented as ‘o’ mark in the figure). Firstly, the centre of dataset 0µ is computed, 

and an initial distortion is defined. The centroid ( 0µ ) is perturbed by a small predefined 

quantity ε  to give a reasonable variation. This will generate two levels by partitioning 

the given space using distance measure )µ(x, jd . The process of partitioning and finding 

optimum reproductive vectors are carried out iteratively until the desired level (4 in this 

case) with acceptable distortion is achieved. The dotted lines in figure 2.3 show the 

approximate boundaries of the obtained regions and the centroid of each region is 

denoted by 4321  and µµ,µ,µ . 

 

Unlike the uniform or linear quantizers (Proakis and Manolakis, 1996), vector quantizers 

can also produce non-uniform quantizer step size, depending upon the statistical 

distribution of input data. Figure 2.4 illustrates a reconstruction of speech signal by VQ at 
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3bit/sample. Figure 2.4a is the original input signal and figure 2.4b is the reconstructed or 

decoded signal. It can be observed that VQ produces non-uniform quantization step i.e. 

the difference between any two successive levels need not to be equal 

( |||| 3221 LLLL −≠− ). 
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  Figure 2.3: Two-dimensional space partition 
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Figure 2.4: Reconstructed speech signal using the VQ technique. 

 

 

VQ is also employed in pattern recognition/classification applications where each class is 

estimated by several prototypes. The training procedure for classification is similar to 

compression procedure. The VQ technique here is applied separately for each of the class 



 24

for partitioning the class into disjoint regions. In the testing or classification phase the 

unlabelled feature vector x is associated to the class label of the closest centroid of the 

trained dataset. 

 

2.8.2   Drawbacks of Conventional VQ Algorithms 
 

The following describes drawbacks associated with the classic VQ algorithm: 

i) For high dimensional vectors, the computational complexity of searching for the 

codewords increases exponentially and this severely augments the processing 

time. 

ii) The performance of VQ algorithm is strongly dependent on the choice of the 

initial conditions and the configuration parameters. 

iii) In some cases, codewords could be left alone having no samples associated to 

them, since some of the codewords are nearer to the other cell. 

 

Several extensions have been developed to minimize the drawbacks associated with VQ 

algorithms. For the problems related to (i) stochastic algorithms (Ahalt et. al., 1990) are 

proposed that can be faster than conventional VQ algorithms. A fast search algorithm 

under the assumption that the distortion is measured by the Euclidean distance is 

presented by Lee and Chen (1995). The solution to problems related with (ii) and (iii) 

have been also developed (Karayiannis, 1997; Fritzke 1997; Hofmann and Buhmann 

1997; Patané and Russo, 2001). 

 

 

2.9   Minimum Distance Classifier 
 

MDC is a special case of VQ where each class χi is represented by single prototype, 

which is usually the centroid of the class in the feature space. The goal of MDC is to 

correctly label as many patterns as possible. It provides minimal total parameter 

requirement and computational demand. The MDC method finds centroid of classes and 

measures distances between these centroids and the test pattern. In this method, the test 



 25

pattern belongs to that class whose centroid is the closest distance to the test pattern. 

MDC is used in many pattern classification applications (Di Maio and Marciano, 2003; 

Paclik and Duin, 2003; Sahin, 2000; Datta and Kibler, 1997; Griguolo, 1994) including 

disease diagnostics (Lewenstein and Chojnacki, 2004), classification of digit 

mamographic images (Lambrou et al., 2002) and optical media inspection (Toth et al., 

2002). The training and classification procedures of MDC classifier can be briefly 

illustrated as follows: 

 

Training 

Step1. Find and store centroid jµ for each of the c class:  

∑
∈

=
j

j
x

nj
χ

xµ 1  for cj ,...,,21=  

 

Classification 

Step1. For a test pattern x find the Euclidean distance from x to the centroid jµ : 

  ||µx|| jj −= δ  for cj ,..,21=  

Step2. Find the nearest centroid to x: 

  j

c

j
r δ

1=
= minarg  

Step3. Assign class label rω to the test pattern x. 

 

 

2.10   Nearest Neighbour Classifier 
 

Nearest Neighbour (NN) classifier (Fukunaga, 1990) is the most simple classifier found 

up till now. In NN classifier no special procedure is required to do training. All the 

available data (as maximum as possible) is stored to perform classification, where each 

test pattern is compared for similarity with all the available training data (pattern). The 

test pattern is assigned the class label of that training pattern, which is the closest to the 

test pattern. A major drawback of NN approach is its large total parameter requirement to 

perform classification task. For example, a dataset with 10 classes, having 5000 vectors 
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or patterns in each class with 64 attributes or dimensions would require total parameters 

as follows: 

 
610 3.2  64  5000  10     ×=××=××= dimensionNoOfVecclassparameterstotal  

 

If the dimension is very high (e.g. in image), then the total parameter requirement for NN 

approach will be even more severe which would restrict the practical application of such 

approach. The procedure for NN classifier can be subdivided into two main phases 

namely, training phase and testing or classification phase. In the training phase all the 

available patterns χ with their corresponding class label information are stored for 

classification purpose. In the testing phase a test pattern x is assigned the class label 

associated to the nearest train pattern ∈′x χ. To illustrate this, let jδ denote the Euclidean 

distance between a test pattern x and a train pattern ∈jx χ, then the classification 

procedure can be given as follows: 

 

Step1.  Compute the distance ||xx|| jj −=δ  

Step2.  Find argument k that satisfies j

n

j
k δ

1=
= minarg  

Step3.  Assign class label kr θω ′= of the nearest pattern x′ to the test pattern x. 

 

 

2.11   k-Nearest Neighbour Classifier 
 

The classification accuracy of NN approach can be improved by making the decision of a 

test pattern for class labelling based on k nearest patterns. This method is known as k-

Nearest Neighbour (kNN) (Fukunaga, 1990). The computational demand is severely 

expensive for this approach.  

 

kNN classifier is a generalized form of NN classifier. In this approach the test pattern is 

assigned the class label which has the majority of k collected train patterns. The training 
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phase of the kNN classifier is similar to NN classifier where all the training patterns 

together with their class label information are stored for the later use. The total parameter 

requirement is also same as NN approach. The classification or testing procedure can be 

given as: 

 

Step1. Find k train patterns nearest to x, kx,...,x,x ′′′ 21  where ∈′jx χ. 

Step2. Collect the associated labels kθθθ ′′′ ,...,, 21 , where Ω∈′jθ . 

Step3. Assign class label rω to the test pattern x that has the majority of representatives 

in kθθθ ′′′ ,...,, 21 . 

 

Processing speed of kNN classifier is slower than NN classifier due to the searching of k 

nearest patterns for each of the test pattern. The classification accuracy may improve with 

the increase in the value k. This improvement is usually observed when the test patterns 

and the train patterns are closely matched. However, in some cases when the test patterns 

and the train patterns do not match the classification accuracy is poor. In this case 

increasing the value k may not improve the classification accuracy of the system.  

 

 

C)   Global Models for Dimensionality Reduction and Pattern 

Classification 
 

In this section we describe two global models for dimensionality reduction and/or pattern 

classification namely principal component analysis (PCA) and linear discriminant 

analysis (LDA).. 

 

2.12   Principal Component Analysis 
 

PCA finds a linear transformationφwhich reduces d-dimensional feature vectors to h-

dimensional feature vectors (where dh < ) in such a way that the information is 



 28

maximally preserved in minimum mean squared error sense. This linear transformation is 

known as PCA transform or Karhunen-Loéve transform (KLT) (Fukunaga, 1990). It can 

also reconstruct h-dimensional feature vectors back to the d-dimensional feature vectors 

with some finite error known as reconstruction error. The PCA is mostly used in 

compression and reconstruction of high dimensional feature vectors.  Since the 

transformation is from d-dimensional feature space to h-dimensional feature space and 

vice versa the size of φ is hd × . The h column vectors are the basis vectors. The first 

basis vector is in the direction of maximum variance of the given feature vectors. The 

remaining basis vectors are mutually orthogonal and, in order, maximize the remaining 

variances subject to the orthogonal condition. Each basis vector represents a principal 

axis. These principal axes are those orthonormal axes onto which the remaining variances 

under projection are maximum. These orthonormal axes are given by the 

dominant/leading eigenvectors (i.e. those with the largest associated eigenvalues) of the 

measured covariance matrix. In PCA, original feature space is characterized by these 

basis vectors and the number of basis vectors used for characterization is usually less than 

the dimensionality d of the feature space.  
 

2.12.1   The PCA Encoding 
 

The PCA transform can be found by minimizing mean squared error. To see this, let the 

feature vector be dRx∈ (d-dimensional space), reduced dimensional feature vector be 
hRy∈  and reconstructed feature vector be dRx̂∈ . Then the mean squared error can be 

represented as 

 

 ]||x̂x[|| 2MSE −= E         2.20 

 

where ][•E  is the expectation operation with respect to x and 2|||| • is the norm squared 

value. We know that PCA transformation φ is of size hd × and it is used to do 

dimensionality reduction from d-dimensional space to h-dimensional feature space, i.e. 

yx:φ → or xφy T= . If there is no dimension reduction then PCA transformation 
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φ would be a square matrix of size dd × . For no dimension reduction vector x can be 

written in terms of vector y and φ as: 

 

φyx =          2.21 

or ∑
=

=
d

i
iiy

1
φx          2.22 

 

where iφ are the column vectors of φ and iy are the components of vector y. 

 

Suppose we choose only h ( d< ) of φ and we still want to approximate x well, then: 

 

 ∑ ∑
= +=

+=
h

i

d

hi
iiii by

1 1
φφx̂         2.23 

 

where ib is any constant. Error in resulting representation would be 

 

 ∑ ∑
= +=

−−=−=∆
h

i

d

hi
iiii by

1 1
φφxx̂xx   

                    ∑ ∑∑
= +==

−−=
h

i

d

hi
iiii

d

i
ii byy

1 11
φφφ  

      ∑
+=
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d

hi
iii by

1
φ)(        2.24 

 

We want to estimate x̂ such that the mean square error (MSE) is minimum, i.e. 

 

]||x[|| 2MSE ∆= E         2.25 

 

From equations 2.24 and 2.25 
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ii byE
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2MSE ])[(        2.26 

 

The optimum choice for ib is obtained by minimizing MSE with respect to ib . Therefore 

differentiating equation 2.26 with respect to ib we have 

 

 ∑
+=

=−
∂
∂

=
∂
∂ d

hi
ii

ii

byE
bb 1

2 0MSE ])[(  

or 02 =−− ][ ii byE  

or ii byE =][  

 

Q xφy T=  therefore xT
iiy φ= , so we get 

 [x]x][][ EEyEb iiii
TT φφ ===       2.27 

 

Now from equation 2.26, we have 

 

 ∑
+=

−=
d

hi
ii byE

1

2MSE ])[(  

          ∑
+=

−=
d

hi
ii EyE

1

2T ][x])[( φ   (from equation 2.27) 

 

using the property tzzz =2  we obtain 

 

         ∑
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d
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iiii EEE

1

TTTTT ][x])x[x])(x[( φφφφ   
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    ∑
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d

hi
ii EEE

1

TTT ])[x][x])(x(x[ φφ  

    ∑
+=

−−=
d

hi
ii EEE

1

TT φφ ][x])[x])(x[(x   

         ∑
+=

Σ=
d

hi
iXi

1

TMSE φφ         2.28 

 

where ][x])[x])(x[(x TEEEX −−=Σ  is a covariance matrix and µ[x]=E is the mean of 

the given feature vectors. 

 

The optimization problem of MSE can now be solved by finding iφ that occur at 

constrained relative-extremum of equation 2.28 under the constrained curve 01T =−ii φφ . 

The method of Lagrange multipliers can be used in this case as follows: 

 

)()( φλφ gf ∇=∇  where 0≠λ       2.29 

 

or ∑ ∑
+= +=

−∇=Σ∇
d

hi

d

hi
iiiiXi ii

1 1

TT 1)( φφλφφ φφ     

            ∑ ∑
+= +=

=−Σ=
d

hi

d

hi
iiiX

1 1
022 )( φλφ                            2.304 

              0
1

=−Σ= ∑
+=

d

hi
iiiX )( φλφ  

or  iiiX φλφ =Σ          2.31 

 

Equation 2.31 is a generalized eigenvalue problem having eigenvalue iλ and the 

corresponding eigenvector iφ . 

 

Furthermore, substituting equation 2.31 in equation 2.28, we get 

                                                 
4 Note for a vector b and a matrix A the following property holds true: AbAbbt

b 2=∇ and 

bIbIbbbb t
b

t
b 22 ==∇=∇ . 
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          ∑
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          ∑
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It can be observed from equation 2.32 that the MSE is the sum of the least 

hd − eigenvalues i.e. leading h eigenvectors corresponding to leading eigenvalues should 

be taken for dimension reduction and/or classification purposes for minimum MSE. 

Eigenvector matrix φ  is adjusted such that its corresponding eigenvalues are in 

descending order i.e. hλλλ >>> ...21 . In solving this transformation, x is assumed to be 

zero mean, if mean is not zero then y can be represented as 

 

µ)(xφy −= T          2.33 

 

where µ  = E[x].  

 

2.12.2   The PCA Reconstruction 
 

Given y (from equation 2.33) one can simply transform it back to the original feature 

space with some finite reconstruction error. Applying back transformation we get 

reconstructed vector x̂ as 

 

 µφyx̂ +=          2.34 

 

Substituting equation 2.33 in equation 2.34 we get 

 

 µµ)(xφφx̂ +−= T         2.35 
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If there is no dimension reduction then dd×= ITφφ and the reconstructed vector x̂  is same 

as x i.e. xx̂ = . The following example shows PCA implementation to determine 

principal axes from a set of given 2-dimensional data. 

 

Example 1 

Figure 2.5 shows the projection of feature vectors from 2-dimensional space to 1-

dimensional space by applying PCA. The following steps elaborate the PCA 

implementation procedure: 

 

Step0. Generate a set of 2-dimensional data. 

Step1. Find mean µ and covariance XΣ  of the data. 

Step2. Evaluate eigenvector matrix φ from the covariance matrix and arrange the 

obtained eigenvectors corresponding to its eigenvalues which is set in descending order 

i.e. the first vector 1φ of φ should correspond to the maximum eigenvalue. The direction 

of first axis 1φ is the direction of first principal axes which accounts for the maximum 

amount of variation. The second axis contains the maximum amount of variation 

orthogonal to the first. 

Step4. Compute reconstruction vector x̂ using equation 2.35, which is projected onto the 

first principal axis (assume dimension reduction is from 2-dimensional space to 1-

dimensional space). 

 

Example 2 

This example shows the reconstruction of speech data by PCA (figure 2.6). 

 

Step0. Given a speech signal x. 

Step1. Obtain eigenvector set φ as described in example 1 (for mathematical simplicity 

we have constructed 2 dimensional space for speech signal, however, one can take any 

number of points to represent a vector).  

Step2. Evaluate transformed feature vectors T
21 ],[y yy= . 

Step3. Allocate appropriate number of bits to each of the y component, such that the 
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signal-to-noise ratio (SNR) is maximum (for 8 bit, 316.=SNR  when 5 bits are allocated 

to 1y and 3 bits to 2y ). For further details about bit allocation see Gersho and Gray (1992). 

Step4. Obtain reconstructed speech signal x̂  using equation 2.35. 
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Figure 2.5: Application of PCA on 2-dimensional patterns 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-1

-0.5

0

0.5

1
speech signal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-1

-0.5

0

0.5

1
PCA reconstructed signal

 
Figure 2.6: Reconstruction on speech signal using PCA 
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2.12.3   Drawbacks of PCA 
 

1) One of the major drawbacks of PCA is that it requires standard eigenvalue 

decomposition for solving the transformationφwhich is expensive in terms of 

processing time and storage (discussed later in chapter 3). 

2) PCA is sensitive with respect to the units of measurement. If there are large 

differences between the variances of the attributes (dimensions) of feature vector x, 

then those variables whose variances are largest will tend to dominate the first few 

principal components. This may be appropriate if all the attributes are measured in 

same units. However in practical cases, it often occurs that each attribute of feature 

vector is measured using different units, and therefore the projection obtained by 

PCA could be a biased estimate. 

3) PCA transform is mathematically simple, but only globally linear. 

4) PCA significantly distorts the original data topology. 

5) PCA methods are based on least squares estimation techniques and thus fail to 

account for ‘outliers’ which are common in realistic training sets (De la Torre and 

Black, 2001). 

 

 

2.13   Linear Discriminant Analysis 
 

Linear discriminant analysis (LDA) is a well known technique for dimensionality 

reduction. It was first proposed by Fisher (1936) and later generalized by Rao (1948) to 

multi-class problems. Procedures that are analytically or computationally manageable in 

low-dimensional spaces can become completely impractical in a space of 50 or 100 

dimensions (Duda and Hart, 1973). Therefore, dimension reduction becomes an essential 

and integral part of pattern classification problems. Dimensional reduction techniques are 

used in several areas like data compression, image processing, signal/speech processing 

etc. The LDA technique finds an orientation W that reduces a high dimensional feature 

vectors belonging to different classes to a lower dimensional feature space such that the 
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projected feature vectors of a class on this lower dimensional space are well separated 

from the feature vectors of other classes. If the dimensionality reduction is from d-

dimensional ( dR ) space to h-dimensional ( hR ) space (where dh < ) then the size of the 

orientation matrix W would be hd × . Therefore W has h column vectors known as the 

basis vectors. The orientation W is evaluated so that the Fisher’s criterion 

function (W)J is maximum. The criterion function depends on three factors: orientation 

W, within-class scatter matrix ( WS ) and between-class scatter matrix ( BS ). For a c-class 

problem the value of h will be 1−c or less, a constraint due to BS . In the basic or 

conventional LDA technique, the orientation W is computed by using eigenvalue 

decomposition (EVD) method. LDA is illustrated here for 2-class problem and for multi-

class problem. Next section depicts LDA for 2-class problem. 
 

2.13.1   Two-class Linear Discriminant Analysis 
 

In a two class problem dimension reduction is from d-dimensional space to 1-

dimensional plane. To elaborate this suppose in a two-class problem a set of n feature 

vectors χ },...,:{x njj 21== are given, where d
j Rx ∈ (d-dimensional space). Assume 

1n vectors of set χ1 (where χ1⊂  χ) belongs to class 1ω and the remaining vectors 

( 12 nnn −= ) from χ2 (where χ2⊂  χ) belongs to the second class 2ω . Let 1µ and 2µ be the d-

dimensional sample mean of the two class set represented as: 

 

   ∑
∈

=
ii

i n χx
xµ 1    for 21,=i     2.36 

 

Between-class scatter matrix SB and within-class scatter matrix SW are defined as: 

 

   T
2121 )µ)(µµ(µ −−=BS      2.37 

   ∑
∈

−−=
i

iiWS
χx

)µ)(xµ(x T        for 21,=i    2.38 
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The orientation vector w  (of size 1×d ) is taken so that the criteria )(wJ is maximum, 

where )(wJ  can be represented in terms of SB , SW and w as: 

 

   
wSw
wSw

wJ
W

B
T

T

=)(       2.39 

 

The value of orientation vector w could be investigated by evaluating the optimum value 

of criteria function )(wJ . The following theorem and corollary explore the value of w.  

 

Theorem 1   

Let A and B be two symmetric matrices. Suppose that B is semidefinite. Then the 

maximum (minimum) of AwwT given 

 

 1T =Bww                2.40 

 

is attained when x is the eigenvector of AB 1−  corresponding to the largest (smallest) 

eigenvalue of AB 1− . Thus if λ and δ are the largest (smallest) eigenvalues of AB 1− , then, 

subject to constraint (equation 2.40), 

 

 λ=][max Aww
x

T ,  δ=][min Aww
x

T  

 

Proof of theorem 1 can be referred in Mardia et. al. (1979). This theorem is useful in 

proving the following corollary. 
 

 

Corollary 1 

Let SB and SW be two symmetric matrices. Suppose that WS  is semidefinite. If 

wSwwSwwJ WB
TT /)( =  then, for 0≠w , λ=)](max[ wJ  satisfies wSwS WB λ= . 

 

Proof:  Since )(wJ is invariant under changes of scale of w, we can regard the problem as 
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maximizing wSw B
T  given  CwSw W =T  (generalize form of equation 2.40), where 

0>C . 

 

Let 0T =−= CwSwwg W)(  and wSwwf B
T=)( , then to maximize )(wf given 

condition 0=)(wg , we use Langrange’s multiplier and could write the following 

differential equality: 

 

  )()( wgwf ww ∇=∇ λ  

or  )()( CwSwwSw WwBw −∇=∇ TT λ  

i.e.   wSwS WB λ22 =  

 

if SW is non-singular then  

 

wwSS BW λ=−1         2.41 

 

Equation 2.41 becomes a conventional eigenvalue problem, where matrix BW SS 1− has 

λ eigenvalue. From the obtained eigenvector w, the projected samples of the 

corresponding feature vector x can be expressed as: 

 

  xTwy =         2.42 

 

The mapping is from d-dimensional space to 1-dimensional space ( )RR: 1→dw . This 

mapping is many-to-one and therefore it is not possible to reduce minimum achievable 

error.  
 

2.13.2   Multi-class Linear Discriminant Analysis 
 

To explicitly define BS and WS for the Fisher’s criterion function, in a c-class (assuming 

2>c ) problem let χ denotes d-dimensional set of n feature vectors, 
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},...,,:{ cii 21==Ω ω be the finite set of c states of nature or class labels where ωi denotes 

the ith class label. The set χ can be subdivided into c subsets  χ1, χ2,…, χc where each 

subset χi belongs to ωi and consists of ni number of samples such that: 

 

∑
=

=
c

i
inn

1
         2.43 

 

The samples or patterns of set χ can be written as: 

 

χ {= x1, x2,K , xn }where xj∈ dR   

χ
i⊂  χ  and  χ1∪ χ2∪…∪ χc = χ. 

 

Let jµ be the centroid of χj and µ  be the centroid of χ, then the between class scatter 

matrix is given as 

 

 ∑
=

−−=
c

j
jjjB nS

1

Tµ)µ)(µ(µ        2.44 

 

It can be observed from equation 2.44 that BS is the sum of c matrices of rank one or less, 

and because only 1−c of these are independent, BS is of rank 1−c or less (Duda and Hart, 

1973).  

 

The within-class scatter matrix which is the sum of c scatter matrices is defined as 

 

 ∑
=

=
c

i
iW SS

1
         2.45 

where ∑
∈

−−=
i

jjiS
χx

)µ)(xµ(x T        2.46 

 

It can be observed from equations 2.45 and 2.46 that WS is the sum of c scatter matrices 
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and each of the scatter matrices is the sum of in matrices, and because only )( 1−avgnc or 

less are independent (where ∑
=

==
c

j
jcavg cnnn

1

1 / ), the rank of WS (for cn ≥ ) is 

 

 cnncSrank avgW −=−≤ )()( 1        2.47 

 

If dcn ≥− then WS is full rank matrix i.e. non-singular and its inversion is possible. Now 

given scatter matrices BS and WS we can define Fisher’s criterion as a function of W as 

(Duda and Hart, 1973) 

 

 
|WW|
|WW|(W)

W

B

S
SJ T

T

=         2.48 

 

where || • is the determinant. The orientation W is taken so that the Fisher’s criterion 

function (W)J is maximum. In a c-class problem the LDA projects from d-dimensional 

space to 1−c  or less dimensional space i.e. yx:W →  or xWy T=  where dRx∈ , 
hRy∈ such that 11 −≤≤ ch . The orientation W is a rectangular matrix of 

size hd × which is the solution of the conventional eigenvalue problem 

 

 iiiBW SS ww λ1 =−         2.49 

 

where iw are the column vectors of W that correspond to the largest eigenvalues ( iλ ) in 

equation 2.49. It is evident from equation 2.49 that the explicit solution of the orientation 

can be found when WS  is non-singular. If WS is singular (i.e. dcn <− ) then it is not 

possible to obtain the orientation W by using equation 2.49.  

 

Figure 2.7 depicts LDA and PCA transformation on 2-dimensional Gaussian data from 

2D-space to 1D-space. It could be observed from the figure that the transformed vectors 

of LDA in lower dimensional space provide best discrimination between the given 
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classes. On the other hand, PCA projects data on lower dimensional space that best 

describes the representation of the data. This means PCA investigates the direction that is 

useful in representation and LDA searches for the direction that is optimum in 

discrimination among the given classes.  
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    Figure 2.7: LDA and PCA projections 

 

2.13.3   Drawbacks of LDA 
 

1) A major drawback of LDA is the problem of singularity of within-class scatter 

matrix WS due to the small sample size. This problem arises whenever the number of 

samples is smaller than the dimensionality of samples. For example, a 

3232× image data in a face recognition system has 1024 dimensions, which 

requires more than 1024 training samples to ensure that WS is non-singular. So, 

LDA is not a stable method in practice when the training data are scarce. 

2) LDA cannot extract more features than the number of classes minus one. In the 

two-class case this means that only a reduction to one dimension is possible. 

3) LDA provides only one transformation matrix over whole data, it is not sufficient to 

discriminate the complex data consisting of many classes like human faces. 

4) In LDA, the training just accounts to estimate the mean and covariance matrix, 

regardless of how many samples are available.  
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5) For many classes LDA projection onto lower dimensional space usually causes 

overlap of neighbouring classes, which is certainly suboptimal.  

 

2.13.4   Pattern Classification Using Linear Discriminant Analysis 
 

LDA gives features that are most discriminative which is ideal for pattern classification 

applications. Firstly, the parameters (e.g. orientation W) from the known training dataset 

can be obtained simply by applying the LDA technique. Then in the classification or 

testing phase an unknown class label feature vector x is associated to the class label of the 

nearest class using some distance measure. Usually, nearest neighbour (NN) technique is 

applied to associate the class label of x. To elaborate this in mathematical terms suppose 

unlabelled feature vector dRx∈ and projected feature vector (using orientation W) is 
hRy∈ . Let jµ be the centroid of jth class in d-dimensional space and jµ̂ be the 

corresponding centroid in h-dimensional space (where dh < ). The parameters ( jµ̂ and 

W) are stored during the training phase which will be used in the classification phase. 

The NN technique is applied in the following manner to decide the membership of the 

feature vector x: 

 

 xWy T=          2.50 

 ||µ̂y||minarg j

c

j
k −=

=1
        2.51 

 

where |||| • is the normalized value. Associate the class label kω to the feature vector x. 

 

2.13.5   GMM plus LDA for Pattern Classification 
 

The performance of LDA classifier in terms of classification accuracy can be improved 

by using gaussian mixture model (GMM) in place of NN in the classification phase. If 

GMM is used then covariance of each class in h-dimensional should also be evaluated in 

the training phase. This covariance matrix is used in the classification phase. For brevity 
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we call this method as GMM plus LDA. The following procedure is applied for GMM 

plus LDA in the classification phase: 

 

 xWy T=  

 )]µ̂(y)µ̂(yexp[
||)(

(y) y/
y

/ jjhj j

j

p −Σ−−
Σ

= −1T
2
1

2122
1

π
   for cj K1=   2.52 

 (y)maxarg j

c

j
pk

1=
=         2.53 

 

Finally, associate the class label kω to the feature vector x. The improvement of GMM 

plus LDA over the basic LDA is illustrated on SatImage database (figure 2.8) and 

multiple feature digit (using Zernike moments) database (figure 2.9). The detailed 

information about the databases used is described in section 5.3.10. In both the figures, x-

axes represent the dimension and y-axes represent the classification accuracy. It can be 

observed from both the figures that the GMM plus LDA is performing better than the 

basic LDA technique. As the dimension is increased the improvement in terms of 

classification accuracy is evident from the figures.   
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Figure 2.8: A comparison between LDA and GMM plus LDA on SatImage database. 
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Figure 2.9: A comparison between LDA and GMM plus LDA on multiple feature digit – 

Zernike moments database. 

 

 

2.14   Summary 
 

The Gaussian mixture model (GMM) for pattern classification has been reviewed. Its 

basic concepts and theories are illustrated. The model is discussed for the supervised 

learning tasks. We have also briefly discussed the expectation-maximization (EM) 

algorithm. Some weaknesses of GMM are also described. We have also surveyed some 

of the conventional linear classifiers used today. Their properties and functionalities are 

described for understanding the behaviour of the classifiers. For each of the models, 

training and classification phases are elaborated. Next we looked at the two most 

common techniques for dimension reduction and/or pattern classification: principal 

component analysis (PCA) and linear discriminant analysis (LDA). Their characteristics, 

functionalities and drawbacks are discussed. A combined technique using GMM and 

LDA is presented which is giving improved performance in terms of classification 

accuracy as compared to the basic LDA technique.  
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Chapter 3 

 

Fast Principal Component Analysis using Fixed-Point 

Algorithm 
 

3.1   Abstract 
 

In this chapter we present an efficient way of computing principal component analysis 

(PCA). The algorithm finds the desired number of leading eigenvectors with a 

computational cost that is much less than that from the eigenvalue decomposition (EVD) 

based PCA method. The mean squared error (MSE) generated by the proposed method is 

very similar to the EVD based PCA method that is the proposed algorithm can be used 

with negligibly scarifying the performance (in MSE sense). 

 

 

3.2   Introduction 
 

Principal component analysis (PCA) finds a linear transformationφwhich reduces d-

dimensional feature vectors to h-dimensional feature vectors (where dh < ) in such a way 

that the information is maximally preserved in minimum mean squared error sense. This 

linear transformation is known as PCA transform or Karhunen-Loéve transform (KLT) 

(Fukunaga, 1990). The size of transformation φ is hd × . See section 2.12 for details 

about PCA.  

 

The computation of PCA requires eigenvalue decomposition (EVD) of the covariance 

matrix of the feature vectors. One well-known EVD method is the Cyclic Jacobi’s 

method (Golub, 1996). The Jacobi’s method which diagonalizes a symmetric matrix 

requires around )( nddO 23 + computations (Golub, 1996) (where n is the number of 
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feature vectors or samples used). This computation in many applications (e.g. fixed-point 

implementation) is undesirable. A number of methods have been proposed in the 

literature for computing the PCA transform with reduced computational complexity. 

Reddy and Herron (Reddy and Herron, 2001) proposed modification to Jacobi’s method 

which favours fixed-point implementations. Their computational complexity is, however, 

still of order )( 3dO for each symmetric rotation (assuming symmetric matrix of size 

dd × is previously computed). Basically the improvement in computational complexity is 

negligible. Roweis (1997) proposed expectation maximizing (EM) algorithm for PCA, 

which is computationally effective than EVD method for PCA. But this technique uses 

EM algorithm which could be expensive in time. It also requires matrix inverse1 

computation in both the E-step and M-step for each of the iteration, which is an 

expensive exercise. Furthermore, EM algorithm does not converge to a global maximum; 

it achieves only a local maximum and thus the choice of the initial guess used in the 

algorithm becomes crucial. The power method (Schilling and Harris, 2000) is also used 

to find leading eigenvector which is less expensive method but can compute only one 

most leading eigenvector. Another method is snap-shot algorithm (Sirovich, 1987) which 

does not explicitly compute sample covariance matrix, however, requires matrix 

inversion and is based on the assumption that the eigenvectors being searched are linear 

combinations of feature vectors.  

 

In this chapter we present a computationally-fast technique for finding the desired 

number of leading eigenvectors without diagonalizing any symmetric matrix. Thus it 

avoids Cyclic Jacobi’s method for eigendecomposition. We have used the fixed-point 

algorithm (Hyvärinen and Oja, 1997) to find all the h leading eigenvectors which 

converges in just a few iterations without the need of any initial setting. Furthermore, it is 

free from matrix inverse computations. As a result, the presented algorithm is 

computationally efficient, consumes very small amount of computation time and is very 

easy to implement. For brevity we call this method as Fast PCA. This Fast PCA generates 

approximately the same amount of mean squared error as that generated by EVD based 

PCA method. 
                                                 
1 Note that the matrix inversion scales as the cube of the matrix size. 
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3.3   PCA Revisited 
 

The PCA transform can be found by minimizing mean squared error. To see this, let the 

feature vector be dRx∈ (d-dimensional space), reduced dimensional feature vector be 
hRy∈  and reconstructed feature vector be dRx̂∈ . Then the mean squared error can be 

represented as 

 

 ]||x̂x[|| 2MSE −= E         3.1 

 

where ][•E  is the expectation operation with respect to x and 2|||| • is the norm squared 

value. We know that PCA transformation φ is of size hd × and it is used to do 

dimensionality reduction from d-dimensional space to h-dimensional feature space, i.e. 

yx:φ → or xφy T= . It should be noted that in this transformation, x is assumed to be 

zero mean, if mean is not zero then y can be represented as 

 

 µ)(xφy −= T          3.2 

 

where µ  = E[x]. Given y (from equation 3.2) one can simply transform it back to the 

original feature space with some finite reconstruction error. Applying back 

transformation we get reconstructed vector x̂ as 

 

 µφyx̂ +=          3.3 

 

Substituting equation 3.2 in equation 3.3 we get 

 

 µµ)(xφφx̂ +−= T         3.4 

 

Equation 3.1 can be rewritten by utilizing equation 3.4 as 
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 ]||µ))(xφφ([|| 2TIMSE −−= ×ddE       3.5 

 

The desired h basis vectors of φ span the d-dimensional subspace and are mutually 

orthonormal, i.e. hh×= ITφφ . Using the orthonormality condition equation 3.5 can be 

further simplified as 

 

 x)],(φ[  MSE gE=         3.6 

 

where x),(φ g is a scalar function and is given by 

 

 µ))(xφφ(µ)(xx),(φ −−−= ×
TT I ddg       3.7 

 

From appendix 3.1 we can write the derivative of x)],(φ[  gE  with respect to φ  as 

 

φ]µ)µ)(x[(xx)],(φ[
φ

T2 −−−=
∂
∂ EgE      3.8 

 

Given equation 3.8 and the orthonormality condition of φwe can apply fixed-point 

algorithm (Hyvärinen and Oja, 1997) to solve for the values of φ i.e. 

 

 φ]µ)µ)(x[(xφ T−−← E        3.9 

 lizeorthonorma←φ (φ )       3.10 

 

Note that the negative sign is removed from equation 3.9 since φ and φ− define the same 

direction. Moreover, since the expectation is with respect to x, transformationφ is taken 

out of it. The algorithm can also be represented as 

 

 φφ xΣ←          3.10  

 lizeorthonorma←φ (φ )       3.11 
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where ]µ)µ)(x[(xx
T−−=Σ E  is the covariance of x. The orthonormalization of φ can be 

done by using Gram-Schmidt orthonormalization procedure. Thus the computation of h 

eigenvectors does not require eigenvalue decomposition procedure. This means that the 

Cyclic Jacobi’s method can be altogether avoided for eigendecomposition. This would 

certainly reduce the computation complexity in finding eigenvectors for PCA. 

Furthermore, use of fixed-point algorithm converges the algorithm very fast in just a few 

iterations without the need of any prior knowledge of the learning rate/step size or initial 

settings as per required by the gradient descent based and/or EM based methods. The 

next section depicts the iterative algorithm for computing eigenvectors for PCA. 

 

 

3.4   Fast PCA Algorithm 
 

One way to compute all the h orthonormal basis vectors is to use Gram-Schmidt method. 

The most dominating/leading eigenvector or principal axis will be measured first. 

Similarly, all the remaining 1−h basis vectors (orthonormal to the previously measured 

basis vectors) will be measured one by one in a reducing order of dominance. The 

previously measured th1)( −p  basis vectors will be utilized for finding the pth basis 

vector. The algorithm for pth basis vector will converge when the new and old values 

pφ point in the same direction i.e. 1
T

≈+
pp φφ  (where +

pφ is the new value of pφ ). It is 

usually economical to use a finite tolerance error to satisfy convergence criteria 

 

 ε<−+ )φ(φ 1
T

ppabs         3.12 

 

where ε is a predefined tolerance or threshold and )(•abs  is the absolute value. The Fast 

PCA algorithm is illustrated in table 3.1. 
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3.4.1   Computational Complexity of the Algorithm 
 

Let L be the number of iterations used in converging the algorithm for pφ and n be the 

number of samples used. Then the estimated computational complexity is given in table 

3.2. 

 

The value of L is quite small (usually 2 ~ 5) and therefore the computational complexity 

can be estimated to be )( ndhdO 22 + . If dimension d is large compared to h and n then 

computational complexity can be estimated to be )( 2dO . 

 

 

TABLE 3.1: Fast PCA algorithm for computing leading eigenvectors 
 

 

1. Choose h, the number of principal axes or eigenvectors required to estimate. 

Compute covariance xΣ and set 1←p . 

2. Initialize eigenvector pφ of size 1×d  e.g. randomly. 

3. Update pφ as pp φφ xΣ← . 

4. Do the Gram-Schmidt orthogonalization process 

∑
−

=
−←

1

1

T
p

j
jjppp φ)φ(φφφ  

5. Normalize pφ by dividing it by its norm: ||φ||/φφ ppp ← . 

6. If pφ has not converged, go back to step 3. 

7. Increment counter 1+← pp  and go to step 2 until p equals h. 
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TABLE 3.2: Computational complexity of the algorithm 

Major processing steps involved in the algorithm Computational complexity 

Covariance xΣ (step 1) )( ndO 2  

Gram-Schmidt orthogonalization for pφ (pth basis 

vector) 

)(dpLO  

Gram-Schmidt orthogonalization for all 

hp K1= basis vectors 
)( LdhO 2  

Updating process for all hp K1= basis vectors 

(step 3) 

)( hLdO 2  

Total estimated )()( ndhdOndhLdO 2222 +≈+

 

  

3.4.2   An Illustration 
 

To verify the performance of the Fast PCA method in terms of processing time and mean 

squared error we have compared it with the performance of EVD based method for PCA. 

For the processing time, the cputime2 is evaluated while increasing the data 

dimensionality. Similarly, mean squared error is evaluated while increasing the data 

dimensionality. We have generated uniformly distributed random vectors of dimensions 

starting from 100 and going up to 4000. The number of samples or feature vectors is 

fixed and is 100. The dimension is reduced to 10=h  in all the cases and the tolerance 

(equation 3.12) is set to 0.01 in the verification of the algorithm.  

 

Figure 3.1 is illustrating mean squared error for both the methods as a function of data 

dimensionality. In the figure ‘+’ sign indicates PCA using EVD method and ‘.’ sign 

indicates Fast PCA method. It can be observed that the errors generated by both the 

methods are very close to each other for all the data dimensions. From this it can be 

inferred that the difference in performance of these methods in terms of the mean squared 

error is negligible.  
                                                 
2 cputime is a MATLAB keyword that returns the CPU time in seconds for any process. 
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Figure 3.1: Mean squared error for PCA using EVD and Fast PCA as a function of data 

dimensionality. 

 

 

Figure 3.2 depicts the cputime consumed in finding the h leading eigenvectors for both 

the methods as a function of data dimensionality. The data dimensions from 100 to 1000 

are illustrated in figure 3.2 and dimensions from 2000 to 4000 are illustrated in table 3.3. 

It is evident from figure 3.2 that cputime curve for EVD based PCA increases 

exponentially as the data dimensionality is increased. Moreover, from table 3.3 cputime 

for dimensions above 2000 are very expensive for EVD based PCA method and may 

restrict practical applications which involve such high dimensions. For dimension 4000 

the EVD based PCA method is consuming around 1413 cputime in seconds to find 10 

leading eigenvectors. On the other hand, it can be observed from figure 3.2 as well as 

from table 3.3 that the cputime for Fast PCA method is very economical for all the 

dimensions. Even for data dimensionality 4000, cputime is only 7.53 seconds, which is 

extremely low as compared to EVD based PCA method. Thus Fast PCA can also be 

efficiently used for high dimensional applications. 

 

It can be concluded from figure 3.2 and table 3.3 that the Fast PCA method is highly 

efficient in finding the leading eigenvectors in terms of time due to its reduced 

computational complexity. We have also tested (not shown in this paper) the Fast PCA 

algorithm for 100=h  and we found that it is still very economical than EVD based PCA 

method. 
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Figure 3.2: cputime for PCA using EVD method and Fast PCA method as a function of 

data dimensionality from 100 to 1000. 
 

 

TABLE 3.3: cputime for PCA using EVD method and Fast PCA method as a function of 

data dimensionality from 2000 to 4000. 

Data dimensionality EVD based PCA 

method 

(cputime in seconds) 

Fast PCA method 

(cputime in seconds) 

2000 153.26 2.28 

3000 531.56 5.30 

4000 1413.72 7.53 
 

 

3.5   Summary 

In this chapter we have presented a method (called Fast PCA) for computing the PCA 

transformation with reduced computational cost. This Fast PCA method utilizes fixed-

point algorithm. The proposed method is compared with the EVD based PCA method. It 

was seen that the Fast PCA method is computationally effective and economical in 

finding small number of leading eigenvectors or orthonormal axes for PCA as compared 

to the EVD based PCA method. The mean squared error provided by proposed method is 

also very close to the MSE provided by EVD based PCA method. 
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Appendix 3.1 
 

Lemma 1: Let the scalar function ν)φφ(νν),(φ TT I −= ×ddg  be a differentiable function 

of a hd × rectangular matrix φ  such that dh < . Suppose ν is any vector of size 1×d . 

Then the gradient of ν),(φ g  is defined as φννν),(φφ
T2 −=∇ g . 

 

Proof I: The scalar function ν),(φ g  can be simplified as νφφνννν),(φ TTT −=g . Its 

derivative with respect toφ is given as 

ν)]φφ(ν[ν)](ν[ν),(φ TTT   ∂−∂=∂ tracetraceg  

                
)()()()(]φφ[νν

ν]}φφ[νν]φφ[ν{
BAAB and AA {  2 TTT

TTTT

trtrtrtrtrace
tracetrace

==∂−=

∂+∂−=

Q
 

or               φννν),(φφ
T2 −=∇ g  

 



 55

Chapter 4 

 

A Gradient Linear Discriminant Analysis for Small 

Sample Sized Problem 
 

4.1   Abstract 
 

The purpose of conventional linear discriminant analysis (LDA) is to find an 

orientation which projects high dimensional feature vectors of different classes to a 

more manageable low dimensional space in the most discriminative way for 

classification. The LDA technique utilizes an eigenvalue decomposition (EVD) 

method to find such an orientation. This computation is usually adversely affected by 

the small sample size problem. In this chapter we have presented a new direct LDA 

method (called gradient LDA) for computing the orientation especially for small 

sample size problem. The gradient descent based method is used for this purpose, 

however, the technique does not require any learning rate parameter. It also avoids 

discarding the null space of within-class scatter matrix and between-class scatter 

matrix which may have discriminative information useful for classification. 

 

 

4.2   Introduction 
 

Linear discriminant analysis (LDA) is a well known technique for dimensionality 

reduction. It finds an orientation W that reduces high dimensional feature vectors 

belonging to different classes to a lower dimensional feature space such that the 

projected feature vectors of a class on this lower dimensional space are well separated 

from the feature vectors of other classes. If the dimensionality reduction is from d-

dimensional ( dR ) space to h-dimensional ( hR ) space (where dh < ) then the size of 

the orientation matrix W would be hd × . Therefore W has h column vectors known 

as the basis vectors. The orientation W is evaluated so that the Fisher’s criterion 

function (W)J is maximum. The criterion function depends on three factors: 
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orientation W, within-class scatter matrix ( WS ) and between-class scatter matrix 

( BS ). For a c-class problem the value of h will be 1−c or less, a constraint due to BS . 

In the basic or conventional LDA technique, the orientation W is computed by using 

eigenvalue decomposition (EVD) method where scatter matrix WS is arranged in such 

a way that it restricts the computation of W if it is being singular or reduced rank 

matrix. This limitation (quite often arises in human face recognition problem) is due 

to the high dimensionality of original feature vectors in comparison with the low 

number of feature vectors available. This drawback of LDA is known as small sample 

size problem (Fukunaga, 1990). To overcome this problem, several authors (Swets 

and Weng, 1996; Belhumeur et al. 1997, Zhao et al.,1998, 1999, Sharma et al. 2006) 

have used intermediate techniques like principal component analysis (PCA) prior to 

the application of LDA. The PCA technique is used in such a way that the projected 

feature vectors on h-dimensional space give a full rank WS matrix. Thereby the 

computation of the inverse of WS is feasible and thus orientation W can then be found 

by the basic LDA method. The application of intermediate techniques would, 

however, sacrifice some classification performance. There are some techniques 

recently developed to solve small sample size problems. Chen et al. (2000) have 

proposed a new LDA-based method. Their new LDA is based on the modified 

Fisher’s criterion and involves discarding the null space of WS , which contains the 

most discriminative information useful for classification (Chen et al., 2000; Yu and 

Yang, 2001). Yu and Yang (2001) presented a direct LDA method which discards the 

null space of BS , however, prevents discarding the null space of WS . Lu et al. (2003) 

presented an approach based on the combination of direct LDA and fractional-step 

LDA (Lotlikar and Kothari, 2000) methods that overcomes shortcomings and 

limitations of individual methods used in the combination. 

 

In this paper we do not extend any techniques presented in (Chen et al., 2000; Yu and 

Yang, 2001; Lotlikar and Kothari, 2000; Lu et al. 2003). However, we have presented 

a new way of computing the orientation W which is derived directly from the 

conventional LDA technique. We used gradient descent method to solve for the 

orientation W in such a way that the initial setting or learning rate parameter is not 

required. This can be made possible by substituting learning rate parameter to be unity 
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and by using (W)J adaptively in the iterative process. This makes the convergence 

fast and reliable which is empirically presented. For brevity we call the proposed 

technique as gradient LDA technique. The gradient LDA technique can compute 

orientation W for both singular and non-singular WS . This technique does not discard 

any null spaces of WS and BS thereby preserving discriminative information that may 

be useful for classification. 

 

 

4.3   LDA Revisited 
 

For a c-class (assuming 2>c ) problem the Fisher’s criterion function is given as (for 

details see section 2.13.2) 

 

 
|WW|
|WW|(W)

W

B

S
SJ T

T

=  

 

The optimum value of W is the solution of the following conventional eigenvalue 

problem: 

 

 iiiBW SS ww λ1 =−         4.1 

 

where iw are the column vectors of W that correspond to the largest eigenvalues ( iλ ). 

From section 2.13.2 we have seen that rank of WS is cn − , where n is the number of 

d-dimensional feature vectors available. If dcn ≥− then WS is full rank matrix i.e. 

non-singular and its inversion is possible. It is evident from the equation 4.1 that the 

explicit solution of the orientation can be found when WS  is non-singular. If WS is 

singular (i.e. dcn <− ) then it is not possible to obtain the orientation W by using 

equation 4.1. To overcome this singularity problem, we have presented the gradient 

LDA method which is described in the next section. 
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4.4  Gradient LDA for Reduced Rank Within-class Scatter 

Matrix 
 

It is possible to find the desired leading h eigenvectors of the orientation W for 

reduced rank WS matrix provided hSrank W ≥)( and hSrank B ≥)( . A direct 

computation of W can be achieved by applying gradient descent method on the 

Fisher’s criterion function. To derive the gradient LDA method we first find the 

derivative of (W)J then update W using gradient descent method while normalizing 

the column vectors of W for each of the iterations. The derivative of (W)J can be 

given from appendix 4.1 as 

 

 ] 2 1T1T −− −=
∂
∂ W)W(WW)W(W(W)[

W
(W)

BBWW SSSSJJ   4.2 

 

It can be observed from equation 4.2 that the inverse of WS (a dd × sized matrix) is 

not computed in the equation as has been done in equation 4.1. However, inverse of 

W)(W WST and W)(W BST are computed to find the derivative of (W)J which are 

full rank hh× sized matrices. Equation 4.2 can be utilized in the gradient descent 

algorithm to solve for the values of W 

 

 
W
(W)WW
∂
∂

−←
Jα         4.3 

 ←W  Normalize each of the column vectors of  W separately  4.4 

 

where α is a learning rate parameter. It can also be observed from substituting 

equation 4.2 in equation 4.3 that (W)J is updated for each of the iterations. The 

gradient LDA algorithm is illustrated in table 4.1. It will be empirically seen in the 

next section that the algorithm converges fast when unity value of α is taken and 

when (W)J is utilized adaptively in the algorithm. This makes the algorithm fast 

converging and independent of initial settings for the iteration process. 

 

The convergence relation proof of the gradient LDA technique can be easily shown. 
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Since it is a typical gradient descent based algorithm, the convergence proof will be 

similar to that of the LMS (least-mean-squared).  

 

4.4.1   An Illustration 
 

In this section we first compare the performance of the proposed gradient LDA 

technique with that of the basic LDA technique using the Fisher’s criterion value as a 

prototype. Since the basic LDA can be applied only for full ranked WS matrix we have 

taken the dataset accordingly. For this purpose Sat-Image dataset from UCI repository 

(Blake and Merz, 1998) is used. The Sat-Image dataset consists of 6 distinct classes      

. 

TABLE 4.1: Gradient LDA algorithm for computing the orientation W 

 

1. Choose h, the number of leading eigenvectors required to estimate.  

2. Initialize the orientation W of size hd × e.g. randomly or using identity 

matrix1 

3. while (true) 

4.         Compute |WW|/|WW|(W) WB SSJ TT =  

5.                   ] 2 1T1T −− −−← W)W(WW)W(W(W)[WW BBWW SSSSJα  

6.         Normalize column vectors of W 

                        for hj   to1=  

                             ||)W(:,||/)W(:,)W(:, jjj ← 2 

                        end 

7. end 

 

with 36 dimensions or attributes. It has 4435 feature vectors for training purpose and 

2000 feature vectors for testing purpose. However, for this comparison we have taken 

the features from the first three classes of the training set. The coordinates of dataset 

taken are given as follows: 
                                                 
1 In a hd × identity matrix hd×I , the first h rows and columns is an identity matrix hh×I and the last 

hd − rows are zero elements i.e. T0 II ][ hdhhhhd −××× = . 
2 In )W(:, j , ‘ j:, ’ indicates elements of all the rows of jth column (i.e. jth column vector) and 

|||| • denotes the norm value of this column vector. 
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 Class 1 Class 2 Class3 

Number of training feature vectors per class (nvec): 1072 479 961 

 

The dimension is reduced from 36-dimensional space to 2-dimensional plane. The 

total number of feature vectors minus the number of classes ( cn − ) is 2509 which is 

greater than the original dimension ( 36=d ). Therefore WS is a full rank matrix of 

size 3636× . Figure 4.1 illustrates the comparison between both the techniques for this 

dataset. The x-axis represents the number of iterations used for gradient LDA method 

and y-axis represents Fisher’s criterion in logarithmic scale ( (W)log J ) for both the 

techniques. Five different values (0.1, 0.5, 1, 2 and 5) of α are taken for the gradient 

LDA algorithm. The α values3 2 and 5 do not converge and provide negative 

(W)J values which cannot be plotted on the figure (since (W)log J will yield a 

complex value).  It can be observed from the figure that gradient LDA algorithm 

converges fast for 1=α . Substituting this unity value for α (in equation 4.3) means 

that the convergence becomes independent of any learning rate parameter or initial 

settings. One of the reasons for this fast convergence is the adaptive use of parameter 

(W)J in the algorithm (table 4.1) i.e. (W)J is updated for each of the iterations or for 

every single change in the value of W . This adaptation makes the process fast and 

reliable. The value of (W)J for gradient LDA is very close to the value of (W)J of the 

basic LDA method. This test indicates that the orientation W obtained by both the 

techniques will discriminate different classes of feature vectors in a similar fashion.  
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Figure 4.1: A comparison between basic LDA method and Gradient LDA method 

using Fisher’s criterion value as a prototype. 
                                                 
3 The α values above 1 usually do not provide very stable (W)J values i.e. convergence is not guaranteed. 
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Next, we have taken feature vectors such that WS is no longer full rank matrix to 

demonstrate its use in solving the small sample size problem. The same Sat-Image 

dataset is used where only 4 vectors from each of the three classes are taken i.e. 

 

 Class 1 Class 2 Class3 

Number of training feature vectors per class (nvec): 4 4 4 

 

The rest of the parameters are not altered (i.e. 36=d and 2=h ). The size of 

WS matrix is still 3636× . However, its rank is now 9=− cn . The basic LDA method 

cannot be applied here since WS is singular thereby its inverse is not possible. The 

gradient LDA method is applied in this case for the same five values ofα . The 

Fisher’s criterion in logarithmic scale is depicted in figure 4.2a and projected samples 

( xWy T= ) on 2-dimensional plane is depicted in figure 4.2b (for 1=α ). 

 

Here also the α values greater than unity (2 and 5) diverge and give complex 

(W)log J values which cannot be plotted in figure 2a. The convergence using other 

values of α is depicted in the figure. It can be observed from the figure that the 

algorithm achieves stable Fisher’s criterion value somewhere before the tenth 

iteration. The orientation W at this iteration is adequate for providing the 

discrimination between different classes of feature vectors in the reduced dimensional 

space. In this case well, the unity value of α is giving better results than the other 

presented values. This means that 1=α is a suitable choice for the convergence of the 

algorithm. This selection makes the algorithm independent of initial settings. 

 

Figure 4.2b illustrates projection of 36-dimensional feature vectors onto 2-

dimensional plane using orientation W which is obtained by the gradient LDA 

method (for 1=α ). It is evident from the figure that different classes of feature vectors 

are well separated.  

 

It can be concluded from the experiments that gradient LDA method is an efficient 

substitute of basic LDA method especially for reduced rank within-class scatter 

matrix (small sample size problem). 
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Figure 4.2: Gradient LDA application for small sample size problem. 

 

 

4.5   Summary 
 

We have presented a new way of computing the orientation W in LDA which 

addresses small sample size problem. The proposed method (called gradient LDA) is 

based on gradient descent method but it does not require any learning rate parameter 

which makes the convergence fast and reliable. The gradient LDA method does not 

discard any null spaces of WS and BS matrices and thus preserves discriminative 

information which is useful for classification. 

 

a) The logarithm of    Fisher's criterion 
function for reduced rank WS  matrix 

b) Projection of feature vectors onto 2-
dimensional plane using Gradient LDA 
method for 1=α
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Appendix 4.1 
 

Lemma 1: Let the scalar function |WW|/|WW|(W) WB SSJ TT =  be a 

differentiable function of a hd × rectangular matrix W such that dh < . The size of 

both the symmetric matrices BS  and WS is dd × and the rank for both is greater or 

equal to h. Then the derivative of (W)J  is defined as 

]W)W(WW)W(W(W)[W/(W) 1T1T2 −− −=∂∂ BBWW SSSSJJ . 

 

Proof 1: Using the quotient rule of differentiation we can differentiate (W)J with 

respect to W as 

 

2TTTTT   |WW|/]|WW||)WW(|
W

|)WW(|
W

|WW|[
W
(W)

WWBWB SSSSSJ
∂
∂

−
∂
∂

=
∂
∂  A1 

 

from appendix II we can write equation A1 as 

 

                2T1T1TTT  ]  2 |WW|/W)W(WW)W(W[|WW||WW| WBBWWWB SSSSSSS −− −=  

Therefore  

 ] 2 1T1T −− −=∂∂ W)W(WW)W(W(W)[W/(W) BBWW SSSSJJ  

 

 

Appendix 4.2 
 

Lemma 2: Let the scalar function |SWW|(W) Tg  = be a differentiable function of a 

hd × rectangular matrix W such that dh < .The size of symmetric matrix S is 

dd × and hrank ≥(S) . Then derivative of (W)g with respect to W is defined as 
1TT2 −=∂∂ SW)SW(W|SWW|W/(W)g . 

 

Proof 2: The derivative of any determinant X is given by [Magnus-Neudecker] 

 

 1T −=∂∂ )(X|X|X/|X|        A2 
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equation A2 can also be written in the trace format as 

 

 ]X)[(X|X||X| T1T  ∂=∂ −trace       A3 

 

from equation A3 the derivative of (W)g is 

 

 ]SW)(WSW)[(W|SWW|(W) TT1TTT ∂=∂
−

traceg  

                                                                                                   

W]}SWSW)[(WW]SWSW)[(W{|SWW| ∂+∂=
−− TT1TTTT1TTT tracetrace  

                                                                                                            

             
)}()()()(

]}WSW)[SW(W]WSW)W(W[S{|SWW|
BAAB and AA{           

 
T

T1TT1TTTT

tracetracetracetrace
tracetrace
==

∂+∂= −−

Q
 

            2  T1TT ]WSW)[SW(W|SWW| ∂= −trace  

                      S {Q is a symmetric matrix therefore SW)(WT is symmetric too }  

  

∴ 1TT2 −=∂∂ SW)SW(W|SWW|W/(W)g  
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Chapter 5 

 

Rotational Linear Discriminant Analysis Technique 

for Dimensionality Reduction 
 

5.1   Abstract 
 

The linear discriminant analysis (LDA) technique finds a linear transformation such 

that the overlapping between the classes is minimum for the projected samples in the 

reduced feature space. This overlapping, if present, adversely affects the classification 

performance. In this chapter we present a rotational transform that rotates the 

individual classes in the original feature space in such a way that the overlapping 

between the classes in the reduced feature space is further minimized. As a result the 

classification performance significantly improves which is demonstrated using several 

corpuses. 

 

 

5.2   Introduction 
 
In a typical pattern recognition application, some characteristic properties (or 

features) of an object are measured and the resulting feature vector is classified into 

one of the finite number of classes. When the number of features is relatively large, it 

becomes difficult to train a classifier using a finite amount of training dataset. In 

addition, the complexity of a classifier increases with the number of features used. In 

such situations, it becomes important to reduce the dimensionality of feature space. 

There are a number of techniques proposed in the literature for dimensionality 

reduction (Fukunaga, 1990); the linear discriminant analysis (LDA) technique is 

perhaps the most popular among them. The LDA technique uses a linear 

transformation to project the measured feature vectors to a subspace in such a way 

that the overlapping between the classes is minimized in the reduced feature space.  
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In order to provide an illustration, consider a 2-dimensional feature space with 3 

classes as shown in figure 5.1a. When we use LDA to reduce the dimensionality to 

one, we get the orientation W along which the overlap between the classes is 

minimum. Note that the overlap between classes (though minimum) is still finite and 

as a result we get a finite amount of classification error. In order to reduce this 

classification error, we propose in this chapter to use a (rotational) transform θ prior 

to LDA. The transform θ  rotates the distribution of each class around its own mean; 

it is chosen in such a way that the overlap between the classes in the resulting LDA 

orientation is minimum (see figure 5.1b). It can be observed that classification error in 

figure 5.1b is less than that seen in figure 5.1a. Since we are using here the rotational 

transform with LDA, we call it the Rotational LDA technique. 

 

                     
 

Figure 5.1a       Figure 5.1b  

 

Figure 5.1: A comparison between basic LDA and Rotational LDA techniques. 

 

 

5.3   Rotational Linear Discriminant Analysis 
 

This section indulges on the mathematical details and proofs of the Rotational LDA. 

Let χ denote the d-dimensional set of n training samples (feature vectors) in a c-class 

problem, },...,,:{ cii 21==Ω ω be the finite set of c states of nature or class labels 

where ωi denotes the ith class label. The set χ can be subdivided into c subsets  χ1, 
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χ
2,…, χc where each subset χi belongs to ωi and consists of ni number of samples such 

that: 

 

∑
=

=
c

i
inn

1
 

 

The samples or patterns of set χ can be written as: 

 

χ {= x1, x2,K , xn } where xj∈Rd (d-dimensional hyperplane)  

χ
i⊂  χ  and  χ1∪ χ2∪…∪ χc = χ  

 

Let jY  be h-dimensional transformed samples from χj∈ωj using LDA technique 

where dh < , then the samples of reduced dimensional set or transformed sample set 

Y can be depicted as: 

 

{=Y y1, y2,K , yn }  where yj∈Rh (h-dimensional hyperplane) 

YYj ⊂ and YYYY c =∪∪∪ ...21  where jY is derived from  χj  

 

For illustration, a two-class problem ( 2=c ) is depicted in figure 5.2, where χ1 and χ2 

are the two subsets of feature vectors in the original 2-dimensional plane (x∈R2). The 

class labels of these subsets are represented as 1ω and 2ω  respectively. This original 

space is transformed to a lower 1-dimensional plane ( ∈y R1), producing transformed 

sample sets 1Y  and 2Y  which belong to the class labels 1ω and 2ω  respectively. The 

transformation is conducted using a LDA directional vector/matrix or orientation W 

of size hd × (in this illustration 1=h ) i.e. W: x y→ , or jjy xWT=  for nj ,,K1= . 

The respective probability distributions of 1Y  and 2Y  are also shown. Suppose that a 

classifier has divided the 1-dimensional plane into two regions 1R and 2R . There are 

two possibilities in which a classification error could occur; either observation y (W: 

x y→ ) falls in the region 1R  and the true state of nature is 2ω , or y falls in the region 

2R and the true state of nature is 1ω . Since these events are mutually exclusive and 

exhaustive (Duda and Hart, 1973), we can define probability of error as: 
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∫∫
∈∈

+=

∈+∈=
∈+∈=

21

              
             

Perror  

1122

112221

2112

RyRy
dyPypdyPyp

PRyPPRyP
RyPRyP

)()|()()|(
)()|()()|(

),(),(

ωωωω
ωωωω

ωω
 

 

where )( jP ω is the a priori probability of jY . In a multiclass case, it would be easier 

to find the probability of being correct (Duda and Hart, 1973). Therefore 

 

 ∑ ∫
= ∈

=
c

j Ry
jj

j

dyPyp
1

   Pcorrect )()|( ωω  

 

We can also compute the total probability of Y by evaluating the probability densities 

separately for each of jY and finally adding the computed densities i.e. 

 

 ∑ ∫
= ∈

=
c

j Yy
jj

j

dyPyp
1

   Ptotal )()|( ωω . 

 

Ptotal function is independent of region jR , therefore it will remain unchanged with 

respect to the values of jR . It can be observed that Pcorrect and Perror add up 

together to give Ptotal i.e.  

 

 Perror Pcorrect   Ptotal +=  

 
 

Figure 5.2: Probability error for two-class problem 
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Therefore the probability error function can be written as 

 

 ∑ ∫
= ∈

−=

−=
c

j Ry
jj

j

Pypb

b

1
           

Pcorrect Perror 

)()|( ωω       5.1 

 

where b is a constant and is equal to Ptotal. In practice the number of samples is 

limited to a finite value, thus the integration in equation 5.1 is approximated by the 

summation using the following estimation (Anton, 1995)  

 

 ∫ ∑∑
==∞→

∆≈∆==
n

k
k

n

k
kn

xxfxxfdxxfA
11

)()(lim)(      5.2 

 

Using this estimation (equation 5.2), equation 5.1 can be rewritten as 

 

 ∑ ∑
= ∈

∆−=
c

j Ry
jj

j

VPypb
1

Perror )()|( ωω      5.3 

 

where V∆  is a volume of tiny hypercube. This V∆ is a scalar quantity and depends 

upon the transformed sample set Y . Equation 5.3 is a probability error function for a 

scalar y which can be extended to vector y simply by replacing a vector in place of 

scalar y. 

 

Constant V∆ is independent of any class and therefore is taken outside from the 

summations of equation 5.3. The value of a priori probability nnP jj /) =ω(  is 

substituted in equation 5.3, this yields Perror as 

 

 ∑ ∑
= ∈

−=
c

j R
jj

j

pnkb
1

Perror 
y

)|(y ω       5.4 

 

where nVk /∆=  is a constant.  
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The basic LDA transformation ( xWy T= ) has to be changed to account for the 

rotation of the original space. We introduce a rotational transformθ prior to LDA and 

transform the feature vector x belonging to class jω as follows:  

 

 ]µ)µ(x[θWy xx jj
+−= TT        5.5 

 

where 
jxµ is the mean of  χj . 

 

At the beginning when no rotation has taken place then the transformationθwould 

be dd × identity matrix and equation 5.5 would reduce to the basic LDA 

transformation. To find the optimum rotation of θ  it is required to differentiate scalar 

function (equation 5.4) with respect to the transformation matrix θ . The value of θ  

that corresponds to the minima of Perror would be the optimum rotation of θ . 

Therefore from equation 5.4 we get 

 

 ∑ ∑
= ∈ ∂

∂
−=

∂
∂ c

j R
jj

j

pnk
1

Perror 
y

)|(y
θθ

ω       5.6 

 

where y is from equation 5.5. The next thing is to find the probability 

distribution )|(y jp ω before differentiating it with respect to θ . One way to estimate 

)|(y jp ω is to use parametric techniques where we assume a functional form of 

Gaussian distribution characteried by a few parameters, for example, assuming y to be 

multidimensional Gaussian1. Therefore )|(y jp ω  of equation 5.6 turns to be 

 

 ( )












−Σ−−
∂
∂

=
∂
∂ − )µ(y)µ(yexp

|Σ|)(θ
|(y

θ yyy/
y

/ jjj

j

hj π
p 1T

2
1

2122
1 )ω   5.7 

 

                                                 
1 It should be noted that Gaussian density is used here for simplicity purposes only. Other types of parametric 
functions or even non-parametric way of computing densities can be used, since we are only interested in 
developing some sort of measurement for the overlapping of samples belonging to different classes in the reduced 
feature space. Thus the assumption of Gaussian density )|(y jp ω  will not much affect the measurement even if 

the density is non Gaussian. 
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where 
jyµ and 

jyΣ are mean and covariance of jY . Substituting equation 5.5 in 

equation 5.7 we get 

 

   
( )













−−−
∂
∂

=

∂
∂

=
∂
∂

− )µ(xθWθWΣ)µ(xexp
|Σ|)(θ

|Wθ,(x,|(y

xyx/
y

/ jjj

j

h

jj

π

pp

TT1T
2
1

2122
1                   

)) ω
θ

ω
θ

 5.8 

 

where x is the corresponding vector of jR∈y , that is only those vectors of ∈x  χj are 

taken that correspond to jR∈y in the equation. Let us represent this correspondence 

relation by )x(y jR∈ . The following Lemma would help in solving equation 5.8.  

 

_____________________________________________________________________ 

Lemma 1: Let the scalar function )exp( u2
1−  be a differentiable function of a 

dd × square matrix θ . Suppose ΛθθWBWΛ TTT=u  where Λ be any vector of size 

1×d , B is a square matrix of size hh× and W is a rectangular matrix of size 

hd × such that dh < . It can be assumed that both the matrices (B and W) and the 

vector (Λ ) are independent of θ . Then the gradient of )exp( u2
1−  is defined 

as TTT
2
1

2
1

2
1 )()( W)BθW(BΛΛexpexpθ +−−=−∇ uu . 

 

Proof 1: The derivative of scalar )exp( u2
1−  with respect to matrix θ  can be given as 

 

))() (      {                     

 {                     
(A))) (                                                                                                           

  {                     

 {                     

  

TTTT
2
1

2
1

TTTT
2
1

2
1

TTTTTTT
2
1

2
1

TTTTTT
2
1

2
1

TTT
2
1

2
1

2
1

DAtrADtrtraceu

traceu
trAtr

tracetraceu

tracetraceu

traceuu

T

=∂+−−=

∂+−−=

=

∂+∂−−=

∂+∂−−=

∂−−=−∂

()]}θW)BW(Bθ[ΛΛ)exp(

Λ)]}θW)BW(Bθ[Λ)exp(
(

Λ]}θθWBW[ΛΛ)]θWWBθ[Λ)exp(

Λ]}θθWBW[ΛΛ)]θWBWθ[Λ)exp(

Λ)]θθWBW(Λ[)exp()exp(

Q

Q

 

∴ TTT
2
1

2
1

2
1 )()( W)BθW(BΛΛexpexpθ +−−=−∇ uu  
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Using Lemma 1 we can rewrite equation 5.8 as 

 

[ ]TT11T
2
1

22
1

212 ) W)ΣθW(Σ)µ)(xµ(x)exp(|(y
θ yyxx|Σ|)( /

y
/

−− +−−−−=
∂
∂

jjjj
j

h up
πjω  5.9 

 

where )µ(xθWθW)µ(x xyx jjj
u −Σ−= − TT1T . Substituting equation 5.9 in equation 5.6, 

we get 

 

[ ]∑ ∑
= ∈

−− +−−−′=
∂
∂ c

j R

n

j
jjjj

j

j uk
1

TT11T
2
1

21Perror 
)x(y

yyxx|Σ|
W)ΣθW(Σ)µ)(xµ(x)exp(

θ /
y

       5.10 

 

where ))(/( / 222 hkk π=′ . Equation 5.10 can also be written in the expectation form 

i.e. 

 

 ∑
= ∈

′=
∂
∂ c

j R

n

jj
jj

j Ek
1

FPerror 21

2

)]Σ,µW,θ,(x,[
θ yx)x(y|Σ| /

y
  

 

where  ]W)ΣθW(Σ)µ)(xµ)[(xexp()Σ,µW,θ,(x, yyxxyx
TT11T

2
1F −− +−−−=

jjjjjj
u  and 

][•E is the expectation of )F(• with respect to x. 

 

Since the topography of the original data should remain unchanged during the 

rotationθ , the column vectors of θ should be orthonormal. This means the square 

matrix θ is orthonormal i.e. dd×= ITθθ , thus we can obtain the following gradient 

algorithm: 

 

 ∑
= ∈Σ

Σ∝∆
c

j R

n

jj
jj

j E
1

F 21

2

)],µW,θ,(x,[θ yx)x(y|| /
y

      

    21T /θ)θ(θθ −←         

 

It is well known that the gradient algorithm is slow in convergence and depends on an 

initial choice of the learning rate. Thus the convergence is very critical to the initial 
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choice of the learning rate. However, fixed point algorithm (Hyvärinen and Oja 1997) 

can be applied here which would make the learning drastically faster and more 

reliable. Thus by using the fixed point algorithm we can obtain the following 

algorithm: 

 

 ∑
= ∈Σ

Σ∝
c

j R

n

jj
jj

j E
1

F 21

2

)],µW,θ,(x,[θ yx)x(y|| /
y

             5.11 

21T /θ)θ(θθ −←                    5.12 

 

The values of W and
jyΣ will be changing depending upon the rotation of the original 

feature space, whereas the center of class
jxµ will remain invariable for any such 

rotation since the rotation of the original feature space is always with respect to its 

center 
jxµ . The matrices W and

jyΣ should be updated for every iteration of θ  for 

equation 5.11. The inverse of θθT in equation 5.12 is computed using eigenvalue 

decomposition. There are iterative methods for orthonormalization that avoid the 

matrix inverse and eigendecomposition. In that case the rotation matrix θ  can be 

orthonormalized by using symmetric orthonormalization procedure starting from a 

nonorthogonal matrix and continuing the iterative process until dd×≈ ITθθ  (Hyvärinen, 

1999).  

 

In this algorithm we have used orientation W which we have derived from LDA 

technique. One can also investigate some other criteria of separating and/or 

classifying the class vectors. For example instead of W, Gaussian model or some 

other useful techniques can be used. Investigation of other appropriate 

transforms/techniques that could be applied to the rotational method instead of W is 

beyond the scope of this paper.  

 

The value of Perror can be estimated more economically also for each of the iteration 

of equations 5.11 and 5.12 by applying equation 5.13 instead of applying equation 5.1 

as: 
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n

RnR
c

j
jjj

j
jj ∑∑

== −=−= 1

c

1 1
χin  samples ofnumber  total

given    tobelongs samples ofnumber 
1Perror

),|( ωω
      5.13 

 

To obtain the Perror in percentage simply multiply it by 100. Region jR of training 

samples can be obtained by several methods. We have used minimum distance 

classification method (taking centroid of a class as a prototype) for finding the 

regions.  

 

 

5.3.1   Rotation of Original Feature Space for m Iterations 
 

We know that Rotational LDA algorithm is an iterative algorithm and it rotates the 

original feature vectors with respect to the center of their class separately, until the 

minimum overlapping error is obtained. It would be therefore interesting to see what 

happens to the original feature vectors ∈x χ
j∈

dR after the mth iteration of the 

algorithm. Lets denote the rotated feature vectors after the first iteration as 1x . It can 

then be expressed in terms of original feature vectors x as 

 

Iteration 1:   
jj xx µ)µ(xθx +−= T

11               5.14 

 

After 2nd iteration the feature vectors would be 

 

Iteration 2:   
jj xx µ)µ(xθx +−= 1

T
22               5.15 

 

Similarly after mth iteration, feature vectors can be given as 

 

 Iteration m:   
jjmmm xx µ)µ(xθx +−= −1

T             5.16 

    

It should be noted that the location of the center of a class is not changing since the 

rotation of feature vectors is always with respect to the center of their class. 
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Substituting equation 5.14 in equation 5.15 we get 

 

 
jj xx µ)µ(xθθx +−= T

1
T
22  

 

Similarly we can say that 

 

 
jjmm xx µ)µ(xθθθx +−= T

1
T
2

T K  

or 
jjm xx µ)µ(xθx +−= T              

where mθθθθ K21=  

 

The number of iterations m is usually a small value (2 ~ 4) unless the given data is 

very complicated. The next section describes the training session of the algorithm. 

 

 

5.3.2   Training Session of the Rotational LDA Algorithm 
 

Training session involves finding the optimum rotationθ of the original feature space 

such that the overlapping error between the adjacent classes is minimum in the 

transformed domain. The first step is to find the orientation W (assumingθ to be 

identity matrix) by applying basic LDA procedure. The obtained orientation W will 

be such that the classes are maximally discriminated in the reduced dimensional 

space. This transformation may produce overlapping of samples in reduced 

dimensional space between adjacent classes which cannot be reduced any further by 

moving the direction (orientation) W around the origin in reduced dimensional feature 

space. However, by applying rotation θ  in original feature space we can get a reduced 

dimensional feature space with much less overlapping between the adjacent classes. 

The application of this rotational step improves the recognition performance 

significantly. The training session is briefly illustrated here under for an introduction: 

 

• Find the optimum orientation W using the basic LDA procedure. Let the 

minimum error be P1. 

• Rotate the original space to get error P2 such that 12 PP < . 
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• Repeat the rotation until the minimum error Pt is found ( 11-tt PPP << ... ). 

Let the rotation for this minimum error be θ .  

The feature vector x of each class is separately taken for the rotational transform θ . 

This transformation is taken with respect to the center of their class. The detailed 

training session is illustrated in table 5.1. It should be noted (from table 5.1) that in 

first iteration ( 1=m ) LDA is computed for W but rotation is not applied to the 

feature vectors of individual classes for LDA computation. Rotation is applied only 

after the first iteration (i.e. 2nd iteration onwards) on feature vectors for LDA 

computation. Some of the advantages and drawbacks of the algorithm are illustrated 

as follows: 

 

 

5.3.3   Advantages of Using the Algorithm 
 

1. It gives much less overlapping error between the adjacent classes in the 

training phase as compared to LDA method by finding the optimum 

rotation θ  for the original feature space. 

2. The optimum rotation helps in improving the recognition performance 

significantly. 

3. It is able to achieve quite low classification error at even very low 

dimensional space. 

4. The algorithm converges very fast due to the use of fixed-point algorithm. 

 

 

5.3.4   Drawbacks of the Algorithm 
 

1. One of the drawbacks of the algorithm (table 5.1) is to compute basic LDA 

at each stage of iteration. This means the algorithm is computing within-

class scatter matrix ( WS ) and between class scatter matrix ( bS ) for each of 

the iteration. 

2. It can also be observed from table 5.1 that training feature vectors are used 

and updated in each stage of the iteration. 
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3. The use of expectation operator in equation 5.11 (or step 10 in table 5.1) 

would slow the process. 

4. Class labelling for single test vector is not possible (discussed later in 

section 5.3.8). 

 

We have provided suggestions in section 5.3.6 to minimize some of its drawbacks.  

 

 

5.3.5   Storage Requirement of the Algorithm  
 

Some parameters are stored during the training phase which will be used in the testing 

phase. These parameters and their corresponding sizes are depicted in table 5.2. The 

total parameter requirement for storage is the sum of column 3 of table 5.2. 

 

 

5.3.6   Suggestions for Optimizing the Training Phase 
 

Some suggestions are given here that would address the drawbacks presented in 

section 5.3.4. For the first drawback, the LDA procedure can be modified such that it 

will not compute WS and bS for each step of the iteration process. We can modify 

these matrices by investigating how WS and bS alter during the iteration process. It is 

known that WS is the sum of scatter matrices jS  (Duda and Hart, 1973) i.e. 

 

∑
=

=
c

j
jW

1
SS  

where ∑
∈

−−=
j

jjj
χx

xx )µ)(xµ(xS T  

 

After rotation θ̂ , feature vector x will change according to equation 5.16, this would 

change the scatter matrix as 

 

 θ̂Sθ̂θ̂])µ)(xµ(x[θ̂Ŝ
x

xx jj
j

jj

TTT =−−= ∑
∈χ
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TABLE 5.1: Rotational LDA algorithm for estimating orientation W and rotation θ . 

 
1. Find the mean of each class d

j
Rµx ∈  for cj K1= . 

2. Initialize dd×← Iθ , dd×← Iθ̂ , %100PerrorP0 ←=  and set counter 0←m . 
3. while (true) 
4. Increment counter 1+← mm . 
5. Apply basic LDA to find orientation W, the transformed samples hRy∈  and 

h
j

Rµy ∈ using χ, i.e. ←]µW,[y, y j
basic_LDA_method (χ). 

6. Perform classification (to find jR ) and compute mP (new Perror). 
7. Check if mP is decreasing 
  if ( 1PP −> mm ) 
      break 
  end 
8. Store orientation matrix WŴ ← and center of each class h

j
Rµy ∈ .2  

9. Compute covariance 
jyΣ (note covariance is computed here instead of step 5 

since if the ‘break’ occurs then it would be useless to compute it at step 5).  
10. Update rotation matrix 
  θ̂θθ←  

  ∑
= ∈Σ

Σ←
c

j R

n

jj
jj

j E
1

F 21

2

)],µW,,θ̂(x,[θ̂ yx)x(y|| /
y

 

11. Orthonormalize rotation matrix 
  21T /)θ̂θ̂(θ̂θ̂ −←  
  21T /θ)θ(θθ −←  
12. Update χj (θ̂T← χ

j jj yy µ)µ +−  for cj K1=  
13. end 

 
 

TABLE 5.2: List of parameters stored during the training phase which will be 

required in the testing phase with their corresponding sizes. 

 

Parameters Unit Size Total     size 
for c classes 

θ  dd ×  2d  
W hd ×  dh  

   
jyµ  1×h  ch  

 
                                                 
2 After careful observation one would be convinced that the orientation W and mean 

jyµ should be 

stored at step 8 instead of step 5 for their use in the testing session. At the occurrence of break point 
(step 7) the prior value of W (i.e. Ŵ ) and 

jyµ should be considered for the testing session. 
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Therefore modified within-class scatter matrix will become 

 

 θ̂Sθ̂Ŝ WW
T=  

 

On the other hand, bS depends on the class centers and the total mean vector (Duda 

and Hart, 1973) which would not change during the rotation. Therefore bS will remain 

unchanged with respect to rotation. Thus the new value of orientation W can be 

computed directly from rotation θ̂  and the previous value of WS  using eigenvalue 

decomposition i.e. 

 

 θ̂Sθ̂S WW
T←  

 iWiib ww SS λ=  

 

where iw are the column vectors of W corresponding to iλ . This would save 

processing time in computing these matrices for each of the iterations. It should be 

noted here that though we have used orientation W from LDA technique, one could 

apply some other techniques instead of LDA together with the rotational method for 

the improvement of recognition and/or classification. Then in that case the 

optimization criteria will be different depending upon the technique then used. 

 

The second drawback (section 5.3.4) might be addressed by introducing some kind of 

weighting coefficients which would update the parameters depending upon the 

rotation and their previous values. Introducing this type of updating process might 

overcome this drawback. 

 

For the third drawback, the expectation operation (section 5.3.4) might be omitted by 

introducing on-line or adaptive version of the algorithm, where parameters may be 

updated for every feature vector x instead of taking the class average of feature 

vectors. 

 



 80

These suggestions are not investigated in detail any further in this paper. However, 

interested readers may wish to consider pursuing these suggestions further in 

minimizing these drawbacks.  

 

 

5.3.7   An Example of the Training Phase of Rotational LDA 
 

This section describes an example of the training phase of the Rotational LDA 

algorithm. For this purpose Sat-Image dataset from UCI repository (Blake and Merz, 

1998) is used. The Sat-Image dataset consists of 6 distinct classes with 36 dimensions 

or attributes. It consists of 4435 feature vectors for training purpose and 2000 feature 

vectors for testing purpose. However, in this example we have taken some of the 

features from the first three classes and from the first two dimensions. The 

coordinates of training dataset taken for this example are given as follows: 

 

 Class 1 Class 2 Class3 

Number of training feature vectors per class:    600   400  800 

 

Parametric details are given in table 5.3. All the values are given up to 4 decimal 

places. 

 

TABLE 5.3: List of the values of parameters during an example run 
 

Initial dimension 2=d , reduced dimension 1=h , 3=class , %100P0 =  

T086796  628363
1

].,.[µx = , T3.02754  585050
2

],.[µx = , T04.32751  815086
3

],.[µx =  
Iteration 

m 
  Perror         W                      θ                                θ̂  
   (Pm) 

       
     

1yµ         
2yµ          

3yµ  
Figure 

   11.2658   24.5688     27.9005 
     

1yΣ         
2yΣ         

3yΣ  
 
1 21.1667   
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88370   
.
.
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01

             






 −
90700  42110   
4211090700   

..
..

 

   23.4744     8.7760       9.2393 

5.3a 

      
1yµ         

2yµ         
3yµ  

 -50.1910   -11.1612   -45.3634 
      

1yΣ        
2yΣ         

3yΣ  

 
2 18.7222 








− 85980

51070   
.
.








 −
90700  42110   
4211090700   

..
..









−−
−

8396054320
5432083960   
..
..

 

   27.2460    13.7915      8.2005 

5.3b 

      
1yµ        

2yµ          
3yµ  

   96.6242    63.5340  121.1749 
      

1yΣ       
2yΣ         

3yΣ  

 
3 0.6667    








39810
91730
.
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−−
−

9903013910
1391099030   
.
.

.

.
  








−−
−

7260068770
6877072600   
..
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    24.7971   10.2408      8.3090 

5.3c 
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In this example the original feature dimension is 2 and it is reduced to 1-dimensional 

plane for recognition and/or classification purposes. It can be seen from table 5.3 that 

the algorithm converged at the third iteration. At first iteration there is no rotation of 

the original feature space, only basic LDA method is applied to compute the value of 

orientation W. The overlapping error is noted to be 21.17% at the first iteration 

(without any rotation). When first rotation is applied at second iteration the error 

reduces to 18.72% and to only 0.67% at the third iteration (on the application of 

second rotation). This example is also illustrated in figures 5.3a, 5.3b and 5.3c for 

iterations 1, 2 and 3 respectively. In all the three figures, the projection of feature 

vectors is illustrated from 2-dimensional space onto 1-dimensional plane for all the 

three classes. Figure 5.3a depicts the projection when only basic LDA method is 

applied (i.e. iteration 1). Thereafter, rotation is applied which are depicted in figures 

5.3b and 5.3c. It is quite clear from all the three figures that the rotation does help in 

minimizing the overlapping error significantly in the transformed space which is not 

possible by LDA method.  

 

 

 

 

 

 

 

 

Figure 5.3: Illustration of the transformation from 2-dimensional feature space to 1-

dimensional feature plane using Rotational LDA method on a 3-class problem. 

 

The testing or classification is discussed in the next section. 

 

 

5.3.8   Classification Phase of the Rotational LDA Algorithm 
 

The strategy of classifying or testing a test vector using Rotational LDA algorithm is 

slightly different from the basic LDA algorithm. It is not possible to classify one 
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unknown feature vector at a time using this algorithm. This is due to the fact that the 

rotation θ  is applied individually with respect to the center of each given class in the 

training phase for feature vectors. If an unknown feature vector is tested at a time, 

then it would be rotated with respect to the center of given classes separately prior to 

the transformation onto lower dimensional space by orientation W. The rotation 

would change the location of a test vector depending upon the class centers. 

Therefore, if a test vector is rotated with respect to different class centers then it could 

fall in a region of different classes. Thereby the application of orientation W for the 

projection onto lower dimensional space would no longer help in classifying the test 

vector. However, this problem can be overcome quite easily by considering more than 

one test vectors at a time. Then these test vectors can be rotated around their own 

center prior to the application of W. Therefore, if L test vectors are taken at a time 

then these L vectors are firstly rotated around their own center using rotation θ  before 

transforming to lower dimensional space by W. Thus, the constraint of this algorithm 

is to have more than one test vectors which should be of the same class labels at a 

time. The classification phase is illustrated in table 5.4. 

 

TABLE 5.4: Classification phase of the Rotational LDA algorithm 

 

 
1. Take L test vectors }x,,x,{xˆ LL K21=χ  such that kL ωχ ∈ˆ where k is 

unknown. 
2. Find the rotation of these L test vectors with respect to the center of Lχ̂ i.e. 
 

LLrot µ)µ(xθx +−= T  
 

        where Lχ̂x∈  and ∑
=

=
L

j
jL L 1

1 xµ . 

 
3. Transform rotx to lower dimensional space by W 

 
rotxWy T=  

 
4. Associate the class label of the closest center to y 

 

||µy||minarg y j

c

j
k −=

=
 

1
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It can be observed from table 5.4 that minimum distance classification method has 

been applied to label the unknown feature vectors. The classification can easily be 

extended for Bayesian classifier. In that case step 4 of table 5.4 will be replaced by 

Bayes decision rule as 

 

)]()|(y[maxarg jj

c

j
Ppk ωω

1=
=    

    

where )|(y jp ω is the probability density function of y and )( jP ω is the a priori 

probability as described in section 5.3. The next section describes the computational 

complexity of the algorithm. 

 

 

5.3.9   Computational Complexity 
 

The computing complexity of the classification phase (table 5.4) is illustrated in table 

5.5. 

 

TABLE 5.5: Computational complexity of the classification phase of the Rotational 

LDA algorithm 

No. of step from table 5.4 Computational complexity 

step 2 )()( dLdOddLdO +≈++ 222  

step 3 )( hdhO −2  

step 4 )( cchO +  

 

 

The computing complexity of step 2 is dominating among other steps. Thus, the total 

computational complexity of the classification phase is estimated to be )( dLdO +2 . 

The next section indulges on the experimentation of the algorithm on several 

corpuses.  
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5.3.10   Experimentation and Comparison of Rotational LDA Method 

Using Several Corpuses 
 

This section demonstrates the performance of the proposed algorithm in comparison 

with LDA, minimum distance classifier (MDC) and Nearest Neighbor (NN) methods. 

Seven sets of machine learning corpuses have been utilized namely Sat-Image dataset 

(Blake and Merz, 1998), Waveform dataset (Blake and Merz, 1998), TIMIT3 dataset 

(Garofalo et al., 1986), multiple features (Mfeat) dataset for Karhunen-Loéve 

coefficients, Fourier coefficients, Zenike moments and pixel averages (Jain et al., 

2000). The coordinates of these datasets taken in this experiment are illustrated in 

table 5.6. 

 

TABLE 5.6: Coordinates of the datasets used for the experimentation 
Name of dataset Number 

of classes 

Dimensions 

d 

Number of vectors 

used in training phase 

Number of vectors 

used in testing phase 

Sat-Image 6 36 4435 2000 

Mfeat-Fourier coefficients 10 76 1500 500 

Mfeat-Zernike moments 10 47 1500 500 

Mfeat-pixel averages 10 240 1500 500 

Mfeat-KL 10 64 1500 500 

TIMIT 10 39 9357 3222 

Waveform 3 21 3600 1400 

 

To conduct the experimentation, original feature vectors are reduced from d-

dimensional space to h-dimensional space, where 121 −= ch ,,, K since cd > for all 

the databases. The ‘classification error in percentage’ (ε) is reported for all the h 

dimensions. The lesser the classification error, the better the performance of the 

algorithms. It should be noted that MDC and NN are not dimension reduction 

methods. Therefore the classification error tests for these methods are conducted on d-

dimensional space, whereas for LDA and Rotational LDA the tests are conducted on 

h-dimensional space. For Rotational LDA, 10=L vectors are taken at a time for 

testing and Perror is also reported for each of the iterations until convergence is 

reached. The results are reported in table 5.7 for all the databases. 

                                                 
3 From TIMIT corpus a set of 10 distinct vowels are extracted, then each vowel is divided into three 
segments and each segment is used in getting mel-frequency cepstral coefficients with energy-delta-
acceleration (MFCC_E_D_A) feature vectors (Young et al., 2002). 
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In table 5.7 there are some blank spaces (marked as ‘-’) under iteration III columns, 

this means that the Rotational LDA algorithm converged prior to iteration III (i.e. at 

iteration II). 

  

It is evident from all the conducted tests that Rotational LDA is performing far better 

than LDA technique in terms of reducing the classification error. The appreciation of 

the algorithm comes when the classification error produced was less than the NN and 

MDC classifiers for all the tests.  

 

The minimum classification error for Sat-Image dataset produced by LDA is 19.2%, 

whereas only 1.1% by Rotational LDA algorithm. Similarly for databases Mfeat-

Fourier coefficients, Mfeat-Zernike moments, Mfeat-pixel averages, Mfeat-Karhunen-

Loéve coefficients, TIMIT and Waveform, minimum classification error produced by 

LDA are 19.0%, 19.8%, 4.2%, 5.0%, 11.2% and 17.8% respectively, whereas that by 

Rotational LDA are 3.8%, 12.0%, 0.0%, 0.2%, 5.7% and 4.1% respectively. Thus, 

minimum classification error rates are better for Rotational LDA for all the datasets 

used in the chapter. It can also be observed that Rotational LDA is producing better 

classification error rate at very low dimensional space (1 or 2) for all the datasets 

except for the TIMIT dataset. Nonetheless, the classification error for TIMIT reduces 

gradually and becomes better than LDA algorithm when dimension h is increased. 

Overall, it can be concluded that Rotational LDA performs better than the other 

techniques presented in this chapter. The next section follows with our concluding 

remarks and suggestions for future work. 

 
 
 
5.4   Summary and Future Work 
 

By considering rotational transform in the original feature space, a more general 

perspective of LDA can be envisioned: rotational LDA. It was seen that rotational 

LDA plays a major role in reducing the overlapping between the classes of the 

projected samples in reduced feature space. Consequently, this increased the 

classification performance which was empirically demonstrated. The proper 

mathematical derivations were also presented to support the arguments.  
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The following suggestions could be made for future work: 

 

• Optimize the Rotational LDA algorithm such that the iterative application of 

original feature vectors can be minimized or removed. 

• Apply some other discriminant techniques than LDA for further 

improvements. 

• Develop a criterion for training phase that could approximately identify the 

number of samples L to be considered during the testing phase of the 

algorithm, alternatively, design a method that does not require 1>L  samples 

to be considered at a time. 

 
 
TABLE 5.7: A comparison of algorithms using classification error in percentage (ε ) 
as a prototype. 
 

Sat-Image Mfeat – Fourier coefficients Mfeat – Zernike moments 

h LDA 
   
  ε 

      Rotational LDA 
          Perror – iterations 
  ε         I         II         III 

h 
 
 

LDA 
 
   ε 

      Rotational LDA 
          Perror – iterations 
 ε          I          II       III 

h 
 
 

LDA 
 
   ε 

      Rotational LDA 
          Perror – iterations 
  ε          I         II        III 

1       50.9     18.9   49.36   0.18     0.14  
2       27.4      2.5    25.32     0           - 
3       19.2      1.8    17.79     0           - 
4       19.2      1.6    17.61     0           - 
5       19.2      1.1    17.54     0           - 
 
NN = 9.7, MDC = 23.4. 

Mfeat – pixel averages 

1        55.2     43.0  56.33   28.00     - 
2        31.0     24.8  30.40   16.27     - 
3        25.6     10.2  24.00    6.60   6.13 
4        24.2      8.8   19.33    6.27      - 
5        23.2      7.2   18.73    3.60   4.27 
6        20.8      4.4   17.00    5.27      - 
7        20.0      3.8   16.80    4.53      - 
8        19.0      6.8   16.33    5.73   5.274 
9        19.4      7.4   14.67    2.00      - 
 

1       60.2      50.0    59.80      0         -   
2       43.6      32.0    41.27      0         - 
3       39.2      28.0    36.53      0         - 
4       36.6      12.0    34.33      0         - 
5       21.6      14.0    24.53      0         - 
6       21.0      16.0    24.20      0         - 
7       20.2      22.0    22.60      0         - 
8       19.8      14.0    21.40      0         - 
9       19.8      14.0    21.53      0         - 
 h LDA 

 
   ε 

      Rotational LDA 
          Perror – iterations 
  ε         I           II       III 

NN = 17.8, MDC = 20.2. NN = 18.0, MDC = 24.6. 

Mfeat –Karhunen Loéve coefficients TIMIT – vowels 
 

h 
 
 

LDA 
 
   ε 

      Rotational LDA 
          Perror – iterations 
  ε         I          II         III 

h 
 
 

LDA 
 
   ε 

      Rotational LDA 
          Perror – iterations 
  ε          I          II       III 

1       56.2      47.2    52.80   7.67   7.00 
2       27.2      11.2    22.13   0.07      0 
3       15.6        0       10.07      0        - 
4        8.8         0        4.00       0        - 
5        7.2         0        2.47       0        - 
6        6.2         0        2.13       0        - 
7        4.2         0        1.73       0        - 
8        4.8         0        1.53       0        - 
9        5.6         0        1.60       0        - 
 
NN = 2.8, MDC = 6.2. 

Waveform 

h LDA 
 
   ε 

      Rotational LDA 
          Perror – iterations 
  ε         I          II        III 

1       38.1      10.4   40.22  28.11   4.92 
2       17.8       4.1    16.03   9.75    1.22 
 

1       52.2      56.0  53.40  30.07  29.87 
2       29.8      12.8  27.53   6.07    4.33 
3       17.2       2.4   14.67   1.47    0.13 
4        9.6        1.0    7.27     2.8     0.475 
5        7.6        0.2    5.40      0         - 
6        6.0        0.2    3.87      0         - 
7        5.4        0.8    2.87      0         - 
8        5.0        0.4    3.00      0         - 
9        5.2        0.2    3.07      0         - 

1       58.7     62.5     59.66      0        - 
2       28.1     33.7     29.58      0        - 
3       18.4     34.6     17.79      0        - 
4       16.1     18.2     15.20      0        - 
5       12.6     24.1     12.78      0        - 
6       12.0     18.7     11.70      0        - 
7       11.3      9.3      11.06      0        - 
8       11.3     14.2     11.01      0        - 
9       11.2      5.7      10.99      0        - 

NN = 23.3, MDC = 20. NN = 3.2, MDC = 6.4. NN = 26.0, MDC = 24.7. 

 

                                                 
4 The process stops here at 4th iteration. The Perror value is 3.6 for the 4th iteration. 
5 The process stops here at 5th iteration. The Perror values are 0.4 and 0.0 for iterations 4 and 5 
respectively. 
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Chapter 6 

 

Class-Dependent PCA, MDC and LDA: A Combined 

Classifier for Pattern Classification 
 

6.1   Abstract 
 

Several pattern classifiers give high classification accuracy but their storage 

requirements and processing time are severely expensive. On the other hand some 

classifiers require very low storage requirement and processing time but their 

classification accuracy is not satisfactory. In either of the cases the performance of the 

classifier is poor. In this chapter we have presented a technique based on the 

combination of minimum distance classifier (MDC), class-dependent principal 

component analysis (PCA) and linear discriminant analysis (LDA) which gives 

improved performance as compared with other standard techniques when 

experimented on several machine learning corpuses.  

 

 
6.2   Introduction 
 
 

Humans can easily recognize faces, spoken words, handwritten or printed digits, 

images and many other things in everyday life. A high school teacher can recognize 

several of his/her students in a classroom just by looking at their faces, though it 

would be difficult for him/her to recognize the faces of all the students in his/her 

school. Thereafter he/she can also speak out their names or act accordingly once the 

faces are recognized. This recognition becomes feasible due to some adaptation 

process in human brain which is a gift of nature to mankind. In other words, if there is 

a limited number of categories or classes (here, student faces) then recognition 

performance may be improved however the same might not be very efficient if 

several categories are present. 
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Over the past several years study on brain has been conducted and as a result, 

complex mathematical models have been developed with similar functionalities as the 

brain but at limited extent only. At present, several neural and cognitive systems have 

evolved which are of immense value in the applications such as banking, multimedia, 

forensic science, computer vision, remote sensing, image recognition, speech 

recognition, defect detection in manufacturing, obstacle avoidance in robotics and 

others. The recognition of objects depend upon several characteristics; for example in 

face recognition, location of eyes, width and length of nose/mouth, length of 

eyebrows and complexion etc. are some characters which would give information 

about a face. The objective of pattern recognition is to identify any given object or 

pattern and provide some actions or decisions using computers or automated systems.  

 

The pattern recognition problem can be divided into two main categories (i) 

supervised classification: where the state of nature for each pattern is known and (ii) 

unsupervised classification: where the state of nature is unknown and learning is 

based on the similarity of patterns (Jain et al., 2000). In this chapter only supervised 

pattern classification procedures have been considered. A supervised classification 

could be subdivided into two main phases namely training phase and testing phase. In 

the training phase the classifier is made to learn by known categories of patterns and 

in the classification or the testing phase unknown patterns which were not part of the 

training dataset are assigned class label of the nearest category of trained patterns. 

 

How well a given pattern classifier/recognizer can classify or make some predefined 

decisions in the shortest possible time and at the lowest cost would determine its 

performance. In general the performance of a classifier depends on several factors. 

Some of them are (Jain et al., 2000): 

 

(i) number of training samples available to the classifier. 

(ii) generalization ability i.e. its performance in classifying test patterns which 

were not used during the training stage. 

(iii) classification error – some measured value based on the incorrect decision of 

the class labelling of any given pattern.  

(iv) complexity – in some cases the number of features or attributes (dimensions) 

are relatively larger than the number of training samples usually referred as 
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curse of dimensionality. 

(v) speed – processing speed of training and/or testing phase(s) and  

(vi) storage – total amount of parameters required to store after the training 

phase for classification (testing) purposes. 

 

For a fixed number of training samples in a given classifier model, the performance 

mainly depends on the generalization ability/capability (classification accuracy), 

speed and implementation cost (due to storage of information). The number of 

parameters stored during the training phase that is required in performing 

classification task (testing), is referred as ‘total parameters’. For a given classifier we 

can associate the total parameters to the implementation cost of the classification 

system and the generalization capability may depend upon the type of parameters 

(distribution, values etc.) used, which is derived from the training phase of classifiers. 

The higher the total parameters required for classification task the costlier the system 

would be. Another important factor is the speed of the classifier. The higher the 

computational speed the lower the processing time. We therefore want to reduce the 

total parameters and processing time and at the same time least sacrifice the 

classification accuracy. In other words, we search for the optimal classification 

accuracy or least classification error, involving as minimum total parameters and 

processing time as possible. This would allow the system to accurately 

classify/recognize an object as quickly as possible at low cost.  

 

Several classifiers are found today in which minimum distance classifier (MDC) is 

one of the most economical one. In MDC each class is estimated by a single 

prototype, usually a centroid. It provides classification at minimal total parameter 

requirement and computational demand but could be at the price of accuracy. The 

goal of MDC is to correctly label as many patterns as possible. The MDC method 

finds centroid of classes and measures distances between these centroids and the test 

pattern. In this method, the test pattern belongs to that class whose centroid is the 

closest distance to the test pattern. For details about MDC see section 2.9.  

 

An alternate way of performing classification is by utilizing linear subspace classifiers 

(Oja, 1983; Oja and Parkkinen, 1984). Here each class is represented by its Karhunen-

Loéve transform (KLT) (Fukunaga, 1990) or principal component analysis (PCA). 
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The objective of PCA is to find a linear transform for each class using the training 

patterns for that class in the feature space. This gives class-dependent basis vectors1. 

The first basis vector is in the direction of maximum variance of the given data. The 

remaining basis vectors are mutually orthogonal and, in order, maximize the 

remaining variances subject to the orthogonal condition. The principal axes are those 

orthonormal axes onto which the remaining variances under projection are maximum. 

These orthonormal axes are given by the dominant eigenvectors (i.e. those with the 

largest associated eigenvalues) of the covariance matrix. In this classifier, each class 

is characterized by class-dependent basis vectors and the number of basis vectors used 

for characterization has to be less than the dimensionality d of the feature space. For 

more details see (Dony and Haykin, 1997) and section 2.12. 

 

Linear discriminant analysis (LDA) is a well known technique for dimensionality 

reduction. In LDA, the dimensional embeddings are reduced in such a way that the 

orientation of the projected data of classes on an arbitrary line or space is well 

separated from each other. The transformation vectors w are taken so that the criteria 

J is maximum, where J is the ratio of between-class scatter matrix (SB) and within-

class scatter matrix (SW) (Duda and Hart, 1973). In a c-class problem the LDA 

projects from d-dimensional space to 1−c  or less dimensional space (Rd→  Rc-1). 

There are some limitations in applying LDA directly viz. matrix SW can become 

singular due to high dimensionality of original feature vectors in comparison with low 

number of training vectors available. To overcome this limitation, a number of 

authors have proposed the use of class-independent PCA prior to LDA in the feature 

extraction stage. Swets and Weng (1996) showed two stage PCA plus LDA method 

where PCA is first used for dimension reduction so as to make WS non-singular before 

the application of LDA especially when training samples are scarce. Belhumeur et al. 

(1997) proposed a projection method which is based on LDA and PCA techniques for 

face recognition. In their technique class-independent PCA is first reduce the original 

space to cN −  (where N is the number of training samples available), and then LDA 

is applied to reduce the dimension to 1−c . Zhao et al. (1998; 1999) demonstrated a 

technique based on the combination of LDA and PCA. A complete Kernel Fisher 

discriminant (KFD) was introduced to implement kernel PCA plus LDA strategy by 
                                                 
1 Note that here we are using the class-dependent PCA for classification. PCA is also used in a class-
independent fashion for feature extraction (Fukunaga, 1990). 
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Yang et al. (2005) after KFD implementation by Mika et al. (2003). Wu et al. (2004) 

presented a direct LDA method that is applicable to small sample size problems. Jian 

et al. (2004) suggested subspace algorithm for determining the optimal projection for 

LDA that addressed two LDA problems viz. ‘small sample size’ and ‘illumination and 

pose variations’. Xiaogang and Xiaoou (2004a) then presented a unified framework 

using PCA, LDA and Bayes techniques for face recognition. Ye et al. (2004) showed 

generalized optimization criteria based on pseudoinverse for discriminant analysis to 

address undersample ( WS being singular) problems. In this chapter we are using class-

dependent PCA prior to LDA for classification purposes as shown in figure 6.12. 

 

                              

 
         Figure 6.1: Framework of MPL classifier. 

 

 

LDA was applied in face recognition (Swets and Weng, 1996; Belhumeur et al., 1997; 

Xiaogang and Xiaoou, 2004a, 2004b; Tae-Kyun et al., 2003), in speech recognition 

(Haeb-Umbach and Ney, 1992; Siohan, 1995; Lieb and Haeb-Umbach, 2000), in 

speech reading (Potamianos and Graf, 1998) and in optical character recognition 

(Chen et al., 2004) and so on. 

 

In this chapter we have presented a unified framework of MDC, class-dependent PCA 

                                                 
2 Figure 1 has been explained in detail in section 6.7. 
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and LDA techniques. For brevity we refer to this combination as MPL where ‘M’, ‘P’ 

and ‘L’ refer to MDC, class-dependent PCA and LDA respectively.  

 

The strategy of combining classifiers has been previously applied by Xu et al. (1992) 

for handwriting recognition. They have illustrated the combination using some basic 

classifiers such as Bayesian and kNN, and shown three categories of combination 

which depend upon the levels of information available from the classifiers. Jacobs et 

al. (1991) suggested supervised learning procedure for systems composed of many 

separate expert networks. Ho et al. (1994) used multiple classifier system to recognize 

degraded machine-printed characters and words from large lexicons. Tresp and 

Taniguchi (1995) presented modular ways for combining estimators. Woods et al. 

(1996) and Woods (1997) presented a method for combining classifiers that uses 

estimates of each individual classifier’s local accuracy in small regions of feature 

space surrounding a test pattern. Zhou and Imai (1996) showed a combination of VQ 

and multi layer perceptron for Chinese syllables recognition. Alimoglu and Alpaydin 

(1997) used the combination of two multi layer perceptron neural networks for 

handwritten digit recognition. Kittler et al. (1996, 1998) developed a common 

theoretical framework for combining classifiers which uses distinct pattern 

representations. Breukelen van and Duin (1998) showed the use of combined 

classifiers for the initialization of neural network. Alexandre et al. (2000) combined 

classifiers using weighted average after Turner and Gosh (1999). Ueda (2000) 

presented linearly combined multiple neural network classifiers based on statistical 

pattern recognition theory. Senior (2001) used combination of classifiers for 

fingerprint recognition. Lei et al. (2002) demonstrated a combination of multiple 

classifiers for handwritten Chinese character recognition and Yao et al. (2002) used a 

combination based on fuzzy integral and Bayes method. 

 

The proposed unification (MPL) could reduce the expected distortion ||][|| jxE µ−  

(due to MDC), mean squared error ]||ˆ[|| 2xxE −   (due to PCA) and maximize the 

criteria function J on feature space Rh after the application of class-dependent PCA, 

where x̂  denotes reconstructed vector of x. All the three individual techniques are 

linearly combined that could help in reducing the classification error. Each constituent 

technique in MPL may have its own local regions where it performs the best and this 
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could give better performance than individual techniques. To successfully apply LDA 

technique in the unification we need to ensure that the scatter matrix WS does not 

become singular otherwise it may restrict the direct use of LDA procedure for 

discriminating features. One way to avoid this situation is to use PCA prior to the 

application of LDA. We have adopted this two stage PCA and LDA procedure (Swets 

and Weng, 1996; Belhumeur et al., 1997; Zhao et al., 1999) which is also known as 

Fisherface method (an LDA based technique) (Belhumeur et al., 1997) and extended 

the approach by considering class-dependent PCA technique. In Fisherface method, d-

dimensional features are firstly reduced to h-dimensional feature space by the 

application PCA and then LDA is applied to further reduce features to k dimensions. 

There are several criteria for determining the value of h (Swets and Weng, 1996; Zhao 

et al., 1999). One way is to select h such that 95% of the variance present in the 

original feature is retained (Swets and Weng, 1996). Thus MPL could also be applied 

under the situation where sample size is scarce.  

 

In this chapter we are not proposing any new strategy for combining single classifiers. 

However, we are using a standard linear combination technique for combining 

distances from the three classifiers and using the combined distance for classification. 

The contribution of this chapter is as follows: 

1. Modified subspace classifier:  In (Oja, 1983; Oja and Parkkinen) as well as 

in (Dony and Haykin, 1997) PCA is taken with respect to origin. We have 

used subspace classifier with respect to the class centers. 

2. We show that out of the three classifiers (MDC, class-dependent subspace 

classifier (PCA) and class-dependent PCA+LDA) one may give better 

classification result than the others depending on the location of the test 

vector. Therefore, it makes sense to combine the distances from the three 

techniques to get better results. In this chapter we use linear combination 

of these three distances. 

3. Reference vector ( refµ ): In this chapter we have shown that class-

dependent PCA would produce overlapping of samples in the reduced 

dimensional space. If LDA is then applied on the obtained transformed 

samples it would produce a complex mixture of samples where samples of 

adjacent class may overlap with each other. This could lead to a poor 
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performance. This defect should be minimized or removed prior to the 

application of LDA since if the samples of the adjacent classes are 

producing overlaps in the transformed space by class-dependent PCA then 

it would certainly produce overlaps in the transformed space by LDA. We 

have minimized or removed this problem by introducing a ‘reference 

vector’ which would prevent the samples of adjacent classes of being 

overlapped in the transformed space by class-dependent PCA. Then these 

transformed samples can be further transformed by LDA with fewer 

errors. 

 

The performance of MPL classifier is compared with MDC, VQ, class-dependent 

PCA, VQPCA, Fisherface, NN and kNN classifiers and a quantitative analysis of the 

performance is presented using Sat-Image dataset, TIMIT dataset and Multiple 

Feature-Digit dataset. The goal of MPL is to label unknown patterns accurately and at 

the same time maintain total parameter requirement and processing time as low as 

possible.  

 

The chapter is organized as follows: section 6.3 focuses on the notations and 

descriptions used in the chapter, section 6.4 briefly describes MDC, class-dependent 

PCA and LDA techniques, section 6.5 explains a problem in representing class-

dependent PCA before the application of  LDA technique, section 6.6 deals with the 

solution of overcoming the problem described in section 6.5, section 6.7 illustrates a 

general framework of the MPL classifier, section 6.8 deals with the implementation of 

MPL classifier, section 6.9 presents experimentation on machine learning corpuses 

followed by concluding remarks in section 6.10. 

 

 

6.3   Notations and Descriptions 
 

In the remaining discussions χ denotes the d-dimensional set of n training samples in a 

c-class problem, },...,,:{ cii 21==Ω ω be the finite set of c states of nature or class 

label where ωi denotes the ith class label. The set χ is partitioned into c subsets  χ1, 

χ
2,…, χc where each subset χi belongs to ωi and consists of ni number of samples such 
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that: 

∑
=

=
c

i
inn

1
 

The samples or patterns of set χ can be written as: 

 

χ },...,,{ nxxx 21=  where ∈jx Rd (d-dimensional hyperplane)  

χ
i⊂  χ  and  χ1∪ χ2∪…∪ χc = χ  

 

Let jY  be h-dimensional transformed samples from χj∈ωj where dh < then the 

samples of reduced dimensional set or projected sample set Y can be depicted as: 

 

},...,,{ nyyyY 21=  where ∈jy Rh (h-dimensional hyperplane) 

YYj ⊂ and YYYY c =∪∪∪ ...21  

 

For convenience the notations used in the rest of the chapter are elaborated as follows: 

 )(xL :  class label of test pattern x 

 jµ : centroid of subset χj∈ωj 

 jΣ : covariance of subset χj∈ωj 

 jΦ : hd × transformation matrix of subset χj∈ωj (during PCA) 

 iφ : eigenvector that is a subset of jΦ  

 jδ̂ : normalized weighted distance 

 α or iα : weighting coefficient 

 x̂ : reconstructed pattern of ∈x Rd 

 W : kh× transformation matrix of set Y  (during LDA) 

 jZ : k-dimensional transformed samples from jY ∈ωj  where hk < .  

 

6.4   A Review of MDC, Class-dependent PCA and LDA 

Classifiers 
 

This section briefly describes three constituent classifiers that are used in designing 
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MPL classifier.  

 

6.4.1   MDC 
 

The training procedure of MDC technique is simple and straightforward. This is 

single prototype classifier i.e. it finds only one feature vector from a given class. 

MDC estimates a class by its centroid jµ and store it for later use in the classification 

task. The centroid can be computed as follows: 

 

∑
∈

=
j

j
x

nj x
χ

µ 1   for cj ,...,,21=        6.1 

 

The storage or total parameter requirement is cd × . In the classification phase, an 

unknown test pattern is assigned a class label of the stored centroids for which the 

Euclidean distance is minimum. 

 

6.4.2   Class-dependent PCA 
 

In class-dependent PCA each class is separately represented by its KLT. For given 

training samples ∈x χ
j in a d-dimensional feature space it will find an orthonormal 

transformation matrix jΦ of size hd × where dh < is a lower dimensional 

representation of d-dimensional feature space. The transformation y can be obtained 

from the vector x and jΦ as: 

 

)( j
t
j xy µ−Φ=          6.2 

 

where ∈∈ jYy Rh and jµ is from equation 6.1. The transformation matrix jΦ  is 

obtained by minimizing mean squared error ]||ˆ[|| 2xxE − which turns out to be a 

generalized eigenvalue problem i.e.: 

 

iiij φλφ =Σ          6.3 
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where },...,,:{ hiij 21==Φ φ , d
i R∈φ , ]))([( T

jjxj xxE
j

µµ
χ

−−=Σ
∈

 and iλ denotes 

eigenvalues corresponding to iφ . 

 

The eigenvectors ),...,( hφφ1 of jΦ should be arranged such that their corresponding 

eigenvalues are in descending order hλλλ >>> ...21 . The direction of first 

eigenvector 1φ is the direction of maximum variance of given patterns. The second 

eigenvector ( 2φ ) contains the maximum amount of variance orthogonal to the first 

one, and so on. The total parameter requirement for class-dependent PCA classifier 

can be given as: 

 

parametersreigenvectoparamterscentroidparamaterstotal __ +=  

)()( 1 +=××+×= hcdhdcdcparamaterstotal  

 

In the classification phase a test pattern x is assigned the class label for which the 

reconstruction distance jδ is minimum. The reconstruction distance can be illustrated 

as follows: 

 

||ˆ|| xxj −= δ   where )(ˆ jjjj xx µµ −ΦΦ+= T  

∴        jδ ||))((|| j
t
jjj xx µµ −ΦΦ+−= ||))((|| j

t
jj xI µ−ΦΦ−=    6.4 

 

6.4.3   LDA 
 

In LDA the projection is from h-dimensional feature space to k-dimensional feature 

space where hk < such that the samples or patterns of classes are well-separated. For a 

c-class problem, assuming 2>c the transformation can be given as: 

 

yWz T=  where ∈∈ jZz Rk and y is from equation 6.2.   6.5 

 

The transformation matrix W is computed by maximizing Fisher’s criteria 

||/||)( WSWWSWWJ WB
TT= , where SB and SW can be computed from equations 
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2.37 and 2.38: 

 

The transformation matrix W is given by (Duda and Hart, 1973): 

 

iWiiB wSwS λ=          6.6 

 

where },...,,:{ kiwW i 21== . The eigenvectors iw  (columns of W) correspond to the 

eigenvalues iλ . Since the rank of between-class scatter matrix SB  is 1−c or less, 

1−≤ ck . See Duda and Hart (1973) and section 2.13 for details. 

 

 

6.5   Representation Problem with Class-dependent PCA 
 

In a c-class problem each class χj∈Rd is separately taken for Karhunen-Loéve 

transformation which yields sample set jY ∈Rh. The center of each transformed subset 

jY (for cj ,..,1= ) is identical and located at origin in Rh plane/hyperplane. This may 

result the samples of jY overlapping with their neighboring classes. If LDA is then 

applied on the obtained transformed samples it would produce a complex mixture of 

samples ∈jZ Rk where samples of adjacent classes may overlap with each other. This 

could lead to poor performance. This defect should be removed prior to the 

application of LDA since if the samples of adjacent classes are producing overlaps in 

the original feature space Rh then the possibility to get well-separated samples in Rk 

feature space would be slim where hk < . If only class-dependent PCA is used for 

representation or compression purposes then this would not be an issue since 

compressed features can be easily represented back in the original space with some 

definite errors known as reconstruction error ||ˆ|| xx − .  

 

The center of sample subset jY  is a common vector in Rh feature space, this can be 

illustrated as follows: 

 

 From equation 6.2, )( jj xy µ−Φ= T  where ∈y Rh and ∈x Rd 
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 center of jY is simply the sum of equation 6.2 i.e.: 

 center of ∑∑
∈∈

−Φ==
j

j
j

j
x

jjn
Yy

nj xyY
χ

µ )(T11  

                 )( jjjj
t
jn

x
j

x

t
jn nnx

j
jj

j
µµµ

χχ
−Φ=








−Φ= ∑∑

∈∈

11  

                           =0∈Rh  for cj ,...,,21=  

 

Therefore it would be helpful to select a reference vector in Rd feature space that 

could reduce the probability of overlapping of adjacent samples in lower dimensional 

space Rh. Then LDA can be applied in Rh space to get well-separated samples in Rk 

space. This is described in the next section. 

 

 

6.6   Reference Vector for Discriminant Analysis 
 

This section introduces reference vector which is used prior to the applications of 

class-dependent PCA and LDA techniques. The usage of reference vector with class-

dependent PCA and LDA can be viewed in section 6.8. The reference vector will be 

derived from the Rd sample space which would help in separating features for class-

dependent PCA process in Rh sample space. Therefore it is required to find a vector in 

Rd hyperplane such that its direction and displacement from the origin provides 

maximum separation of samples of classes jY in Rh feature space. In other words the 

solution of conventional eigenvalue problem of equation 6.7 will give the required 

reference vector: 

 

 iiiB vvS λ=           6.7 

 

where eigenvectors iv  are the column vectors of )( 1−× cd rectangular matrix V and 

iλ are the corresponding eigenvalues of iv . Note SB in equation 6.7 is computed on the 

sample set χ∈Rd. 

 

The reference vector can computed from equation 6.7 as: 
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 mmref vλµ =          6.8 

 

where mλ is the maximum eigenvalue and mv  is the corresponding eigenvector. 

 

Figure 6.2 illustrates the difference between the projections of class-dependent PCA 

without using the reference vector (figure 6.2a) and class-dependent PCA with 

reference vector (figure 6.2b) on Sat-Image dataset (Blake and Merz, 1998; Michie et 

al., 1994; Feng et al., 1993). The Sat-Image dataset consists of 36-dimensional 

samples of 6 distinct classes. The 36-dimensional patterns are projected on to 2-

dimensional space and each pattern is represented by a string in the figures which 

corresponds to their class number. 

 

It can be seen from figure 6.2a that all the samples of classes are drawn around the 

common center which is the origin of 2D space. If LDA is applied in this reduced 2D 

space then it may not be able to well separate the samples of each class. On the other 

hand the inclusion of reference vector in class-dependent PCA well separates the 

projected samples of classes in 2D space (figure 6.2b). This would allow the 

application of LDA with fewer errors.  
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Figure 6.2a: Projection of 36-dimensional features on to a 2-dimensional space using 

class-dependent PCA. 
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Figure 6.2b: Projection of 36-dimensional features on to a 2-dimensional space using 

class-dependent PCA including reference vector. 

 

The maximum eigenvalue obtained by solving equation 6.7 for Sat-Image dataset is 

very large magnitude ( mλ ≈ 106 ) which is reduced to some reasonable value ( '
mλ ≈ 

103)  to get a zoomed-in visualization of projected samples in 2D space. 

 

 

6.7   Framework 
 

This section describes the framework of the overall design of MPL classifier. Figure 

6.1 mainly illustrates the training phase of the classifier. The training sample set 

χ∈Rd is first taken for reference vector evaluation procedure. Once the reference 

vector refµ is computed it is stored for later use during class-dependent PCA process. 

The training sample set is a union of the samples of c classes. Therefore sample set χ 

can be separated into c subsets χ1, χ2,…, χc where subset χi belongs to the class ωi. All 

the subsets are taken for MDC and class-dependent PCA procedures. MDC gives 

centroid jµ from the subsets and store it for later use in the classification process. All 

the same subsets are utilized for class-dependent PCA block including reference 

vector refµ . This block would give eigenvector matrix jΦ which is also stored for later 

use during the classification phase. The eigenvector matrix is used to find transformed 
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sample sets cYY ,...,1 which belong to classes cωω ,...,1 respectively. Once all the 

transformed samples are obtained they are then sent to LDA block. This block finds 

the orientation (direction matrix W which is stored for later use) such that the new 

projected sample sets cZZ ,...,1 are well separated.  

 

All the classifiers are linearly combined during the classification phase for decision 

making. The test pattern is assigned the class label of the closest train pattern for 

which the combined distance is minimal. Section 6.8.2 depicts the classification phase 

of MPL classifier in detail. 

 

 

6.8   MPL  
 

MPL is a unified framework of MDC, class-dependent PCA and LDA techniques 

respectively. It can be subdivided into training phase and testing or classification 

phase. The combination may help in reducing the expected errors. All the constituent 

techniques may have their local regions where they may perform the best. MDC will 

attempt to reduce the expected distortion ||][|| jxE µ− , class-dependent PCA will try 

to minimize the mean squared error ]||ˆ[|| 2xxE − and LDA will give the orientation for 

which Fisher’s criteria J is maximum i.e. separating the samples of different classes in 

lower dimensional space. This approach may improve the generalization capability 

and at the same time incur low total parameter requirement and low processing time. 

The application of class-dependent PCA before LDA could also address small sample 

size problem or singularity problem of matrix WS . In many cases (e.g. in image 

recognition or face recognition) the dimension size is very large as compared to the 

number of feature vectors available. This makes the rank of WS smaller than the 

required dimension, making the matrix singular. Several techniques can be found that 

address small sample size problem e.g. adding a small constant or perturbation to WS  

so that it becomes non-singular (Zhao et al., 1999; Zhou and Huang, 2001), PCA 

application prior to LDA (also known as Fisherface method) for reducing dimension 

from d to h such that ≤h number of feature vectors (Swets and Weng, 1996; 

Belhumeur et al., 1997) or the use of pseudoinverse matrix for discriminant analysis 
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(Ye et al., 2004; Duin, 1995; Skurichina and Duin, 1996, 1999; Raudys and Duin, 

1998).  

 

Our procedure can be categorized under Fisherface method where class-dependent 

PCA is used instead of PCA and a concept of reference vector is introduced and 

applied. In addition to class-dependent PCA, MDC is also incorporated in the design. 

Moreover we have concentrated more on getting reasonably well generalization 

capability using minimal possible storage or total parameter requirement and 

processing time. The performance of a classifier is reasonably well when it gives high 

classification accuracy at low memory storage and less processing time. A classifier 

with high accuracy cannot be categorized as an optimum performance classifier if it is 

extremely slow in giving any results and the memory requirement is extensively high. 

Thus we have taken important factors like generalization capability, total parameter 

requirement and processing time in the consideration while measuring the 

performance of a classifier. There are several applications of such a classifier for 

example in obstacle avoidance in robotics where obstacles should be detected at very 

fast rate and at very low memory storage requirements. In such applications 

processing time and total parameter requirement are important aspects of classifier 

performance.  

 

The basic working of the MPL approach can be briefly described by considering a 

two-class problem. Suppose a 3-dimensional feature space of two distinct subsets χ1 

and χ2 of class labels ω1 and ω2 are given. The MPL approach first finds the center of 

the distinct subsets separately, i.e. center or centroid is one of the prototypes of the 

approach. The reason of using centroid as a prototype for MPL is because it may help 

in reducing the expected distortion and it is computationally inexpensive procedure 

with minimal storage requirements. The next thing is to find eigenvectors of subsets 

by using KLT or PCA on each subset separately (class-dependent). The integration of 

class-dependent PCA would help in reducing high dimensional space onto a 

parsimonious data space. The reduction to a lower dimensional space would be such 

that the error is minimal in mean squared error sense. Moreover, if the number of 

samples is scarce then it would not be a disadvantage for MPL since the problem of 

within-class scatter matrix being singular may be resolved by the use of class-
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dependent PCA prior to the application of LDA. The application of class-dependent 

PCA will give eigenvectors in the principal direction and in the secondary directions. 

These eigenvectors are mutually orthogonal to each other and maximize the variances 

subject to the orthogonality condition. From the eigenvectors and subsets, MPL will 

transform 3-dimensional feature space to a 2-dimensional (say) feature space using 

reference vector (see section 6.6 for details about reference vector). Finally in MPL 

algorithm the LDA step is conducted which would maximize the class separation by 

eliminating redundant components (i.e. minimizing the overlapping of adjacent or 

neighbouring classes in lower dimensional plane/hyperplane) that may present in a 2-

dimensional feature space. The application of LDA step in MPL approach will bring a 

2-dimensional space to a 1-dimensional space (say). The LDA step is integrated since 

it searches for the directions that are efficient for discrimination.  

 

In the classification phase of MPL, an unknown test pattern is allocated a class label 

(either ω1 or ω2) based on the nearest MPL distance measure. This MPL distance 

measure is derived from the combination of MDC, class-dependent PCA and LDA 

techniques.  

 

The reason for combining classifiers is simple. A feature or a feature vector could 

have diverse characteristics. For example, a feature vector may have different 

structural primitives, physical properties, variation in numerical values (Xu et al., 

1992) etc. All of these diverse characters are then constituted in one vector. This 

makes it difficult for a single classifier (eg. by MDC or class-dependent PCA or LDA 

alone) to handle such a diversified feature. If we could combine the different 

classifiers that could appropriately account for the various forms of a feature then 

classification performance may improve. To understand this, let us consider the 

following three cases (figure 6.3) where MPL is performing better than the individual 

classifiers. In all the three cases the membership of an unknown vector x is to be 

determined to one of the two regions R1 and R2. In case 1 vector x is assigned to R2 

when MDC is used and it is assigned to R1 when PCA is used. It can be observed that 

in case 1 MDC is not behaving well than PCA technique since vector x is closer 

towards R1 than R2. On the other hand, in case 2, vector x is assigned to R1 when 

using PCA technique which is not performing better than MDC in this particular case. 

In case 3, a comparison between LDA and MDC is conducted, where vector x is 
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assigned to R1 when LDA technique is used and it is assigned to R2 when MDC 

technique is used. Here MDC is performing better than LDA for the classification of          

. 

 

 

 

 

 

 

 

 

Figure 6.3: Three cases where MPL is performing better than the individual techniques. 

 

 

vector x. Similarly several cases can be demonstrated where single classifiers are not 

performing well. This means that none of the technique could be stated as the best 

technique. All the techniques have some regions or local regions where they may 

perform the best and it is also true that on some regions they may not be able to 

perform satisfactorily well. However, the combination of single classifiers may 

improve the classification performance. Now considering the same three cases using 

MPL technique (details about the classification procedure are given in section 6.8.2), 

we can observe that in case 1, x is assigned to R1 (assuming LDA distance measure is 

same for both of the regions). Similarly in case 2, x is assigned to R2 (assuming LDA 

distance measure is same) and in case 3, x is assigned to R2 (assuming PCA distance 

measure is same). This means that MPL is performing better than the other 

techniques. The various distance used in finding the membership of a vector x are 

directly measured from the given figure for all the techniques. 

 

The next subsection describes the training phase of MPL classifier. 

 

6.8.1   Training of MPL 
 

The training procedure can be illustrated as follows: 
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Evaluation of Reference Vector and MDC 

Step1. Find between-class scatter matrix and centroid of each class from the training 

sample set χ (from equation 4.25): 

∑
=

−−=
c

j
jjjB nS

1

T))(( µµµµ        

where jµ can be computed from equation 6.1 and µ can be computed as: 

∑
∈

=
χ

µ
x

n x1  

Step2. Solve generalized eigenvalue problem and find reference vector (from 

equations 6.7 and 6.8): 

iiiB vvS λ=           

mmref vλµ =            

mλ is the maximum eigenvalue and mv is the corresponding eigenvector. 

 

Class-dependent PCA Step 

Step1. Find transformation matrix jΦ from equation 6.3. 

Step2. Project the samples on lower dimensional space Rh: 

 )( refj xy µ−Φ= T    where ∈∈ jYy Rh and ∈x χ
j∈Rd for cj ,...,1=  

 

LDA Step 

Step1. Find transformation W from the generalized eigenvalue problem of equation 

6.6: 

 iWiiB wSwS λ=   

where },...,,:{ kiwW i 21== , BS and WS are computed on sample set Y . 

Step2. Project the samples on Rk feature space (equation 6.5): 

yWz t=  where ∈∈ jZz Rk and ∈∈ jYy Rh  (it is assumed that hk < ) for 

cj ,...,1=  

Step3. Find centroid jµ̂ of the projected samples jZ : 

 ∑
∈

=
j

j
Zz

nj z1µ̂          6.9 

Some parameters are stored during the training phase which will be used in the 

classification phase. These parameters and their corresponding size are depicted in 
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table 6.1. 

 

TABLE 6.1: List of parameters stored during the training phase which will be 

required in classification phase with their corresponding size 

Parameters Unit Size Total size for 
c classes 

   refµ  1×d  d  

 jµ  1×d  dc  

  jΦ  hd ×  dhc  
W kh×  hk  

 jµ̂  1×k  kc  
 
 

Thus the total parameter requirement for MPL classifier is the sum of column 3 of 

table 6.1. The next subsection illustrates the classification phase of MPL classifier. 

 

6.8.2   Classification of MPL 
 

The classification procedure of class labelling of an unknown test pattern x∈Rd is 

given as follows:  

 

Step1. Compute the distance 1
jδ between a test pattern x and the centroid jµ of class 

χ
j∈ jω : 

 |||| jj x µδ −= 1  for cj ,...,1=  

Step2. Since the addition of reference vector in the classifier design would not affect 

the orientation of the components of Y derived by KLT on χ, the reconstruction 

distance can be given by: 

 ||ˆ|| xxj −= 2δ  

     ||))((|| jjj xI µ−ΦΦ−= T  (from equation 6.4) 

Step3. Find the projected sample of x due to the reference vector refµ in h-dimensional 

space: 

 )( refjj xy µ−Φ= T  ∈jy Rh             6.10 
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The projected pattern on to h-dimensional space would further reduce to k-

dimensional space (from equation 6.10): 

   jj yWz T=  where ∈jz Rk             6.11 

Compute the distance between the transformed pattern jz and transformed 

centroid jµ̂ (from equations 6.9 and 6.11): 

   ||ˆ|| jjj z µδ −= 3  

Step4. Normalize distances 1
jδ , 2

jδ and 3
jδ  to eliminate the difference in their 

amplitudes to allow them to contribute equally in decision making. 

 )(max/ˆ 1

1

11
j

c

jjj δδδ
=

=  , )(max/ˆ 2

1

22
j

c

jjj δδδ
=

=  and )(max/ˆ 3

1

33
j

c

jjj δδδ
=

=  

Step5. Add distances 1
jδ̂ , 2

jδ̂ and 3
jδ̂ : 

 3
3

2
2

1
1 jjjj δαδαδαδ ˆˆˆˆ ++=  

where 1α , 2α and 3α are weighting constant in the range [0,1] such that 

∑
=

=
3

1
1

i
iα . 

Step6. Find the argument for which the combined distance jδ̂  is minimum: 

 j

c

j
k δ̂minarg

1=
=  

 Assign the class label kω  to the test pattern x. 

 

For simplicity we have taken unbiased weighting constant i.e. 31321 /=== ααα  (all 

equal combination) for the classifier design. However, in figure 6.4 we have shown 

the classification accuracy for 37 different combinations ofα ’s (including all equal 

combination) using 0.1 weighting interval. The combinations of α are given as 

follows: 

 

43421434214342143421
36321

321 101080603010702010801010 ).,.,.(,...,).,.,.(,).,.,.(,).,.,.(),,( =ααα    and  

44 344 21
37

330330330 ).,.,.(             6.12 

 

Three machine learning corpuses have been utilized namely Sat-Image (figure 6.4a) 
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(Blake and Merz, 1998; Michie et al., 1994; Feng et al., 1993), TIMIT (figure 6.4b) 

(Garofalo et al., 1986) and Multiple Feature-Digit (figure 6.4c) with Zernike-

Moments (Jain et al., 2000; Blake and Merz, 1998) in exhibiting classification 

accuracy vs. dimension-set for all the combination of α  (equation 6.12). The 

dimension-set refers to {h,k} where h denotes reduced dimension obtained by 

applying class-dependent PCA on initial d-dimensional feature vector and k denotes 

reduced dimension obtained by applying LDA technique on reduced h-dimensional 

feature vector. The complete information about all the datasets is given in section 6.9. 

 

The bold line in figure 6.4 denotes the all equal weighting combination and slim lines 

denote the remaining 36 combinations of α as per depicted in equation 6.12. From 

figure 6.4 it could be observed that there are many weighting combinations for which 

the classification accuracy is better than the all equal combination and similarly for 

many combinations the classification accuracy is poor. The classification accuracy 

obtained by all equal combination is close to optimum in all the three datasets. 

Empirically, we can take a weighting combination for which optimal performance 

may be achieved. But since the theoretical framework for the selection of weighting 

constants has not been developed in this chapter, we opted to consider all equal 

weighting combination for the classifier design. However, the presented figure 6.4 

gives an idea that there could be some weighting combinations for which optimal 

results may be achieved. The interested readers may wish to develop a framework or 

criteria for the selection of weighting combinations that may depend upon the 

distribution of a given training dataset and the algorithms that are taken into 

consideration for the combined classifier design.  

 

6.8.3 Computational Complexity 
 

We would be concentrating on the total computing complexity of a classification 

session, since the training session can be conducted offline. The computing 

complexity of each step of section 6.8.2 is illustrated in table 6.2. 
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TABLE 6.2: Computational complexity of the classification phase of MPL algorithm 

No. of step 
from section 
6.8.2 

Computational complexity 

Step 1 )(dcO  
Step 2 )( chdO 2  
Step 3 )()()()( dchOckOchkOdchO ≈++
Step 4 )(cO  
Step 5 )(5O  
Step 6 )(cO  

 
 

The computing complexity of step 2 is dominating among other steps. Thus, the total 

computing complexity of the classification phase is estimated to be )( chdO 2 . 
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Figure 6.4a: Classification accuracy vs. dimension-set (h,k) for 37 weighting 

combinations on Sat-Image dataset. 
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Figure 6.4b: Classification accuracy vs. dimension-set (h,k) for 37 weighting 

combinations on TIMIT dataset. 
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Figure 6.4c: Classification accuracy vs. dimension-set (h,k) for 37 weighting 

combinations on Multiple Feature-Digit (Zernike moments) dataset. 
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6.9   Experimentation 
 

This section demonstrates the performance of the proposed classifier in comparison 

with MDC, PCA, VQPCA (Euclidean) (Sharma et al., 2005; Kambhatla, 1996), 

Fisherface, Nearest-Neighbour (NN) and k Nearest-Neighbour (kNN) (Fukunaga, 

1990) techniques. Three sets of machine learning corpuses are utilized namely Sat-

Image dataset, TIMIT dataset and Multiple-Feature-Digit dataset to analyse the 

classifier performance.  

 

The Sat-Image dataset consists of 6 distinct classes with 36 dimensions or attributes. 

A sum of 4435 feature vectors is used to train the classifier and a separate set of 2000 

vectors is used for verifying the performance of the classifier. From TIMIT corpus a 

set of 10 distinct vowels are extracted, then each vowel is divided into three segments 

and each segment is used in getting mel-frequency cepstral coefficients with energy-

delta-acceleration (MFCC_E_D_A) feature vectors (Young et al., 2002). A total of 

9357 MFCC_E_D_A vectors of dimension 39 for training session and a separate set 

of 3222 vectors for classification are utilized. The third corpus used is Multiple-

Feature-Digit dataset with Zernike moments which consists of 10 distinct classes. A 

sum of 1500 vectors is used for training the classifier and a separate set of 500 vectors 

is used for classification. Each vector has 47 attributes or dimensions. 

 

The performance of the techniques is a measure of classification accuracy as a 

function of total parameter requirement and processing time. Two plots for each 

corpus are drawn to exhibit the performance of classifiers. The first plot for each 

corpus (figures 6.5.1a, 6.5.2a and 6.5.3a) shows classification accuracy versus total 

parameters in logarithmic scale and the second plot (figures 6.5.1b, 6.5.2b and 6.5.3b) 

shows classification accuracy versus processing time.  

 

The following plotting schemes have been adopted for various classifiers: 

• MPL, class-dependent PCA and VQPCA: The first value of classification 

accuracy curve is plotted for which the total parameter requirement is 

minimum (for e.g. in MPL the starting point of the graph would be when 

2=h and 1=k  or in class-dependent PCA when the dimension is reduced to 
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1). The next value plotted is only that which provided improvement in 

classification accuracy compared to the previous value. The curve ends at the 

maximum achievable classification accuracy obtained by a given classifier and 

thereafter the increase in the total parameters does not improve the 

classification accuracy any further. This strategy may answer the following 

question: 

 

“What is the minimal total parameter requirement and its corresponding 

processing time to achieve a certain range of classification accuracy?” 

 

For VQPCA we have opted not to exceed the levels3 beyond 16 since the 

classification accuracy does not significantly increase. Moreover, the total 

parameter requirement and processing time become severely expensive. 

 

• VQ: all four levels 2, 4, 8 and 16 are presented. 

• MDC and NN: one unique result is presented. 

• kNN: classification accuracy is presented for five values of K i.e. 

9753 ,,,=K and 11. 

• Fisherface: The LDA dimension is taken as 11 −= pk K where cp =  if 

hc < or hp =  if ch < . The value of h is determined by using a criteria 

presented by Swets and Weng (1996). 

 

Figures 6.5.1a and 6.5.1b illustrate the performance of classifiers on Sat-Image 

dataset. It can be observed from figure 6.5.1a that at the beginning, MPL gives 

classification accuracy of 74.3% at 840.210 total parameter requirement and at 3.74 cpu-

time in seconds (sec). Increasing the total parameter up to 200.310  increases the 

classification accuracy up to 86.1% at 3.77 sec. It can be seen that no other presented 

techniques are producing this classification accuracy at specified total parameters and 

processing time. It can also be seen that NN and kNN techniques are providing better 

classification accuracy but their total parameter requirement and processing time are 

severely expensive i.e. their performance is not very encouraging.  It can be observed 

from figure 6.5.1a that MDC gives minimal total parameter requirement (figure 
                                                 
3 Level is the number of disjoint regions in a given class or the number of sub-classes. 
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6.5.1b) but the classification accuracy is quite poor (76.6%). For Fisherface method 

when using 6=h and 51...=k , the total parameter requirement and processing time 

are reasonably well though the classification accuracy is not very encouraging. 

 

Next we conducted experiments on TIMIT dataset (figures 6.5.2a and 6.5.2b). It is 

evident from figures 6.5.2a and 6.5.2b that MPL technique is performing better than 

all the other techniques including NN and kNN in terms of achieving high 

classification accuracy at low total parameter requirement and low processing time. 

The classification accuracy of NN technique is even poorer than MDC, class-

dependent PCA, VQ, Fisherface ( 10=h and 91K=k ) and VQPCA techniques; this 

means that increasing total parameters does not always help in improving the 

classification accuracy. The maximum classification accuracy for MPL technique is 

86.1% at 103.723 using 13.28 sec of processing time, whereas the nearest technique to 

MPL in terms of accuracy is kNN which is giving 78.3% (for 11=K ) at 105.562 using 

794.08 sec of processing time.  

 

Figure 5.3a and figure 5.3b illustrate several classifiers performance on Multiple-

Feature-Digit dataset using Zernike moments. It can be observed from the figures that 

class-dependent PCA is giving reasonable level of classification accuracy followed by 

MPL and other techniques. The maximum classification accuracy by class-dependent 

PCA is 84% at 575.310 total parameters and at 0.65 sec whereas the maximum 

classification accuracy by MPL is 84.4% at 803.310 total parameters and at 1.38 sec. 

Fisherface ( 13=h and 91...=k ) is consuming very less processing time but does not 

provide sufficient classification accuracy. It can also be seen from figure 4c that MPL 

may perform even better than all the presented techniques if a different combination 

of α is used. 

 

The running time for each step of the MPL technique was also conducted on TIMIT 

dataset during the training session. It is given here just for an overview of the 

processing time of each step of the algorithm. The results are illustrated in table 6.3. 

The running time is computed using all the ten classes and 9357 feature vectors.  

 

In the table, columns 1 and 2 denote dimension reduced by class-dependent PCA (h) 
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and dimension reduced by LDA (k) respectively. Dimension h is shown up to 6 and 

dimension k is shown up to 1−h . Columns 3, 4 and 5 illustrate processing time of 

each step of MPL during the training session and column 6 shows the total average 

time in running the algorithm. It can be observed from the table that as h and k 

increase the running time of the algorithm increases progressively. It is also evident 

that class-dependent PCA step consumes the maximum running time and increases 

with h. 

 

It can be concluded from the experiments on several machine learning corpuses that 

MPL technique produces promising results in terms of getting classification accuracy 

in reasonably accepted range and at the same time maintaining minimal total 

parameter requirement and processing time. This would enable the user to classify a 

given object accurately and quickly with minimal storage requirements.  

 

We would also like to state here that although MPL is exhibiting better performance 

overall, it cannot be guaranteed that this technique would produce better performance 

for all type of data distributions as was seen in the case of Multiple Feature-Digit 

dataset.  

 

 

6.10   Summary and Future Work 
 

The chapter presented MPL technique which is a linear combination of MDC, class-

dependent PCA and LDA techniques. The performance of the classifiers was 

measured in terms of classification accuracy as a function of storage and processing 

time. It was observed that the proposed combination of classifiers provided improved 

performance over all the other presented techniques. MPL technique on Sat-Image 

dataset produced maximum classification accuracy of 86.1% at 2.310 total parameter 

requirement and at 3.77 sec. NN and kNN techniques also produced higher 

classification accuracy but the total parameter requirement and processing time were 

severely expensive. Similarly on TIMIT database MPL produced the best 

performance with 86.1% classification accuracy at 723.310 total parameter requirement 

and at 13.28 sec of processing time. On the other hand, in Multiple Feature Digit 
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class-dependent PCA produced best performance among the presented techniques 

followed by MPL. However, it was noted that MPL could produce better performance 

if a different combination of α was utilized.  

 

The following questions could be addressed for future work: 

• What is the best method of obtaining the subspace dimensions h and k for 

MPL technique? 

• For optimal performance what should be the combination of weighting 

coefficientα ? 

• What is the best criterion of combining individual classifiers for MPL? 

• Is there any other classifier that can be combined with MPL for further 

improvement? 

• Theoretically on what type of data distributions the algorithm should achieve 

better performance? 

 

 

TABLE 6.3: Processing time of each step of MPL during the training session on 

TIMIT dataset 

h k Evaluation     of 
reference vector 
and  MDC            
step  

(sec) 

Class-
dependent 
PCA step  

 
(sec) 

LDA step  
 

 
 

(sec) 

Total average 
running  time  

 
 

(sec) 
2 1 0.10 3.48 0.03 3.61 
3 1 

2 
0.08 
0.08 

3.51 
3.52 

0.02 
0.02 

3.62 

4 1 
2 
3 

0.07 
0.08 
0.07 

3.64 
3.62 
3.54 

0.03 
0.02 
0.02 

3.70 

5 1 
2 
3 
4 

0.07 
0.08 
0.09 
0.10 

3.63 
3.59 
3.56 
3.58 

0.03 
0.03 
0.03 
0.03 

3.71 

6 1 
2 
3 
4 
5 

0.07 
0.07 
0.06 
0.05 
0.12 

3.63 
3.66 
3.56 
3.61 
3.59 

0.03 
0.03 
0.04 
0.04 
0.03 

3.72 
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Figure 6.5.1a: Classification accuracy vs. total parameter requirement on Sat-Image 

dataset. 

Figure 6.5.1b: Classification accuracy vs. processing time on Sat-Image dataset. 

Figure 6.5.2a: Classification accuracy vs. total parameter requirement on TIMIT 

dataset. 

Figure 6.5.2b: Classification accuracy vs. processing time on TIMIT dataset. 

Figure 6.5.3a: Classification accuracy vs. total parameter requirement on Multiple 

Feature-Digit dataset. 

Figure 6.5.3b: Classification accuracy vs. processing time on Multiple Feature-Digit 

dataset. 
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Chapter 7 

 

Splitting Technique Initialization in Local PCA 
 

7.1   Abstract 
 

The local Principal Component Analysis (PCA) reduces high dimensional space to a 

low dimensional space of lesser linearly redundant components. It deploys an initial 

guess technique which can be utilized when the distribution of a given multivariate 

data is known to the user. The problem in initialization arises when the distribution is 

not known. This chapter presents a technique that can be easily integrated in the local 

PCA design and is efficient even when the given statistical distribution is unknown. 

The initialization using this proposed splitting technique splits and reproduces not 

only the mean vector but also the orientation of components in the subspace domain. 

This would ensure that all clusters are used in the design. The proposed integration 

with the reconstruction distance local PCA design enables easier data processing and 

more accurate representation of multivariate data. A comparative approach is 

undertaken to demonstrate the greater effectiveness of the proposed approach in terms 

of percentage accuracy. 

 

 

7.2   Introduction 
 

Dimension reduction methods are employed in statistical pattern classification 

problem to represent higher dimensional embeddings in a lower dimensional space 

such that the information loss in lower dimensional representation is minimum. The 

interpretation of multivariate data or feature vectors becomes quite unmanageable 

when the dimension size is high. This severely increases the memory/storage 

requirements and augments the problems in pattern classification. It then becomes 

essential to express and understand a given high dimensional vector onto a 

parsimonious data space that best describes the feature vectors.  
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The conventional technique for dimension reduction is PCA also known as Karhunen-

Loéve technique (KLT) (Fukunaga, 1990). The objective of PCA is to find a global 

linear transform of a given data in the feature space. See section 2.12 for details about 

PCA. 

 

Perceiving the constraints involved in PCA, researchers have extended the basic PCA 

model. Oja (1982) introduced a simple linear neuron model for PCA with constrained 

Hebbian-type modification and derived unconstrained learning rules and showed how 

the neuron model extracts the one dimensional principal components. Several other 

neural network algorithms for PCA have also been developed (Baldi and Hornik, 

1995; Peper and Noda, 1995; Oliveira and Romero, 1996; Diamantaras, 1998; Wang 

et al., 1998; Tao et al., 2003; Chin-Teng, 2004). Hastie (1984) introduced principal 

curves and surfaces as the estimates of non-linear generalizations of linear one 

dimensional PCA technique and Tibshirani (1992) presented an alternative definition 

of principal curves based on a mixture model. Tipping and Bishop (1998) 

demonstrated how principal axes of a set of observed patterns are determined through 

maximum likelihood estimation. Xu (1995), De la Torre and Black (2001), and Koren 

and Carnel (2004) suggested robust PCA model which can perform well under the 

presence of outliers. A non-linear form of PCA (1998), local linear PCA (Kambhatla, 

1997; Dony and Haykin, 1995; 1997b), and mixture of local PCA (Dony and Haykin, 

1997) have also been developed. In the local linear PCA approach a class is 

partitioned into several disjoint regions by vector quantization, and then performs 

local PCA about each cluster. This local PCA approach is further extended by 

utilizing hybrid distance (explained in section 7.3) measure also referred to as 

reconstruction distance (Kambhatla, 1997), which has been proved to be one of the 

optimal techniques in terms of producing low reconstruction error. Local PCA based 

on hybrid distance is a replacement of Euclidean distance, which has been proved to 

be a better distance measurement tool in local linear approach for the cluster 

separability (Kambhatla, 1997). This distance criteria is derived from the mean 

squared error (MSE) of the system. The hybrid-distance local PCA also known as 

vector quantization principal component analysis (VQPCA) for reconstruction 

distance deploys an initial guess technique (Linde et al., 1980), which is utilized when 
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the distribution, of a given multivariate data is known to the user1. This means that for 

a known statistical distribution the reproductive vectors or codewords are initially 

defined by manually placing them in the vicinity of the data. The number of 

codewords previously defined will not change during the process except the location 

of codewords, which will be updated until the best region or cluster is found. In most 

of the practical cases, statistical distribution is not known to the user which augments 

the problem of initialization of codewords. Furthermore, in VQPCA some of the 

codewords if not very carefully selected, end up being isolated having no samples 

associated to it. This restricts the performance of VQPCA, and thus the model is 

strongly dependent on the selection of initial codewords.  

 

For VQ algorithms alone, several extensions have been developed (Gresho and Gray, 

1992; Paliwal and Atal, 1993; Karayiannis, 1997; Hofmann and Buhmann, 1997; 

Fritzke, 1997; Patané and Russo, 2001) to improve the performance and overcome 

drawbacks. Whereas  in VQPCA direct implementation of splitting Linde-Buzo-Gray 

(LBG) technique (1980) cannot be integrated with the hybrid-distance local PCA 

design since it does not accounts for updating and reproducing eigenvectors 

(orientation) with the corresponding covariance matrix of regions. To overcome this 

type of problems associated with the hybrid-distance local PCA technique, we have 

presented a splitting initialization approach that can be easily integrated in local PCA 

design and is efficient even when the given statistical distribution is unknown. The 

introduced approach updates not only the centroid (mean) of a cluster but also the 

orientation of components in subspace domain with the corresponding covariance 

matrix, through splitting and reproducing codewords. Overall one can view this 

proposed approach as an improved hybrid-distance local PCA which can efficiently 

accommodate processing and clustering of unknown statistical distributed data. For 

brevity we refer to this approach as VQPCA-sp in this paper, where the suffix sp 

denotes initialization of VQPCA using splitting technique. The chapter is organized as 

follows. Section 7.3 and section 7.4 illustrate splitting technique and the 

implementation scheme respectively. Section 7.5 covers the experimentation and 

section 7.6 presents our concluding remarks. 

                                                 
1 For unknown distribution as well the initial guess technique can be deployed but it may not provide 
optimal partitions within class i.e. there could be a possibility of some codewords being remained 
isolated without associated with any disjoint regions. 
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7.3   Design Model 
 

This section elaborates the VQPCA-sp approach using hybrid-distance as a distance 

measurement tool. To explain hybrid-distance, suppose feature vector x is in d-

dimensional hyperplane, imµ denotes the mean vector of mth partition in ith class and, 

im
kφ denotes kth eigenvector of mth partition which is in ith class, then hybrid-distance is 

defined as: 

 

)µ(xP)µ(xP)µ,(x, imimimdist −−= T        7.1 

 

where imP is a local projection matrix which projects the feature vectors onto a 

subspace orthogonal to the local h-dimensional PCA hyperplane (Kambhatla and 

Leen, 1997) i.e. 
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It is evident from the expression of the hybrid-distance (equations 7.1 and 7.2) that it 

depends upon eigenvector and mean of local clusters. Thereby these two vectors 

should be taken under consideration for the reproduction. 

 

In VQPCA-sp approach firstly, the set of feature vectors is separated into disjoint 

regions by applying vector quantization technique for each given class, and then local 

PCA is performed using splitting technique about each of the cluster center using 

hybrid-distance. In other words this approach segregates data by class and then 

performs VQPCA on each class using splitting technique. If Euclidean-distance is 

used in place of hybrid-distance then LBG algorithm could simply be integrated for 

local PCA implementation. In this case, the regions or clusters are partitioned 

independently without considering the orientation of PCA and thus produces 

suboptimal results. On the other hand, the hybrid-distance as given in equation 7.2 

depends not only upon the mean of the clusters but also upon the eigenvectors of the 

covariance matrix of the clusters. In this case a direct splitting LBG algorithm or 

Enhance LBG algorithm (Patané and Russo, 2001) cannot be integrated in the local 
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PCA design since an iterative process is required to reproduce eigenvectors as well by 

updating covariance matrix of the clusters. An initial guess technique was utilized in 

(Kambhatla and Leen, 1997) for hybrid-distance local PCA design where codewords 

are initialized to random input vectors from the training dataset. If poorly initialized 

this initialization approach may lead some regions not to be used. If a user has some 

prior knowledge of statistical distribution of a given feature vectors then the 

performance (in terms of percentage accuracy or reconstruction error) could improve 

further. However, this a priori information is not always present when the feature 

vectors are given for processing. In many pragmatic cases, initial guess technique is 

not appropriate and thus it requires some technique that does not require prior 

knowledge of data distribution. On the other hand, splitting technique approach does 

not require any a priori information because the initialized codeword is the center of 

the data. Thereafter it splits and searches for the region for which the expected error is 

minimum.  Figure 7.1 depicts splitting approach on a given two dimensional data 

presented in an elliptical form. Firstly the initial mean 0µ and initial eigenvector, 0
1φ as 

primary component and 0
2φ  as secondary component are computed respectively. 

These reproductive vectors are perturbed using small predefined quantity to get a 

slight variation in the values. In the figure two new mean vectors after splitting are 
+µ and −µ and their corresponding local eigenvectors are defined as ),(φ +++ = 21 φφ and 

),(φ −−− = 21 φφ respectively. 

 
   Figure 7.1   Splitting initialization process 
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Any arbitrary vector P of the feature vectors (refer to figure 7.1) is taken into account 

to determine the membership of the vector to one of the two separated regions 

(either +φ or −φ ) as defined by their reproductive vectors. This will form two new 

regions and the mean and eigenvector will be updated. The reproduction of the two 

set of vectors will be carried iteratively until the distortion in reconstruction is smaller 

than some threshold error (predefined value). Once the satisfactory distortion level is 

achieved, the reproductive vectors split again and carry out the same above iterative 

process, until the desired number of clusters is obtained. The determination of 

membership of the arbitrary point is done by using hybrid-distance. The VQPCA-sp 

accommodates both of the vectors by updating and reproducing them using iterative 

process which will be discussed in the next section. The improved hybrid-distance 

local PCA could be of two types (i) where splitting occurs at random without 

following any particular direction as illustrated in Figure 7.1 and (ii) where split 

follows the direction of dominating or principal component. The principal component 

refers to the eigenvector for which the corresponding eigenvalue is maximum.  

 

 

7.4   Implementation Scheme 
 

This section deals with the implementation scheme of VQPCA-sp using hybrid-

distance as prototype. Suppose in a c-class (assuming 2>c ) problem let χ denotes d-

dimensional set of n feature vectors, },...,,:{ cii 21==Ω ω be the finite set of c states 

of nature or class labels where ωi denotes the ith class label. The set χ can be 

subdivided into c subsets  χ1, χ2,…, χc where each subset χi belongs to ωi. Each class is 

subdivided into a set of regions defined by },...,,;{ NkC i
k

i 21==ξ , where pN 2>  

denotes the total number of desired regions (levels) that is required for each given 

class and p is any real integer greater than or equal to zero; i
kC denotes kth regions in 

χ
i. Let d-dimensional training data in χi be defined as },...,,;{xx )(

i
i
j nj 21==  where 

in is the number of samples per given class, )(x i
j denotes any arbitrary feature vector. 

The transformation hd RR:φ → is from d-dimensional hyperplane to h-dimensional 
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hyperplane/plane such that dh < . By considering all the mentioned terms above, the 

VQPCA-sp algorithm can be given as follows: 

 

Step 0. Define threshold error 0>ε , initial average distortion ∞→1D for class 1ω .   

 

Step 1. Initialize mean µ and covariance Σ  as 
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where ci ,...,,21= . Set the variable level 1←M . 

 

Step 2. Apply KLT to obtain dd × eigenvector set },...,,;{φ dlim
lim 21== φ  arranged 

according to their corresponding eigenvalue set which is placed in descending order, 

where im
l

φ is any arbitrary eigenvector of iω class and i
mC level or partition, for 

Mm ,...,,21= . Split the reproductive vectors as ]µ,[µµ εε −+= imimim and 

]φ,[φφ εε −+= imimim if the direction of splitting is allowed to be random, otherwise 

]µ,[µµ im
im

im
imim 11

φεφε −+=  is used when the splitting is following the direction of 

principal component im
1

φ for which the corresponding eigenvalue is maximum. Update 

level MM 2← . 

 

Step 3. Given the sum of )( hd − trailing eigenvectors  

 

∑
+=

=
d

hk

im
k

im
kim

1

T))((P φφ  

 

compute the reconstruction distance )µ(xP)µ(x)P,µ(x, imimimimimd −−= T  to get the 

minimum distance )]P,µ(x,[min
,...,,min imimMm

d
21=

=δ . Find all feature vectors i
kC∈x  where 

]arg[ minδ=k . For updating µ  and Σ of the new partitioned Voronoi regions, 

equations 
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are used, where 
mi

n  represent number of samples in the new i
mC Voronoi region. 

Iterate the process until ε≤−− fff DDD /)( 1 where ∑
∈
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χ
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1 and f is some 

iterative number. Follow next step with the revised values of imµ and im
lφ . 

 

Step 4. Iterate step 2 and step 3 until M equalizes the value of N. 

 

Step 5. Follow the same procedure (step 1 – step 4) for all the remaining classes 

},...,,;{ cii 32=ω . 

 

For the reconstruction of vector, expression 
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= ∑

=1

Tφφ  

 

is used where ci ,...,,21= and Nm ,...,,21= . The normalized difference between the 

vector x and the reconstructed vector x̂ is the reconstruction error. The next section 

deals with the experimental results on machine learning corpuses. 

 

 

7.5   Experimental Results 
 

This section concentrates on the simulation of the discussed models. Several machine 

learning corpuses have been employed for estimating the accuracy of the proposed 

model and the existing model. Figure 7.2 depicts percentage error as a function of 

dimension reduction at levels 2, 4, 8 and 16. The percentage error obtained by 

VQPCA and VQPCA-sp are represented as small circles (‘o’) and asterisk sign (‘+ ’) 
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respectively. It is observed that at some points no results were obtained; this is due to 

the fact that codewords are left out alone, having no feature vectors associated to 

them, which is an erroneous situation and has not been considered in the testing 

session. The reconstruction or hybrid distance has been used as a prototype for 

distance measurement in all the designs.  

 

Figure 7.2a exhibits a design using Multi-Feature Digit Dataset (Jain et al., 2000; 

Blake and Merz, 1998) of 64 dimensional Karhunen-Loéve coefficients. A total of 

1500 vectors of 10 distinct classes were utilized for training session and a total of 500 

vectors were used for testing the system. For VQPCA model codewords are initialized 

close to the centre of samples and updated iteratively until the best cluster in terms of 

minimum mean square error is achieved. Dimension is reduced from 64 to 1, 2 and 3. 

It can be observed that VQPCA-sp model demonstrates better performance in all the 

selected levels in terms of producing lesser error and greatly overcoming the problem 

of codewords being isolated. For example at level-16 no results are obtained for 

VQPCA model, this depicts the strong dependence of VQPCA model on the initial 

selection of codewords, whereas VQPCA-sp produces 2.4% error. 

 

Figure 7.2b illustrates a classifier design using 10 distinct vowels from TIMIT 

database (Garofolo, 1986). A total of 6000 mel-frequency cepstral coefficients with 

energy-delta-acceleration (MFCC_E_D_A) (Young et al., 2002) vectors of dimension 

39 in training session and 2000 MFCC_E_D_A vectors in testing session were used. 

Dimension reduction is from 39 to 1, 2 and 3. Here again VQPCA-sp produces much 

better performance than VQPCA, producing up to 24.3% whereas minimum error 

obtained by VQPCA is 28.2%. 

 

In Figure 7.2c a classification design using Multi-Feature Digit Dataset (Jain et al., 

2000; Blake and Merz, 1998) of 76 dimensional Fourier coefficients was undertaken. 

A sum of 1500 vectors of 10 distinct classes was utilized to train the classifier. Then a 

separate set of 500 vectors was used for validation. Dimension is reduced from 76 to 

1, 2 and 3. Here also VQPCA-sp exhibits better performance than VQPCA at almost 

all the levels. The lowest error noted by VQPCA-sp is 15.4% and that by VQPCA is 

16.2%. At some points (level-4 dimension 3, level-8 dimension 3, level-16 dimension 
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1-3) VQPCA is not able to produce any result. However, VQPCA-sp produces result 

at all the points. 

 

It could be observed from the experiments that VQPCA-sp method produces better 

representation of multivariate data and able to overcome up to the greater extent the 

problem related to codewords being isolated with no samples associated to it.  

 

 

7.6   Summary 
 

This chapter has described a new splitting technique on local PCA approach 

(VQPCA) utilizing hybrid-distance as a distance measure tool for cluster separation. It 

was observed from the experiments on several machine learning corpuses that the 

proposed approach produces more accurate representation of multivariate data in 

reduced dimensional space. This VQPCA-sp approach is efficient even when the 

given distribution of statistical data is unknown. It was also experienced that VQPCA-

sp was much easier in initializing codewords and the probability of codewords being 

left alone was much less as compared to VQPCA. The percentage accuracy obtained 

by VQPCA-sp model is independent of initial codeword selection since the 

codewords are selected involuntarily starting from the center of the considered data. 

This method splits not only the mean but also the orientation of the components on a 

regular iterative basis which was not accommodated on VQPCA alone. 
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Figure 7.2  Percentage error as a function of dimension reduction at levels 2, 4, 8 and 

16 on machine learning corpuses. 
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Chapter 8 

 

Pattern Classification: An Improvement Using 

Combination of VQ and PCA Based Techniques 
 

8.1   Abstract 
 

This chapter firstly presents a brief description on basic classifiers in terms of total 

parameter requirement and processing time. The classifiers discussed are minimum 

distance classifier (MDC), vector quantization (VQ), principal component analysis 

(PCA), nearest neighbour (NN) and k-nearest neighbour (kNN). Then vector 

quantized principal component analysis (VQPCA) which is generally used for 

representation purposes is considered for performing classification task. Some 

classifiers achieve high classification accuracy but their data storage requirement and 

processing time are severely expensive. On the other hand, some methods for which 

storage and processing time are economical do not provide sufficient level of 

classification accuracy. In both the cases the performance is poor. By considering the 

limitations involved in the classifiers we have developed linear combined distance 

(LCD) classifier which is the combination of VQ and VQPCA techniques. The 

proposed technique is effective and outperforms all the other techniques in terms of 

getting high classification accuracy at very low data storage requirement and 

processing time. This would allow an object to be accurately classified as quickly as 

possible using very low data storage capacity. 

 

 

8.2   Introduction 
 

Pattern classification/recognition is an area where we learn how to best familiarize the 

objects to the machine and get actions or decisions based on the observed categories 

of the pattern. A pattern could be human face, sampled speech, handwritten or printed 

digits, any letter, gesture, spoken word, financial data, biometric data or any statistical 
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data. Humans naturally classify/recognize patterns from the environment in everyday 

life. A five year old kid can adapt to different type of objects or patterns and react 

accordingly. This adaptation is taken for granted until we come to teach a machine to 

classify/recognize and provide actions or decisions on the same patterns. 

 

The more the patterns available, the better the decision would be. This gives hope to 

design a classifier system. For the last five decades research is going on in this field to 

provide an optimum classifier/recognizer. But the classifier performance is still far 

behind the perception of a human brain. However, pattern classification/recognition 

plays a crucial role in the areas like banking, multimedia communication, data 

synthesis, speech or image processing, forensic sciences, computer vision and remote 

sensing, data mining, robotics and artificial intelligence. It emerged as an essential 

and integral part of daily life. The evolving computational demand in pattern 

classification makes this field very challenging and thus open for research. For 

example in image recognition, several thousands of multidimensional patterns are 

required for processing which makes the implementation of the classifier system quite 

impossible. 

 

In this chapter only supervised pattern classification procedures have been considered. 

A supervised classification could be subdivided into two main phases namely training 

phase and testing phase. In the training phase the classifier is learned by known 

categories (classes) of patterns and in the classification or the testing phase unknown 

patterns which were out of the training dataset are assigned class labels of train 

patterns for which the distance from the test pattern to the prototype(s) is minimum.  

 

The performance of a classifier depends upon several factors. Some of the main 

factors have been previously discussed in section 6.2.  For a given classifier we can 

associate the total parameters to the implementation cost of the classification system 

and the generalization capability may depend upon the type of parameters 

(distribution, values etc.) used. The higher the total parameters required for 

classification task the costlier the system would be. Another important factor in 

classifier design is the speed or the processing time required to do the task. It is 

possible in a classifier that at two different instances the total parameter requirement 

is same but the processing time differs. We therefore want to reduce the total 
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parameters and processing time but at the same time least sacrifice the classification 

accuracy. In other words, we search for the optimal classification accuracy or least 

classification error, involving as minimum total parameters and processing time as 

possible. This would allow the system to classify/recognize an object as quickly as 

possible at minimum cost. 

 

In Nearest Neighbour (NN) classifier (Fukunaga, 1990) all the available data (as 

maximum as possible) is stored to perform classification, where each test pattern is 

compared for similarity with all the available training data (pattern). The test pattern 

is assigned the class label of that training pattern, which is the closest to the test 

pattern. A major drawback of NN approach is its large total parameter requirement to 

perform classification task. For example, a dataset with 10 classes, having 5000 

vectors or patterns in each class with 64 attributes or dimensions would require total 

parameters as follows: 

 
610 3.2  64  5000  10     ×=××=××= dimensionNoOfVecclassparameterstotal  

 

The next method is k-Nearest Neighbour (kNN) (Fukunaga, 1990) technique in which 

the total parameter requirement is same as that of NN approach except for the 

computational demand, which is severe in the former approach.  

 

The implementation cost of the classification system could be reduced by estimating 

each class by a single prototype, usually a centroid. This would help in decreasing the 

total parameter requirement for the classification task but could be at the price of 

classification accuracy. This type of classifier is known as minimum distance 

classifier (MDC). It provides minimal total parameter requirement and computational 

demand. Taking the same above example of 10 classes, the total parameter 

requirement for MDC would be just 640, which is about 1/5000 as compared to NN 

approach. Usually classification accuracy is sacrificed to get this advantage of 

extremely low processing time and total parameter requirement.  

 

The natural extension of single prototype is multi prototype, where each class is 

estimated by several prototypes like in vector quantization (VQ) (see section 2.8). So 
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the training procedure is to find the codebook and store it for classification task. 

Increasing the number of codewords per class would increase the performance up to 

some extent but it would also augment the total parameter requirement and processing 

time.  

 

In principal component analysis (PCA) finds a global linear transform of given 

patterns in the feature space and produce class-independent basis vectors which is not 

helpful for classification. Class-independent PCA cannot be used for classification 

purposes since all the classes are scattered over the feature space with different 

centroid values or mean and variances for each class making impossible to preserve 

the individual class information by a single KLT for the entire train samples. 

Therefore dominant eigenvectors are taken for each class separately (class-

dependent).  

 

It has been seen that the subspace classification is further improved by its local linear 

extension (Kambhatla and Leen, 1997). Here the performance depends upon the 

subspace dimension and the number of local regions. Kambhatla and Leen (1997) and 

Kambhatla (1995) have shown local linear PCA or VQPCA for representation 

purposes. The goal of VQPCA is to minimize the mean squared reconstruction error 

]||ˆ[|| 2xxE −  where x̂  is the reconstructed pattern of x. Kambhatla (1995) showed 

VQPCA using Euclidean distance (VQPCA-Euc) and VQPCA using reconstruction 

distance (VQPCA-rec). VQPCA-rec is a better technique than VQPCA-Euc for 

representation purposes in terms of achieving lesser reconstruction error, but this 

achievement comes with the expense of higher total parameter requirement and 

computational demand. For example, taking the same 10 class problem, where each 

class is subdivided into 4 disjoint regions (local regions), this would require storage 

of dd ×  ( 6464× ) eigenvector set for each disjoint region together with other 

parameters (centroid of disjoint region) i.e. 

 

entroids due to c parameter genvectors due to eiparametersparameterstotal +=    

levelclassdlevelclassddrecVQPCAparameterstotal **)(**)()( 1  -  ×+×=  

levelclassdlevelclasshdEucVQPCAparameterstotal **)(**)()( 1  -  ×+×=  
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where the term level is the number of disjoint regions or local regions per class 

and dh < . This yields total parameters requirement for VQPCA-rec 
510661 ×. ( 64for =d ), whereas 7680 )( 2for =h  for VQPCA-Euc which is 

)/( 1
11 +
+

h
d compared to VQPCA-rec. Although the VQPCA-rec model exhibits slight 

improvement over VQPCA-Euc model, it severely increases the total parameter 

requirement and computational demand. This would increase the implementation cost 

and processing time of the classification system. Considering the implementation cost 

and computational demand we opted for an economical model (VQPCA-Euc) to train 

the system. Hereafter VQPCA-Euc model will be referred as VQPCA model. Some 

modification is required in VQPCA model prior to use as a classifier. The current 

VQPCA model first partitions the data space into disjoint regions and then performs 

local PCA about each cluster1 centre. This is ideal for representation purposes but for 

the classification task a minor change in distance measurement is required which 

should reflect the distance of a test pattern from the centroid and dominant 

eigenvectors of each disjoint region concurrently. The VQPCA model as a classifier 

does not exhibit very encouraging results but still can be used to perform 

classification task. Nonetheless it can be shown that VQPCA model as a classifier 

behaves satisfactorily in terms of obtaining reasonably well percentage accuracy at 

low total parameter requirements and processing time. Section 8.4 deals with the 

VQPCA model as a classifier. 

 

The performance of VQPCA as a classifier could be significantly improved by 

combining the linear distances of VQ and VQPCA. The normalized reconstruction 

distance measure ||ˆ|| xx − , and the normalized distance between the test pattern and the 

center of disjoint region |||| jx µ− , are combined linearly to form a new distance 

measure for the classification. This distance measure would minimize the 

combination of the mean squared reconstruction error (MSE) ]||ˆ[|| 2xxE −  and the 

expected distortion ||][|| jxE µ− . Each distance added together may have its own local 

regions in the feature space where it performs the best. We have introduced this linear 

combination of distance (LCD) technique and shown in this chapter that it is a better 

classifier with no extra total parameter requirement than VQPCA. Classification 

                                                 
1 Cluster is referred as a disjoint region of a class. 
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results obtained by LCD exhibit significant improvement over MCD, VQ, VQPCA, 

NN and kNN classifiers in terms of achieving higher percentage accuracy or lower 

classification error and at the same time maintaining the total parameters requirement 

and processing time as minimum as possible. Consequently, this would allow 

classification or recognition of the objects as quickly as possible at minimum cost. 

Section 8.5 deals with LCD approach and Section 8.6 indulges on the experimentation 

using Sat-Image dataset (Blake and Merz, 1998; Michie et al. 1994) and TIMIT 

dataset (Garofalo, 1986), and Section 8.7 presents our concluding remarks. 

 

 

8.3   Conventional Classifiers 
 

This section briefly describes the six types of classifiers namely NN, kNN, MDC, 

VQ, PCA and VQPCA. The style of notations is adopted from Duda and Hart (1973). 

In all the discussions ωi denotes the state of nature or class label of ith class in a c-

class problem, χ denotes the set of n train samples, },...,,:{ cii 21==Ω ω be the finite 

set of c states of nature and let θ ′be the class label of train pattern or prototype such 

that Ω∈′θ .The set χ can be separated by class into c subsets χ1, χ2,…, χc, with the 

samples in χi belonging to ωi: 

 

χ },...,,{ nxxx 21=  where ∈jx Rd (d-dimensional hyperplane)  

χ
i⊂  χ  and  χ1∪ χ2∪…∪ χc = χ  

 

Let ni denote the number of samples in the subset χi, therefore nn
c

i
i =∑

=1
. 

 

NN Classifier 

The total parameter requirement for NN approach is given by: 

 

ndndparameterstotal
c

i
i ×=×= ∑

=1
          8.1 
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It can be seen from equation 8.1 that total parameters depend upon the attribute or 

dimension d, number of class and number of train patterns. In many practical 

applications the values of d and n are very large which severely affects the storage 

requirements and processing time, increasing the cost and reducing the speed of the 

classifier system. 

 

kNN Classifier 

The total parameter requirement for kNN is same as NN approach. The processing 

speed is slower than NN classifier due to the searching of k nearest patterns for each 

of the test pattern. The classification accuracy may improve with the increase in the 

value k. This improvement is usually observed when the test patterns and the train 

patterns are closely matched. However, in some cases when the test patterns and the 

train patterns do not match the classification accuracy is poor. In this case increasing 

the value k may not improve the classification accuracy of the system.  

 

MDC Classifier 

MDC requires minimal total parameter requirement and least computational demand. 

The total parameter requirement for MDC is: 

 

cdparameterstotal ×=  

 

which is ∑
=

c

i
inc

1
/  as compared to NN or kNN classifier. This advantage of low total 

parameter requirement and fast computation may achieve by sacrificing some 

classification accuracy.  

 

VQ Classifier 

For VQ classifier the total parameter requirement is )( cQd ××  where Q is the level of 

classifier i.e. number of disjoint regions or codewords for each of the class. 

 

PCA Classifier 

Class dependent PCA is considered for classification where each class is represented 

by its KLT. The total parameter requirement for PCA classifier is: 
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parametersreigenvectoparamterscentroidparamaterstotal __ +=  

)()( 1 +=××+×= hcdhdcdcparamaterstotal      

 

where dh < is the number of eigenvectors used. 

 

 

8.4   VQPCA as a Classifier 
 

This section elaborates the VQPCA approach using Euclidean distance for 

classification purpose. In this approach, firstly, the set of train patterns are partitioned 

into disjoint regions by applying VQ technique for each class separately and then 

KLT is performed about each of the disjoint region or local region center (Kambhatla 

and Leen, 1997). The aim of VQPCA is to minimize MSE ]||ˆ[|| 2xxE − in the local 

regions, where ][•E is expectation operator. To illustrate training and classification 

procedures let Q be the number of disjoint regions or levels per class. Details of the 

training procedure are given in Kambhatla (1995). Section 8.4.1 gives a brief 

description of the training procedure for VQPCA classifier. VQPCA can also be 

trained using splitting technique (sharma et al., 2006b). 

  

8.4.1   Training 
 

Step1. Take train patterns χi⊂  χ of class label ωi at a time for consideration, where 

ci ,...,,21= . 

Step2. Apply VQ technique and partition χi into Q disjoint regions; ci ,...,,21 allfor = . 

Step3. For each disjoint region compute centroid jµ  and covariance 

matrix jΣ where )(,...,, Qcj ×= 21 . 

Step4. Evaluate hd × rectangular matrix of eigenvectors },...,,:{ hlwW lj 21== for 

each disjoint region where dh < and iw is from equation 2.31 (where iw and 

iφ represents the same eigenvectors); arrange the obtained eigenvectors such that its 

corresponding eigenvalues are in descending order. Let the class label of eigenvector 

set jW be Ω∈′jθ . 
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Step5. Store jW and jµ with their corresponding class information for classification. 

 

The total parameter requirement for VQPCA can be given by: 

 

 rseigenvectoparamterscentroidsparametersparamterstotal __ +=  

 )()( 1 +=×××+××= hQdcchdQcdQparamterstotal  

 

which is Q times the total parameter requirement of PCA classifier. 

 

If VQPCA is used for representation purposes then in the decoding step (here 

classification) firstly the closest disjoint region to a test pattern x is computed. Once 

the closest region is obtained, next step is to use its corresponding eigenvector and 

centroid information to compute reconstructed pattern x̂ . For classification VQPCA 

procedure would provide no better performance than VQ technique since the decision 

would lie only on the closest disjoint region to the test pattern x and the computation 

of KLT for disjoint regions may become redundant. Therefore a procedure for 

decision making of a test pattern should be adopted that uses both the centroid and 

direction (eigenvector) information in parallel. Section 8.4.2 illustrates the 

classification procedure for VQPCA approach. This procedure would give better 

classification accuracy than VQ technique for small value of dimensions h which is 

elaborated in the experiment section 8.6. 

 

8.4.2    Classification 
 

Step1. Compute reconstruction distance jδ between a test pattern x and its 

reconstructed pattern x̂ : 

   ||ˆ|| xxj −= δ ||))((|| jjj xWWI µ−−= T     )(,...,, cQjfor ×= 21  

Step2. Find the argument for which the reconstruction distance is minimum: 

j

cQ

j
k δ

×

=
=

1
minarg  

Step3. Assign class label kr θω ′=  to the test pattern x, where Ω∈′kθ . 
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Thus, it can be seen that step 1 computes the error of reconstruction distance by using 

direction and centroid information in one single step for the classification. 

 

 

8.5   LCD Classifier 
 

This section describes our proposed LCD approach for classification purposes. The 

LCD is a combination of VQ and VQPCA techniques. Empirical results show 

significant improvement of LCD classifier over previously discussed classifiers in 

terms of getting higher percentage accuracy with total parameter requirement no more 

than VQPCA approach. In our approach the training phase of the classifier is identical 

to VQPCA classifier thus the total parameter requirement for LCD approach is same 

as VQPCA approach. However the classification procedure differs. In the 

classification phase the distance used in VQ classification and the distance used in 

VQPCA classification are added together with some weighting to form a new distance 

measure. This combination or addition may reduce expected distortion ||][|| jxE µ−  

and MSE or root-MSE ||]ˆ[|| xxE − , overall producing improved results for the 

combination. The improved results achieved could be due to each of the constituent 

distance performing the best in their local regions in the feature space.  

 
The generalization capability or classification accuracy of a classifier depends on the 

type of distribution or values used for training and/or testing the classifier. For e.g. if 

training patterns of each class is spherically distributed, dense, well separated with 

each other and test patterns are closely matched with their train patterns then 

techniques such as MDC, VQ, NN and kNN may perform the best; if outliers are 

present in the training patterns then techniques such as PCA or VQPCA may give 

poor performance. However for Gaussian data with matching train and test conditions 

PCA may provide reasonably high classification accuracy (Jain et al., 2000) and 

VQPCA and LCD may provide even better performance than PCA. In the presence of 

outliers and complex distributions (unmatched train and test conditions) LCD may 

provide better performance than other techniques. 

 



 140

The concept of combination of multiple classifiers has been previously applied by Xu 

et al. (1992) for handwriting recognition. They have illustrated the combination using 

some basic classifiers such as Bayesian and kNN, and shown three categories of 

combination which depend upon the levels of information available from the 

classifiers. Jacobs et al. (1991) suggested supervised learning procedure for systems 

composed of many separate expert networks. Ho et al. (1994) used multiple classifier 

system to recognize degraded machine-printed characters and words from large 

lexicons. Tresp and Taniguchi (1995) presented modular ways for combining 

estimators. Woods et al. (1996) and Woods (1997) presented a method for combining 

classifiers that uses estimates of each individual classifier’s local accuracy in small 

regions of feature space surrounding a test pattern. Zhou and Imai (1996) showed a 

combination of VQ and multi layer perceptron (MLP) for Chinese syllables 

recognition. Alimoglu and Alpaydin (1997) used the combination of two MLP neural 

networks for handwritten digit recognition. Kittler et al. (1996, 1990) developed a 

common theoretical framework for combining classifiers which uses distinct pattern 

representations. Breukelen van and Duin (1998) showed the use of combined 

classifiers for the initialization of neural network. Alexandre et al. (2000) combined 

classifiers using weighted average after Turner and Gosh (1999). Ueda (2000) 

presented linearly combining multiple neural network classifiers based on statistical 

pattern recognition theory. Senior (2001) used combination of classifiers for 

fingerprint recognition. Lei et al. (2002) demonstrated a combination of multiple 

classifiers for handwritten Chinese character recognition and Yao et al. (2002) used a 

combination based on fuzzy integral and Bayes method. Similarly several other 

research work on combinational classifiers have been reported in the literature. 

 

In our approach the training phase parameters jµ  (centroid) and jW  (eigenvector set) 

are stored with the class label Ω∈′jθ  information for the use in the classification 

phase which is same as the training phase of VQPCA approach. Let in a c-class 

problem each class is separately partitioned into Q disjoint regions then the 

classification phase of LCD approach can be illustrated as follows: 
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8.5.1   Classification 
 

Step1. Compute the distance 1
jδ between a test pattern x and the centroid jµ of the 

disjoint region: 

|||| jj x µδ −= 1  for )(,...,, cQj ×= 21  

Step2. Compute the reconstruction distance 2
jδ between a test pattern x and its 

reconstructed pattern x̂ : 

||))((||||ˆ|| j
t
jjj xWWIxx µδ −−=−=    2  for )(,...,, cQj ×= 21  

Step3. Normalize distance 1
jδ and 2

jδ to eliminate the difference in their amplitudes 

that would allow them to contribute equally in decision making. 

)(max/ˆ 1

1

11
j

cQ

jjj δδδ
×

=
=  and )(max/ˆ 2

1

22
j

cQ

jjj δδδ
×

=
=  

Step4. Add distance 1
jδ̂ and 2

jδ̂ : 

21 1 jjj δαδαδ ˆ)(ˆˆ −+=  for )(,...,, cQj ×= 21 , where α is a weighting constant in the 

range ],[ 10 . 

Step5. Find the argument for which the combined distance is minimum: 

 j

cQ

j
k δ̂minarg

×

=
=

1
 

Step6. Assign class label kr θω ′=  to the test pattern x, where Ω∈′kθ . 

 

The classification phase of LCD technique is simple, computationally inexpensive 

and attains high classification accuracy or low classification error. The distance jδ̂ in 

the classification phase depends on the weighting constantα and the two normalized 

distance 1
jδ̂ and 2

jδ̂ . The weighting constantα (in step 4) is a positive constant in the 

range ],[ 10 . Appropriate value for α should be taken since bad selection may lead to 

poor classification accuracy. The two normalized distance 1
jδ̂ and 2

jδ̂ are classification 

distance of VQ and VQPCA techniques respectively. The next sub-section elaborates 

the choosing of the value of weighting constant. 

 

 



 142

8.5.2   Choice of α 
 

The optimum or close to optimum performance by LCD classifier can be obtained by 

selecting the appropriate value of α empirically. We have used speech data (Garofalo, 

1986) and image data (Blake and Merz, 1998; Michie, 1994) to select the value ofα . 

In this chapter we have taken α as a numerical constant, however, one can also take 

α as a probabilistic model which would depend on a test pattern and the distribution 

of train patterns. This may increase the computation and storage requirements. The 

discussion on α as a probabilistic model is beyond the scope of this paper. In figure 

8.1 and figure 8.2 classification accuracy for LCD technique is computed for 

dimension h and level Q, where 421 ...,,=h and 168421 ,,,,=Q . The values of 

α are 902010 .,...,.,. , where choosing α values close to 0.1 and 0.9 will give 

performance similar to VQPCA approach and VQ approach respectively. Diverting 

either upwards ( 9060 .,...,.=α ) or downwards ( 1040 .,...,.=α ) from the center value 

of α (0.5) will make the distance jδ̂ biased for 1
jδ̂ or 2

jδ̂  respectively. It can be 

observed from figures 8.1 and 8.2 that at 50.=α classification accuracy obtained by 

LCD technique (in figures 8.1 and 8.2 denoted by bold lines) is close to optimum. 

This implies that when the distance 1
jδ̂ and 2

jδ̂ contribute equally in the decision 

making for a test pattern in the feature space then the classification accuracy is close 

to optimum. Thus we have taken 50.=α . Section 8.6 deals with the experimentation 

of all the discussed classifiers on speech and image data. 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Classification accuracy for different values of α on image data. 
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Figure 8.2: Classification accuracy for different values of α on speech data. 

 

 

8.6   Experimentation 
 

The experimentation section is subdivided into two main parts. The first part 

demonstrates the classification accuracy for all the techniques given some fixed levels 

Q and dimensions h. The second part exhibits the effectiveness of all the techniques 

by showing the maximum achievable classification accuracy by all the discussed 

techniques, given total parameter requirement and processing time. For all the 

experiments two sets of machine learning corpuses have been utilized namely TIMIT 

database (Garofalo, 1986) for speech classification and Sat-Image dataset (Blake and 

Merz, 1998; Michie et al., 1994) for image classification. From the TIMIT corpus a 

set of 10 distinct monothongal vowels are extracted, then each vowel is divided into 

three segments and each segment is used in getting mel-frequency cepstral 

coefficients with energy-delta-acceleration (MFCC_E_D_A) feature vectors (Young 

et al., 2002). A total of 9357 MFCC_E_D_A vectors of dimension 39 for training 

session and a separate set of 3222 vectors for classification are utilized. The second 

dataset is Sat-Image which consists of 6 distinct classes with 36 dimensions. A sum of 

4435 feature vectors is used to train the classifier and a different set of 2000 vectors is 

used for verifying the performance of the classifier. 
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In the first part of the experimentation, classification accuracy is measured for all the 

classifiers given some fixed parameters. Here the accuracy is a function of dimension 

h and level Q, where 168421 ,,,,=Q and 421 ,..,=h for all the levels, except for 8=Q , 

where 1021 ,...,,=h . Level 8 ( 8=Q ) is taken at random for dimension 1021 ,...,,=h  to 

get a general understanding of how the dimension affects the classification accuracy if 

it is increased continuously.  

 

Not all the techniques depend upon both the dimension h and level Q; VQ depends 

upon levels, PCA depends upon dimensions, MDC, NN and kNN depend neither 

upon dimensions nor on levels, only VQPCA and LCD depend upon dimensions as 

well as levels. Figure 8.3 (image dataset) and figure 8.4 (speech dataset) illustrate 

classification accuracy for MDC, VQ, PCA, VQPCA and LCD techniques and table 

8.1 depicts classification accuracy for NN and kNN techniques. Usually the MDC 

technique is a special case of VQ when 1=Q , that’s why it is represented in the 

column of Level 1 in figures 8.3 and 8.4. 

 

It can be observed from figure 8.3 (image dataset) that MDC is giving better 

classification accuracy than PCA; VQ is producing higher classification accuracy at 

Level 2 and Level 4 than VQPCA, but VQPCA is showing improvement over VQ 

technique at level 8 and level 16. It is also clear that LCD is performing better than 

MDC, VQ, PCA and VQPCA at all the levels and dimensions. Increasing the 

dimension at any given level is improving the classification accuracy of LCD 

technique. At level 8 and dimension 10 the classification accuracy by LCD is 89.2% 

which is very close to NN and kNN techniques. It should be noted that NN and kNN 

techniques produce similar classification accuracy as LCD technique but their 

processing time and total parameter requirement are severely expensive. 

 

Furthermore, it can be observed from the experiment on speech data (figure 8.4) and 

table 8.1 that MDC is giving better classification accuracy than NN technique; PCA is 

improving at dimension 2 over MDC technique; VQPCA is producing better 

classification accuracy over VQ technique at levels 2 and 4 for dimension 1 but 

deteriorating at level 8 and level 16. LCD is exhibiting better performance than all the 

techniques including NN and kNN. The classification accuracy is improving with the 
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increase in dimension at any given level. The classification accuracy by NN and kNN 

is quite poor for speech data. This may be due to the testing data not matching with 

their training data.  
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Figure 8.3: Classification accuracy vs. dimensions and levels using MDC, VQ, PCA, 

VQPCA and LCD on image dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: Classification accuracy vs. dimensions and levels using MDC, VQ, PCA, 

VQPCA and LCD on speech dataset. 
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TABLE 8.1: Classification accuracy for NN and kNN techniques on image and 

speech datasets. 

Technique Classification 

accuracy using 

image dataset 

Classification 

accuracy using 

speech dataset 

NN 90.30 74.05 

3 90.45 75.67 

5 89.70 76.82 

7 90.05 77.56 

9 90.05 78.15 

kNN  

11 89.35 78.34 

 

 

In the second part of experimentation, classification accuracy is computed as a 

function of total parameters and processing time. This would give 3D plot where x 

and y axes represent total parameters and processing time and z-axis represents 

classification accuracy. For simplicity, a 3D plot is split into two 2D plots, where one 

plot shows classification accuracy versus total parameters and the other plot shows 

classification accuracy versus processing time for the corresponding values of total 

parameters. The level is taken as 168421 ,,,,=Q and dimension 1021 ,...,,=h for image 

dataset and 1221 ,...,,=h  for speech dataset. Figure 8.5.1 and figure 8.5.2 show 

classification accuracy versus total parameters in logarithmic scale and classification 

accuracy versus processing time respectively, using all the techniques on image 

dataset. 

 

For LCD technique, as presented in the figures 8.5.1 and 8.5.2, the first value of 

classification accuracy is 81.3% at total parameter 102.636 (figure 8.5.1) which takes 

processing time of 2.94 units (figure 8.5.2). The next reported value of classification 

accuracy in figures 8.5.1 and 8.5.2 is only those which provide better classification 

accuracy than the present value, i.e. those values are plotted next in the figures which 

are giving improvement in classification accuracy compared to the previous value. 

This would help to describe that to achieve a certain range of classification accuracy 

what is the total parameter requirement and its corresponding processing time. Similar 
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strategy is opted for VQPCA and PCA techniques. For VQ technique there are only 

four levels and all of them are given which are denoted by 2,4,8 and 16 in the figures 

8.5.1 and 8.5.2. MDC and NN have only one value and kNN has got 5 values for 

119753 ,,,,=k which is depicted in the same figures. 

 

It can be observed from the figures (8.5.1 and 8.5.2) that MDC has minimal total 

parameter requirement and processing time but the classification accuracy is quite 

poor around 76.6%. The other techniques with same total parameter requirement but 

with different processing timings are PCA, VQ and LCD (at level 1). Though the 

processing time is very low for PCA (around 2.53 to 2.99 time units), the performance 

is quite poor giving classification accuracy in the range of 69.4% to 73.3% which is 

even lower than MDC. With the same total parameter requirement VQ gives much 

better performance than PCA in terms of accuracy but the processing time increases 

as the levels increase towards 16. The classification accuracy of VQPCA is quite poor 

at the beginning. As the total parameter requirement increases it gives reasonably well 

results but at the expense of high processing time. It is evident that LCD technique 

gives high classification accuracy at low total parameter requirement and processing 

time, for e.g. it gives 85.4% accuracy at 103.033 total parameters using only 3.00 units 

processing time whereas the maximum accuracy obtained by VQ is 85.1% at 103.539 

total parameters using 23.41 units processing time and VQPCA gives 84.9% at 103.840 

using 32.81 units processing time. The maximum accuracy achieved by LCD 

technique (when 16≤Q and 10≤h ) is 90.0% at 104.580 using 48.12 units processing 

time which is very close to NN technique (90.3%) and close to the maximum of kNN 

(for 3=k ) technique (90.5%). However the processing time for NN and kNN 

techniques are 193.37 units and from 196.89 to 220.01 units (for 119753 ,,,,=k ) 

respectively, and the total parameter requirement for both the techniques is 105.203, 

which is quite expensive as compared to LCD and other techniques. Figure 8.6.1 and 

figure 8.6.2 show classification accuracy vs. total parameters on logarithmic scale and 

classification accuracy vs. processing time respectively for all the techniques on 

speech dataset. The plotting scheme is similar to that applied for figures 8.5.1 and 

8.5.2.  
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Figure 8.5.1:  Classification accuracy vs. )(log parameters total10 on image dataset. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5.2:  Classification accuracy vs. processing time on image dataset. 

 

 

It is evident from figures 8.6.1 and 8.6.2 that LCD technique is performing better than 

all the other techniques including NN and kNN in terms of achieving higher 

classification accuracy at low total parameter requirement and low processing time. 

The classification accuracy of NN technique is even poorer than MDC, PCA and VQ 

techniques; this means that increasing total parameters does not always help in 

improving the classification accuracy. The maximum classification accuracy for LCD 

technique is 84.1% at 103.670 using 8.74 units processing time, whereas the nearest 
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technique in terms of accuracy is kNN which is giving 78.3% (for 11=k ) at 105.562 

using 794.08 units processing time.  

 

It can be concluded from the experiments on image dataset and speech dataset that 

LCD technique outperforms MDC, PCA, VQ, VQPCA, NN and kNN techniques in 

terms of getting reasonably accepted classification accuracy and at the same time 

maintaining minimal total parameter requirement and processing time. This would 

enable the user to classify a given object accurately and quickly with minimal 

implementation cost. The next section presents our concluding remarks. 
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Figure 8.6.1:  Classification accuracy vs. )(log parameters total10 on speech dataset. 
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Figure 8.6.2:  Classification accuracy vs. processing time on speech dataset. 
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8.7   Summary 
 

A survey on basic classifiers namely MDC, VQ, PCA, NN and kNN was given. Their 

classification procedures were illustrated. Then we looked at VQPCA technique 

which is normally used for representation purposes. We showed how to use VQPCA 

for classification purposes. However, we found that VQPCA did not give very 

encouraging performance as a classifier but this gave us initiative to develop 

combined classifiers. 

 

Next we presented LCD technique which is the combination of VQ and VQPCA 

techniques. By combining the classifiers we found that the performance improved 

significantly which was not possible by using either VQ or VQPCA individually. The 

performance of LCD technique is found to be better than all the other presented 

techniques. Thus it can classify a given object more accurately at very low 

implementation cost and processing time, which was demonstrated using speech and 

image datasets.  

 

It was found that when the weighting coefficient α was close to 0.5 the LCD 

technique gave close to optimum performance, i.e. when VQ and VQPCA techniques 

contribute equally in the decision making of a test pattern then the performance is 

close to optimum. 
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Chapter 9 

 

Independent Component Analysis 
 

9.1   Abstract 
 

This chapter describes the basic theories and concepts of independent component 

analysis in solving blind source separation problems. 

 

 

9.2   Introduction 
 

ICA has emerged as a tool to solve blind source separation (BSS) problem. In the BSS 

problem it is assumed that an observation or mixture x is modelled from statistically 

independent and nongaussian components s. The mixing matrix A is square and 

invertible. The elements of s are linearly mixed with the mixing matrix A to give the 

observation x. Both the source signals and the mixing matrix are unknown to the 

observer. The BSS problem is to identify the source signals only from the observation 

x. The source signals could be obtained up to their permutation, sign and amplitude 

only, that is the order and variances of independent components cannot be 

determined. These indeterminacies are, however, insignificant in most of the 

applications. Two methods for estimating independent components namely kurtosis 

and negentropy are discussed. Their fixed point implementations are also illustrated. 

 

 

9.3   ICA for Blind Source Separation (BSS) Problem 
 

In blind source separation (BSS) problem a set of observed features or patterns are 

given but their underlying source information is hidden. The independent component 

analysis (ICA) tool is used to solve BSS problem by finding these hidden source 

information. It is assumed that hidden source signals are the weighted sum of the 
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observed signals. It is also assumed that the source signals are statistically 

independent and non-gaussian. For dependent and gaussian source signals it is not 

possible to solve BSS problem using the ICA technique.  

 

To elaborate the ICA technique, let us assume two source signals (e.g. speech from 

two amplifiers placed at some distance) are 1s and 2s ; observed signals (e.g. by two 

microphones situated at some distance) are 1x and 2x ; parameters that depend upon the 

distance of observers (here microphones) placed are 11a , 12a , 21a and 22a . This will give 

the following problem: 

 

2121111 sasax +=              9.1 

2221212 sasax +=              9.2 

 

The same problem can be written in matrix system as 

 

 Asx =                9.3 

 

If A is a square matrix (i.e. number of observation and number of source signals are 

equal) and non-singular then the source signals can be obtained using the following 

equation: 

 

xAs 1−=               9.4 

 

One can easily find source s  if the mixing matrix A is known, the problem here is, it 

is unknown. The only known thing is the observation x and the problem is to find 

source signal s from equation 9.3. This is BSS problem and can be solved using the 

ICA technique.  

 

In order to find the source signal s , some assumptions are made (as previously 

discussed) 

 

Assumption 1: Source signals are statistically independent. 

Assumption 2: At least all but one of the components of s are non-gaussian. 
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It can be seen (Hyvärinen et al. 2001) that non-gaussianity is undesirable for 

independent component analysis. In ICA the components and the mixing matrix are 

estimated from the mixtures x. This is done by estimating a matrix W that gives the 

estimates y as 

 

xWy T=               9.5 

 

The components of y are maximally independent i.e. maximally non-gaussian. The 

maximization of non-gaussianity of the components enables estimation of 

independent components. In ICA mixtures x are firstly centered and whitened1 before 

any further processing, i.e. 

 

zWy T=               9.6 

 

is taken as a preprocessing step, where z is centered and whitened form of x. 

 

There are several methods for maximizing non-gaussianity. Two methods readily 

used are kurtosis and negentropy. These methods are discussed in the next section. 

 

 

9.4   Measure of Nongaussianity 
 

Two quantitative measure of nongaussianity are kurtosis and negentropy. These are 

described as follows: 

 

9.4.1   Kurtosis  
 

Kurtosis or univariate kurtosis is a fourth order cumulant of a random variable 

                                                 
1 The centering process is to subtract the data with its mean i.e. [x]xx E−←  and whitening process 
can be done by using the eigenvalue decomposition of the covariance matrix which will give 
orthogonal matrix E and diagonal matrix D. Then these matrices are used to find the whitening matrix 

T21 EEDV /−= which will give whitened data Vxz = . 
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(Hyvärinen et al. 2001). For zero-mean random variable, kurtosis is defined as: 

 

 224 E[3E[kurt( ])(]) yyy −=             9.6 

 

where y is any component of y  which is equal to the linear combination zwT . The 

vector w is the corresponding column vector of W. Kurtosis value can be any real 

number. Random variables with 0kurt( >)y  are considered supergaussian while with 

0kurt( <)y are considered subgaussian. For gaussian random variables and a very few 

nongaussian variables 0kurt( =)y . Thus nongaussianity can be measured by the 

absolute value of kurtosis. If the variance of random variables are kept constant (i.e. 

1E[ 2 =]y ) then kurtosis can be computed by the fourth moment of random variables. 

The main advantage of using kurtosis is its computational simplicity. One of the 

drawbacks of kurtosis inherited by the fourth order moments is its susceptibility 

(sensitive) to outliers. 

 

To find the first orthonormal vector w of W (i.e. 1T2 == ww||w|| ), we compute the 

gradient of kurtosis. The derivative of kurtosis with respect to w is 

 

]||w||w]z)[z(wz))[(w(
w

|z)(w| 23TT
T

3kurtsign4kurt
−=

∂
∂ E         9.7 

 

The gradient of kurtosis can be used in gradient descent algorithm. This yields the 

following gradient algorithm 

 

 w]]z)[z(wz))[(w(w 3kurtsign 3TT −∝∆ E           9.8 

 ||w||w/w ←                 9.9 

 

The latter term in equation 9.8 does not change the direction of w, it will be changing 

only the norm of w and hence can be excluded from the equation which would further 

simplify the algorithm. The advantage of using gradient algorithm is that inputs z can 

be used at once in the algorithm making the adaptation fast. On the other hand, the 

convergence is very slow and strongly depends on the initial settings. A bad choice of 
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learning rate parameter (initial setting) could affect the convergence speed and can 

also destroy the convergence. Alternatively, one can apply fixed-point algorithm 

(Hyvärinen and Oja, 1997) for convergence. Fixed-point algorithm is reliable, robust 

and very fast. It does not depend on any learning rate parameter, thus is free from 

initial settings. In this case, the algorithm will converge when the ‘new’ and ‘old’ 

values of w point in the same direction (since sign of w and w− define the same 

direction) i.e. 1 T ≈+ |w)(w| where +w is the new value of w. The fixed-point 

algorithm using kurtosis (so called FastICA using kurtosis) can be given as follows: 

 

 w]z)[z(ww 33T −← E               9.10 

 ||w||w/w ←                 9.11 

 

9.4.2   Negentropy 
 

This measure of nongaussianity is robust but computationally complicated. It is 

defined as: 

 

 )) (y)(y(y HHJ gauss −=                        9.12 

 

where gaussy is a gaussian random variable and )(yH is the differential entropy with 

density )y (ηp  defined as: 

 

 ∫= η(ηlog(η(y dppH ))-) yy                        9.13 

 

For gaussian random variables 0) =(yJ  and for different distributions it is 

nonnegative. In practice, approximation of equation 9.12 is used for negentropy 

computation since it is difficult to compute differential entropy )(yH due to the 

unknown density )y (ηp . The approximation for )yJ ( (1-dimensional negentropy case) 

can be given as 

 

 2)]]([)]([[)( vGEyGEyJ −∝                        9.14 
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where v is a standardized gaussian variable and G is a nonquadratic function usually 

defined as: 

 

 ya
a

yG 1
1

1
1 coshlog)( =                        9.15 

 )/exp()( 22
2 yyG −−=             9.16 

 

The constant 1a in equation 9.15 is often taken to be 1. The gradient algorithm can 

now be defined as 

 

 z)](w[zw T gEγ=∆                         9.17 

 ||w||w/w ←               9.18 

 

where )]([z)](w[ vGEGE −= Tγ and g is the derivative of the selected function G. 

Here also the fixed-point algorithm can be applied. The fixed-point algorithm using 

negentropy is given as follows: 

 

 wz)](w[z)](w[zw TT gEgE ′−←                       9.19 

 ||w||w/w ←               9.20 

 

where g′ is the derivative of g . 

 

 

9.5   Estimation of Multiple Independent Components 
 

Equations 9.19 and 9.20 are used to find one unit independent component (IC) for 

negentropy function. Similarly, equations 9.10 and 9.11 are used to find one unit IC 

for kurtosis function. It is also possible to find more than one ICs. Since ICs are 

orthogonal to each other, we can take this as a basis to find other ICs. The 

deflationary orthogonalization process is used to find p ICs (where 1>p ) one by one. 

It uses Gram-Schmidt orthonormalization method for finding ICs iteratively. We first 
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estimate p ICs )w,(w pK1 and then orthonormalize the obtained ICs prior to running 

the algorithm for th1)( +p independent component )w( 1 i.e. +p . The procedure is 

illustrated in table 9.1. 

 

Multiple ICs can also be estimated by using symmetric orthogonalization procedure. 

Here all the column vectors of W are estimated in parallel i.e. at once. Therefore the 

ICs are not estimated one by one, this alleviates the error that may propagate in serial 

nature of deflationary orthogonalization process. The symmetric orthogonalization 

procedure for finding independent components is depicted in table 9.2. 
 

 

9.6   An Illustration for ICA on BSS problem 
 

This section describes the blind source separation using the ICA technique. For an 

illustration two source signals are taken as depicted in 9.1. The source signals are 

artificially mixed to get a mixture of signals. The mixed signals are shown in figure 

9.2. Here we have applied kurtosis function for finding the estimates of the original 

source signals. The estimates of the original signals are shown in figure 9.3. The 

absolute kurtosis versus iteration plot is also shown for the first vector 1w (figure 

9.4a) and for the second vector 2w  (figure 9.4b), where ]w,[wW 21= . It can be 

observed from figure 9.3 that the estimates are very similar to the original source 

signals. The convergence of the algorithm using kurtosis is evident from figure 9.4. 
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    Figure 9.1: Two original source signals for an illustration 
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TABLE 9.1: Deflationary orthogonalization process for finding independent 

components 

 
 1.   Center data x. 
 2.   Whiten data x to give z. 

3. Select m, the number of independent components to estimate. Set counter 
1←p . 

4. Select an initial value of identity norm for pw , e.g. randomly. 
5. Compute pw by using either equation 9.10 for kurtosis or equation 9.19 for 

negentropy process. 
6. Do Gram-Schmidt orthogonalization for pw  
 

  ∑
−

=
−←

1

1

T
p

j
jjppp w)w(www           9.21 

 
7. Normalize pw using 9.20 
8. If pw has not converged, go back to step 5. 
9. Set 1+← pp and go to step 4 until mp = . 

 
 

 

TABLE 9.2: Symmetric orthogonalization process for finding independent 

components 

 
 1.   Center data x. 
 2.   Whiten data x to give z. 

3. Select m, the number of independent components to estimate. 
4. Select an initial value of identity norm for jw  where mj K1=  (e.g. 

randomly). 
5. Compute jw by using either equation 9.10 for kurtosis or equation 9.19 for 

negentropy process in parallel. 
6. Do symmetric orthogonalization of matrix T

1 ]w,[wW mK=  
 
  W)(WWW / 21T −←                        9.222 
 
7. If not converge, go back to step 5. 

 

                                                 
2 Some simpler alternatives of equation 9.22 can be found in (Hyvärinen et al. 2001). 
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Figure 9.2: Observed mixed signals  
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Figure 9.3: The estimates of the original signals 
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Figure 9.4a: Absolute kurtosis values as a function of iteration for 1w . 
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Figure 9.4b: Absolute kurtosis values as a function of iteration for 2w . 

 

 

9.7   Summary 

 

The basic theories and concepts of independent component analysis (ICA) have been 

described. The fixed-point implementation of ICA (FastICA) is also described. The 

experimentation using two mixed signals are shown for kurtosis function. It was seen 

that the ICA technique is able to separate efficiently the mixed observed signals 

provided the source signals are statistically independent and nongaussian. It was also 

observed that the absolute kurtosis values as a function of iteration monotonically 

increases (converges) to some positive value. 
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Chapter 10 

 

Subspace Independent Component Analysis Using 

Vector Kurtosis 
 

10.1   Abstract 
 

This discussion presents a new perspective of subspace independent component 

analysis (ICA). The notion of a function of cumulants (kurtosis) is generalized to 

vector kurtosis. This vector kurtosis is utilized in the subspace ICA algorithm to 

estimate subspace independent components. One of the main advantages of the 

presented approach is its computational simplicity. The experiments have shown 

promising results in estimating subspace independent components. 

 

 

10.2   Introduction 
 

Independent component analysis is a widely accepted tool in solving blind source 

separation (BSS) problems. In BSS problem a set of observations is given but the 

underlying source information is hidden. The mixing weights of this underlying 

source information are also not known to the observer. The BSS problem is thus to 

identify the source signals and/or the mixing weights. The assumptions in the basic 

ICA model include the source signals being mutually independent and having 

nongaussian distributions. In the BSS problem an 1M× vector of observation x is 

modelled from statistically independent and nongaussian components s of size 1M× : 

 

  Asx =              10.1 

 

where A is a square and invertible mixing matrix of size MM× . The elements of 
T

M1 s[s ],,K=s are linearly mixed with the mixing matrix A to give the observation x. 

The source signals could be obtained up to their permutation, sign and amplitude 
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only, that is the order and variances of independent components cannot be determined 

(as discussed in chapter 11). These indeterminacies are, however, insignificant in 

most of the applications. 

 

Some techniques (Hyvärinen and Hoyer, 2000; Cardoso, 1998) have evolved in recent 

years that relax the assumptions of basic ICA model and generalize the problem. 

These techniques are a generalization of basic ICA model and are known as 

multidimensional ICA (MICA) (Cardoso, 1998) and subspace ICA (Hyvärinen and 

Hoyer, 2000) model. In MICA or subspace ICA it is not assumed that all the source 

signals are independent, instead it is assumed that some components that usually 

come in n-tuples or the elements of subspaces are mutually non-independent. 

However, the non-independencies among different n-tuples or subspaces are not 

allowed.  

 

In this chapter we present a new perspective of subspace ICA model. Unlike MICA 

(CArdoso, 1998) or subspace ICA (Hyvärinen and Hoyer, 2000) we have not applied 

an additive model. However, the multiplicative model as of basic ICA has been 

utilized except that it is partitioned into sub-matrices and sub-vectors. Then we 

generalize the notion of kurtosis (Hyvärinen et al., 2001) to vector kurtosis for our 

model and show the relationship of the optimized vector kurtosis to the subspace 

independent components. This approach would solve the BSS problem even when not 

all the components are independent i.e. it accounts for a generalized problem. One of 

the advantages of our subspace ICA algorithm is its computational simplicity due to 

the use of vector (generalized) kurtosis function.  

 

 

10.3   Evaluation of Independent Components by Maximizi- 

ng a Quantitative Measure of Nongaussianity 
 

Independent components can be estimated by the maximization of nongaussianity. 

Two quantitative measures of nongaussianity readily used in ICA estimation are 

kurtosis and negentropy (Hyvärinen et al., 2001).  
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10.3.1 Kurtosis 
 

Kurtosis or univariate kurtosis is a fourth order cumulant of a random variable. For 

zero-mean random variable, kurtosis is defined as: 

 

 224 E[3E[kurt( ])(]) yyy −=             10.2 

 

Kurtosis value can be any real number. Random variables with 0kurt( >)y  are 

considered supergaussian while with 0kurt( <)y are considered subgaussian. For 

gaussian random variables and a very few nongaussian variables 0kurt(y =) . Thus 

nongaussianity can be measured by the absolute value of kurtosis. If the variance of 

random variables are kept constant (i.e. 1E[y2 =] ) then kurtosis can be computed by 

the fourth moment of random variables. The main advantage of using kurtosis is its 

computational simplicity. One of the drawbacks of kurtosis inherited by the fourth 

order moments is its susceptibility (sensitivity) to outliers (Hyvärinen et al., 2001).  

 

 

10.4   Subspace ICA and MICA 
 

Cardoso (1998) introduced the notion of MICA by generalizing basic ICA model. 

MICA is an additive model which is derived from the multiplicative model. Its 

components is are vector-valued, instead of scalar-valued as of equation 10.1 and not 

all the elements of is are assumed to be independent. MICA was estimated by 

maximum likelihood (ML) estimation and illustrated on foetal ECG dataset (De Moor 

et al., 1997). The author argued that the dataset was well modelled by MICA 

decomposition into one bi-dimensional component (mother) and one mono-

dimensional component (foetal).  

 

Hyvärinen and Hoyer (2000) combined the technique of MICA and the principle of 
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invariant-feature subspaces1 (Kohonen, 1996) to explain the emergence of phase- and 

shift-invariant features. The authors call the n elements of is as the subspace spanned 

by a set of n basis vectors an independent subspace and referred the algorithm as 

independent subspace analysis (ISA) or subspace ICA and estimated subspace 

independent components by ML estimation. Thus different subspaces are mutually 

independent but the entries of each subspace are not independent. The probability 

density of each subspace is considered to be spherically symmetric, i.e. it depends 

only on the norm of the projection. 

 

 

10.5   Subspace ICA Model: A New Perspective 
 

We take the multiplicative model and partition the entries of matrix and vectors: 

 

 Asx =   or         































=

















M

1

MMM1

1M11

M

1

s

s

AA

AA

x

x
M

L

MOM

L

M         10.3 

 

where jx  and js of x and s respectively are vectors of dimension d and can be defined 

as Tj
d

j
2

j
1j ]x,...,x,[x=x  and Tj

d
j
2

j
1j ]s,...,s,[s=s  for M1,...,j = . Partitioned matrix A 

(equation 10.3) is of size MdMd×  since its entries ijA are matrices of size dd × . We 

made the following assumptions for our model: 

 

Assumption1: Components js are vector-valued, nongaussian, mutually independent 

and of identity covariance. 

Assumption2: Entries of js are not independent and all are of equal dimension d. 

Assumption3: Sample data is centered and whitened. 

 

                                                 
1 The principle of invariant-feature subspace is that invariant-feature can be considered as a linear 

subspace in a feature space and its value can be computed by taking the norm of the projection on that 

subspace. 
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To estimate subspace independent components we take a d-dimensional vector y  

which is defined as: 

 

 y xBT= ∑
=

=
M

1j
j

T
j xB              10.4 

 

where size of B and jB are dMd× and dd× respectively. Given equation 10.4, now 

the problem is to identify and/or estimate subspace independent components from the 

observation x only. The problem is solved in section 10.5.2. 

 

10.5.1   Extension of Univariate Kurtosis to Vector Kurtosis 
 

Univariate kurtosis or simply kurtosis (section 10.3.1) is utilized when the variable y 

is a scalar quantity or one-dimensional vector. It does not accommodate for 

multidimensional features. To solve the multidimensional problem we first need to 

extend the basic kurtosis function. The natural generalization of basic kurtosis 

function for any vector y  can be given as: 

 

 2T2T ])3(E[-])E)kurt yyy[(y(y =            10.5 

 

which is a multidimensional equivalent of equation 10.2. There is no covariance term 

in equation 10.5. This is due to one of our assumptions that the sample data is 

whitened ( dd
T IE[ ×=]yy ). We refer to this generalized kurtosis as vector kurtosis. As 

of kurtosis function, vector kurtosis is computationally simple but sensitive to the 

outliers. 

 

10.5.2   Relation of Optimized Vector Kurtosis to the Subspace 

Independent Components 
 

In this section we discuss how the subspace independent components are related to 

the optimization of vector kurtosis. Let us consider the subspace independent 

component (equation 10.4) again. From equations 10.3 and 10.4, the component can 
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be written as: 

 

 ∑
=

===
M

1

TTT  
i

ii sQsQAsBy             10.6 

 

where size of Q and iQ are dMd× and dd× respectively. Equation 10.6 is a linear 

combination of vectors is . To show the relationship, consider two observations 

( 2M = ) 1s and 2s each of dimension d . This would simplify equation 10.6 as: 

 

 2
T
21

T
1   sQsQy +=              10.7 

 

Using the additive property of kurtosis (which can be shown for vector kurtosis as 

well) we can say: 

 

 
)kurt()kurt(                 

)kurt()kurt()(

2
T
21

T
1

T
21

sQsQ

sQyQ,Q

+=

==f
          10.8 

 

where 2TT2TTT )])E[(3])E[()kurt( jjjjjjjjjj sQQs(sQQssQ −= . Now we put a constraint 

g on Q (since dd
T IE[ ×=]yy ): 

 

}]s]ssssQQssQQs

)]sQsQ)sQsQyy

1d21212
T
22

T
21

T
11

T
1

2
T
21

T
1

T
2

T
21

T
1

T

0E[E[ andt independen are  and ]{E[]E[            

(E[(]E[

×==+=

++=

Q

 

   

again dI])(E[  )](E[)](E[]E[ dd
TTTT ===== × )(yyyyyyyy tracetracetracetrace  and 

using equation 10.7 

 

  dd2
T
21

T
1

T I ]E[ ×=+= QQQQyy            10.9 

 

therefore, constraint g can be written as: 

 

 0dE[E[ d ]E[),( 2
T
22

T
21

T
11

T
1

T
21 =−+=−= ]sQQs]sQQsyyQQg         10.10 
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From equation 10.9 it can be stated that column vectors of rectangular matrixQ are 

orthonormalized. The optimization problem can now be solved by finding 

1Q and 2Q that occur at constrained relative-extremum of )Q,(Q 21f  (equation 10.8) 

under the constrained curve ),( 21 QQg  (equation 10.10) using the method of Lagrange 

multipliers: 

 

 )( )( 21)(21)( 2121
Q,QQ,Q Q,QQ,Q gf ∇=∇ λ  where 0≠λ          10.11 

 

Solving for the derivatives of functions f and g (partial proof of equations 10.12 and 

10.13 can be viewed in appendix 10.1), we get 
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T
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2
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T
111

T
11

T
11

T
111

T
11

T
121)(

 ]}]E[E[12)])(E[(4                                   

 ]}]E[E[12)])(E[(4)(

i

if
ˆQsssQQsQsssQQs{

ˆQsssQQsQsssQQs{Q,Q,QQ

−

+−=∇
         

       10.12 

and    
2121 Q2

T
22Q1

T
1121)(  ]E[2 ]E[2)( iig ˆQssˆQssQ,Q,QQ +=∇                      10.13 

 

substituting equations 10.12 and 10.13 in equation 10.11 and comparing 
1Qî terms, we 

get: 

 

]2E[ ]]E[E[12)])(E[(4 1
T
111

T
111

T
11

T
11

T
111

T
11

T
1 QssQsssQQsQsssQQs λ=−        10.14 

 

It is evident from equation 10.14 that dd1 0 ×=Q is one of the solutions. The 

corresponding value of 2Q for this value of 1Q can be obtained by substituting 

dd1 0 ×=Q in constraint curve (equation 10.10), which yields:  

 

0d]E[),0 2
T
22

T
22dd =−=× sQQsQ(g  

or d]E[ 2
T
22

T
2 =sQQs ; or d2

T
2 =)Q(Qtrace                     10.15 

 

Equations 10.9 and 10.15 imply that dd2
T
2 I ×=QQ . These values suggest that the norm 



 168

of y is equal to the norm of one of the subspace independent components 
2TTTTT2 )()(|| ||s||sssQsQyyy|| iiiiiii ====  or ||||  |||| isy = .  Therefore, for any 

whitened data z (which can be achieved for example by eigenvalue decomposition 

procedure of covariance of sample data x), we search for zWT (where W is a 

rectangular matrix of the same size as Q ) that maximizes vector kurtosis. We see that 

WVA T)(Q =  and WWWVAVAWQQ TTTTT ))(( == . It can also be observed from 

equation 10.9 that dd2
T
21

T
1

T I ×=+= QQQQQQ . Thus we maximize zWT  under the 

constraint dd
T I ×=WW . This W will give first subspace independent component and 

second subspace IC will be mutually orthogonal to the first one. Altogether there are 

M subspace ICs. The pth subspace IC is orthogonal to all the previous 

11 −pK subspace ICs. The same algorithm needs to be run M times to get all the 

subspace ICs. It is therefore rather appropriate to define a square matrix Λ of size 

MdMd× that consists of M rectangular matrices W such that ]W[WΛ M1K= . 

Therefore the objective is to find all W to get projection zΛT . 

 

10.5.3   Fixed Point Algorithm Using Vector Kurtosis 
 

In this section we discuss the fixed-point algorithm (Hyvärinen and Oja, 1997) for 

finding the projection matrix ΛW∈  which would enable us to find subspace 

independent components. Let the whitened data z be a set of vectors defined as 
TT

M
T
1 ],,[ zzz K= , where jz is a vector of d dimension and given by T

d1 ]z,,[z jj K  

( j
iz are scalar quantities). For a projection matrix W of size dMd× the gradient of 

absolute value of vector kurtosis can be computed as (see appendix 10.1 for the proof) 

 

[ ]][]E[3)])(E[())sign(kurt(4)kurt( TTTTTTT
T

WzzzWWzWzzzWWzzW
W

|zW| E−=
∂

∂  

 

For whitened data z and normalized2 W, the fixed-point algorithm for subspace ICA 

model (see appendix 10.1) would be .d3)])(E[( TTT WWzzzWWzW −←  The 

                                                 
2 The term normalization for W is meant orthonormalization of the column vectors of W. Here we used 
this term to make distinction between the orthonormalization process of one W (say Wj) with another 
(say Wk) and to that of orthonormalization of column vectors within W. 
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algorithm will converge when the norm of new and old values of W point in the same 

direction, i.e. ||||||WW|| dd
T I  )( ×

+ ≈ ( where +W is the new value of W and |||| • is 

Frobenius norm). The iterative process can also be terminated when the vector 

kurtosis stops increasing.  

 

10.5.4   Orthonormalization of a Rectangular Matrix 
 

This procedure used in subspace ICA is briefly explained here since it is slightly 

different from the regular vector orthonormalization procedure.  

 

Orthonormalization: The orthonormalization of p rectangular matrix ΛW ∈p can be 

computed by Gram-Schmidt process: 

 

 1. ∑
−

=
−←

1

1

T
p

j
pjjpp WWWWW   (orthogonalize W) 

 2. 1/2T )( −← pppp WWWW   (normalize W) 

 

For orthonormalization of pW  check if the following two conditions are satisfied: 

 

1.   dd
T I ×=pp WW  

2. jjiijiji WWWW)W(W)W(W TTT  +=++  (from Pythagorean Theorem)   

or  dd
TT 0 ×=+ ijji WWWW  where pi = and 1−= pj for 2≥p . If the above two 

conditions are not satisfied then the Gram-Schmidt orthonormalization procedure 

should be repeated until both the conditions are satisfied or the values of 

pp WWT and ijji WWWW TT +  meet some predefined thresholds. 

 

10.5.5   Deflationary Orthogonalization Procedure for Subspace ICA 
 

Deflationary orthogonalization procedure can be used to estimate subspace 

independent components one by one. We first estimate p matrices and then 

orthonormalize the obtained matrices prior to running the algorithm for 
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th1)( +p matrix. The size of matrix pW  is dMd× . The procedure is illustrated as in 

table 10.1.  

 

For special case, when 1d = (one-dimensional vector or scalar quantity) then the 

subspace ICA procedure will be reduced to the basic ICA procedure. 

 

 

TABLE 10.1: Deflationary orthogonalization procedure for subspace ICA technique 

 

 1.   Center data x. 

 2.   Whiten data x to give z. 

3.   Select M, the number of subspace independent components and dimension 

d for each of the subspaces. Set counter 1←p . 

4. Select an initial value of identity norm for pW , e.g. randomly. 

5. Let ppppp WWzzzWWzW d3)])(E[( TTT −← . 

6. Do orthonormalization for pW (see section 10.5.4). 

7. If pW has not converged, go back to step 5. 

8. Set 1+← pp and go to step 4 until M=p . 

 

 

 

10.6   Illustration Using Foetal ECG 
 

The subspace ICA model is illustrated on foetal ECG dataset (De Moor et al., 1997). 

The dataset consists of 2500 ECG points sampled at 500 Hz. We considered samples 

of four electrodes located on the abdomen of a pregnant woman. These observed 

samples are the mixtures of the cardiac rhythms of the mother and her foetus. The 

starting second of signals taken by each electrode are depicted in figure 10.1. In our 

model we assume two independent observations ( 2M = ) and the dimension of each 

observation vector to be two as well (i.e. each observation vector has 2 non-

independent components). From figure 10.1, row 1 and row 2 are assumed to be the 
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‘first-subspace’ and row 3 and row 4 are assumed to be the ‘second-subspace’. 

Therefore row 1 and row 2 are dependent components; similarly row 3 and row 4 are 

dependent components. But dependencies between the two different subspaces are not 

allowed, i.e. they are considered as mutually independent. 

 

 

 

 

 

 

 

 

 

 

Figure 10.1: Observed ECG from 4 electrodes located on the abdomen of a pregnant 

woman 

 

 

The convergence of subspace ICA using vector kurtosis for two subspace components 

with foetal ECG dataset is illustrated in figure 10.2. The absolute of vector kurtosis 

( |kurt| ) is displayed as a function of iteration for the ‘first-subspace’ (figure 10.2a) 

and ‘second-subspace’ (figure 10.2b) components. It can be seen from both the 

figures that |kurt|  attained some finite value and converged after a few iterations.  

 

The subspace independent components estimated by subspace ICA method using 

vector kurtosis are depicted in figure 10.3. The first two rows of the figure show the 

cardiac rhythms of the mother and the last row shows the cardiac rhythms of the 

foetus. The third row of the figure does not precisely follow any cardiac rhythm and is 

thus considered as noise being emitted from the electrodes. It can be seen that 

subspace ICA is well modelled on ECG dataset and is able to extract hidden cardiac 

rhythms. 

 

The subspace ICA model using vector kurtosis has estimated the rhythms in a similar 
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fashion as MICA model (Cardoso, 1998) has on the same foetal ECG database. This 

proves the validity of our approach. Although some finer points remain unanswered at 

this stage (which we have included in the ‘summary and future work’ section), the 

prime objective of introducing the concept of vector kurtosis for subspace ICA model 

is achieved. 

 

 

 

 

 

 

 

 

 

 

Figure 10.2: The convergence of subspace ICA algorithm using absolute of vector 

kurtosis on foetal ECG dataset.  

a) first-subspace component 

b) second-subspace component 

 

 

10.7.   Summary and Future Work 
 

We have presented a new perspective of subspace ICA algorithm. The subspace ICA 

model is derived by partitioning the multiplicative model of basic ICA. The idea of 

kurtosis is extended to vector kurtosis to solve generalized version of BSS problem, 

i.e. when dependent components are involved. The relationship between the 

optimization of vector kurtosis and subspace independent components, which enabled 

us to estimate subspace independent components by maximizing vector kurtosis is 

established. It is seen that the approach works well on ECG dataset. Some essential 

questions are included here under to be answered in future: 

• How to appropriately select the value of d? 

• If two or more signals are linearly dependent then it is possible to have 
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reduced rank covariance matrix ]E[ Tzz . How to apply the algorithm on 

reduced rank cases? 

• How to select the value of M if the number of sources is completely unknown 

to the observer? 

• The presented model can also be applied on negentropy measure. 

 

 

 

 

 

 

 

 

 

 

Figure 10.3: The estimated cardiac rhythms of the mother and her foetus using 

subspace ICA algorithm. 
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Appendix 10.1: 
 

Lemma: Let vector kurtosis 2TT2TTT ])E[3])E[()kurt( zWWz(zWWzzW −=  be a 

differentiable function of an nm×  rectangular matrix W for nm ≥ ; z be any vector of 

size 1×m . The gradient of )kurt( TzW is defined as 

]]E[E[12)])(E[(4)kurt( TTTTTTT WzzzWWzWzzzWWzzWW −=∇ . In the case of 

whitened z and normalized W, the second term of the equation will be 12nW. 

 

Proof: Let the scalar function be defined as )()( TT zWWzW =h . The derivative of h 

with respect to W will then be given as: 

 

)())(( TT zWWz
WW

W
∂
∂

=
∂

∂ h     

or   ))(())((  )( TTTTTT zWWzzWWzzWWz ∂=∂=∂ tracetrace  

                  )}()( and )()( {since ))((2 TTT BAABAAWWzz trtrtrtrtrace ==∂=  

or )2()( TWzz'W =h         A1 

 

Therefore the derivative of vector kurtosis (from equation A1) can be written as: 

 

 ])'()]E[(E[6])'()(E[2)kurt T
W WWWWz(W hhhh −=∇  

           ]]E[E[12)])(E[(4 TTTTTT WzzzWWzWzzzWWz −=  A2 

 

However, if data z is whitened ( mm×= I]E[ Tzz ) and rectangular matrix W is 

normalized ( nn×= ITWW ) then equation A2 can be rewritten as: 

 

 WWzzzWWzz(WW n12)])(E[(4)kurt TTTT −=∇     A3 

Q )]E[()](E[]E[ TTTTTT WzzWzWWzzWWz tracetrace ==   

ntracetrace nn === × )(I)( TWW  

and    WWzzWzz == ]E[]E[ TT  
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