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Abstract

We address the pose mismatch problem which can occur in face verification systems that have only a single (frontal) face image available
for training. In the framework of a Bayesian classifier based on mixtures of gaussians, the problem is tackled through extending each
frontal face model with artificially synthesized models for non-frontal views. The synthesis methods are based on several implementations
of maximum likelihood linear regression (MLLR), as well as standard multi-variate linear regression (LinReg). All synthesis techniques
rely on prior information and learn how face models for the frontal view are related to face models for non-frontal views. The synthesis
and extension approach is evaluated by applying it to two face verification systems: a holistic system (based on PCA-derived features)
and a local feature system (based on DCT-derived features). Experiments on the FERET database suggest that for the holistic system,
the LinReg-based technique is more suited than the MLLR-based techniques; for the local feature system, the results show that synthesis
via a new MLLR implementation obtains better performance than synthesis based on traditional MLLR. The results further suggest that
extending frontal models considerably reduces errors. It is also shown that the local feature system is less affected by view changes than
the holistic system; this can be attributed to the parts based representation of the face, and, due to the classifier based on mixtures of
gaussians, the lack of constraints on spatial relations between the face parts, allowing for deformations and movements of face areas.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Biometric recognition systems based on face images
(here we mean both identification and verification systems)
have attracted much research interest for quite some time.
Applications include surveillance, forensics, transaction au-
thentication, and various forms of access control, such as
immigration checkpoints and access to digital information
[1–4].

Contemporary approaches are able to achieve low er-
ror rates when dealing with frontal faces (see for example
Refs. [5,6]). In order to handle non-frontal faces, previously
proposed extensions to 2D approaches include the use of
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training images (for the person to be recognized) at multi-
ple views [7–9]. In some applications, such as surveillance,
there may be only one reference image (e.g., a passport pho-
tograph) for the person to be spotted. In a surveillance video
(e.g. at an airport), the pose of the face is usually uncon-
trolled, thus causing a problem in the form of a mismatch
between the training and the test poses.

While it is possible to use 3D approaches to address the
single training pose problem [10,11], in this paper we con-
centrate on extending two 2D-based techniques. We extend
a local feature approach (based on DCT-derived features
[12,13]) and a holistic approach (based on PCA-derived fea-
tures [14,15]). In both cases we employ a Bayesian classifier
based on gaussian mixture models (GMMs) [16,17], which
is central to our extensions.

The PCA/GMM system is an extreme example of a
holistic system where the spatial relations between face
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characteristics (such as the eyes and nose) are rigidly kept.
Contrarily, the DCT/GMM approach is an extreme example
of a local feature approach (also known as a parts based ap-
proach [13]). Here, the spatial relations between face parts
are largely not used, resulting in robustness to translations
of the face which can be caused by an automatic face local-
ization algorithm [18,19]. In between the two extremes are
systems based on multiple template matching [20], modular
PCA [9], Pseudo 2D hidden Markov models [21–23] and
approaches based on elastic graph matching [24,25]. As an
in-depth review of face recognition literature is beyond the
scope of this paper, the reader is directed to the following
review articles [26–29]. Further introductory and review ma-
terial about the biometrics field in general can be found in
Refs. [3,30–32].

In general, an appearance-based face recognition system
can be thought of as being comprised of

1. Face localization and segmentation,
2. feature extraction and classification.

The first stage usually provides a size normalized face im-
age (with eyes at fixed locations). Illumination normaliza-
tion may also be performed (however, it may not be not
necessary if the feature extraction method is robust to illu-
mination changes). In this work we exclusively deal with
the classification problem, and postulate that the face local-
ization step has been performed correctly. Recent reviews of
face localization algorithms can be found in Refs. [33,34].

There are three distinct configurations of how a classifier
can be used: the closed set identification task, the open set
identification task, and the verification task.1 In closed set
identification, the job is to assign a given face into one of
K face classes (where K is the number of known faces). In
open set identification, the task is to assign a given face into
one of K + 1 classes, where the extra class represents an
“unknown” or “previously unseen” face. In the verification
task the classifier must assign a given face into one of two
classes: either the face is the one we are looking for, or it is
not. The verification and open set identification tasks repre-
sent operation in an uncontrolled environment [35], where
any face could be encountered. In contrast, the closed set
identification task assumes that all the faces to be encoun-
tered are already known.

In this paper, we propose to address the single training
pose problem by extending each statistical frontal face model
with artificially synthesized models for non-frontal views.
We propose to synthesize the non-frontal models via meth-
ods based on several implementations of maximum likeli-
hood linear regression (MLLR), as well as standard multi-
variate linear regression (LinReg). MLLR was originally de-
veloped for tuning speech recognition systems [36], and to
our knowledge this is the first time it is being adapted for
face verification.

1 Verification is also known as authentication.
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Fig. 1. An interpretation of synthesizing a non-frontal client model based
on how the frontal generic model is transformed to a non-frontal generic
model.

In the proposed MLLR-based approach, prior informa-
tion is used to construct generic face models for differ-
ent views. A generic GMM does not represent a specific
person’s face—instead it represents a population of faces,
or interpreted alternatively, a “generic” face. In the field
of speech based identity verification, an analogous generic
model is known as a world model and as a Universal Back-
ground Model [17,37]. Each non-frontal generic model is
constructed by learning and applying a MLLR-based trans-
formation to the frontal generic model. When we wish to
obtain a person’s non-frontal model, we first obtain the per-
son’s frontal model via adapting [17] the frontal generic
model; a non-frontal face model is then synthesized by ap-
plying the previously learned transformation to the person’s
frontal model. In order for the system to automatically han-
dle the two views, a person’s frontal model is extended by
concatenating it with the newly synthesized model. The pro-
cedure is then repeated for other views. An interpretation of
this procedure is shown in Fig. 1.

The LinReg approach is similar to the MLLR-based ap-
proach described above. The main difference is that it learns
a common relation between two sets of feature vectors, in-
stead of learning the transformation between generic mod-
els. In our case the LinReg technique is applicable only to
the holistic system, while the MLLR-based methods are ap-
plicable to both holistic and local feature based systems.

Previous approaches to addressing single view problems
include the synthesis of new images at previously unseen
views; some examples are optical flow based methods
[38,39], and linear object classes [40]. To handle views for
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which there are no training images, an appearance-based
face recognition system could then utilize the synthesized
images. The proposed model synthesis and extension ap-
proach is inherently more efficient, as the intermediary steps
of image synthesis and feature extraction (from synthesized
images) are omitted.

The model extension part of the proposed approach is
somewhat similar to Ref. [8], where features from many
real images were used to extend a person’s face model. This
is in contrast to the proposed approach, where the models
are synthesized to represent the face of a person for various
non-frontal views, without having access to the person’s real
images. The synthesis part is somewhat related to Ref. [41]
where the “jets” in the nodes of an elastic graph are trans-
formed according to a geometric framework. Apart from the
inherent differences in the structure of classifiers (i.e. elas-
tic graph matching compared to a Bayesian classifier), the
proposed synthesis approach differs in that it is based on a
statistical framework.

The rest of this paper is structured as follows. In Section 2,
we briefly describe the database used in the experiments and
the pre-processing of images. In Section 3, we overview the
DCT- and PCA-based feature extraction techniques. Section
4 provides a concise description of the GMM-based classifier
and the different training strategies used when dealing with
DCT and PCA derived features. In Section 5 we summa-
rize MLLR, while in Section 6 we describe model synthesis
techniques based on MLLR and standard multi-variate lin-
ear regression. Section 7 details the process of extending a
frontal model with synthesized non-frontal models. Section
8 is devoted to experiments evaluating the proposed synthe-
sis techniques and the use of extended models. Conclusions
and future areas of research are given in Section 9.

2. Database setup and pre-processing

In our experiments we utilized a subset of face images
from the FERET database [42]. Specifically, we used im-
ages from the ba, bb, bc, bd, be, bf, bg, bh and bi portions,
which represent views of 200 persons for approximately 0◦
(frontal), +60◦, +40◦, +25◦, +15◦, −15◦, −25◦, −40◦ and
−60◦, respectively.

The 200 persons were split into three groups: group A,
group B and an impostor group. There are 90 people each
in group A and B, and 20 people in the impostor group. The
class IDs for each group are given in Appendix A. Example
images are shown in Fig. 2. Throughout the experiments,
group A is used as a source of prior information while the
impostor group and group B are used for verification tests.
For most experiments there are 90 true claimant accesses and
90×20=1800 impostor attacks per angle (with the view of
impostor faces matching the testing view). This restriction
is relaxed in later experiments.

To reduce the effects of facial expressions and hair styles,
closely cropped faces are used [43]; face windows, with a

Fig. 2. Example images from the FERET database for 0◦ (frontal), +25◦
and +60◦ views; note that the angles are approximate.

Fig. 3. Extracted face windows from images in Fig. 2.

size of 56 rows and 64 columns, are extracted based on man-
ually found eye locations. As in this paper we are proposing
extensions to existing 2D approaches, we obtain normalized
face windows for non-frontal views in the same way as for
the frontal view (i.e. the location of the eyes is the same
in each face window). This has a significant side effect: for
large deviations from the frontal view (such as −60◦ and
+60◦) the effective size of facial characteristics is signifi-
cantly larger than for the frontal view. The non-frontal face
windows thus differ from the frontal face windows due to
out-of-plane rotation of the face and scale. Example face
windows are shown in Fig. 3.

3. Feature extraction

3.1. DCT-based system

In this work we utilize the DCTmod2 feature extraction
technique [12], which is a modified form of DCT-based fea-
ture extraction. First, a given face image is analyzed on a
block by block basis; each block is NP × NP (here we use
NP = 8) and overlaps neighbouring blocks by NO pixels.
Each block is decomposed in terms of orthogonal 2D dis-
crete cosine transform (DCT) basis functions [44]. A feature
vector for a given block is then constructed as

x = [�hc0�
vc0�

hc1�
vc1�

hc2 �vc2 c3 c4 · · · cM−1]T,

(1)

where cn represents the nth DCT coefficient, while �hcn

and �vcn represent the horizontal and vertical delta coef-
ficients, respectively. The deltas are computed using DCT
coefficients extracted from neighbouring blocks. Compared
to standard DCT feature extraction [22], the first three DCT
coefficients are replaced by their respective horizontal and
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Fig. 4. Graphical example of the spatial area (shaded) used in DCTmod2
feature extraction for NP = 4; left: NO = 0; right: NO = 2.

Table 1
Number of DCTmod2 feature vectors extracted from a 56×64 face using
NP = 8 and varying overlap

Overlap (NO) Vectors (NV ) Spatial width

0 30 24
1 35 22
2 56 20
3 80 18
4 143 16
5 255 14
6 621 12
7 2585 10

It also shows the effective spatial width (& height) in pixels for each
feature vector.

vertical deltas as a way of preserving discriminative infor-
mation while alleviating the effects of illumination changes.
Note that this feature extraction is only possible when a
given block has vertical and horizontal neighbours. In this
study we use M = 15 (choice based on Ref. [12]), result-
ing in an 18-dimensional feature vector for each block. A
further study of this feature extraction technique is given in
Ref. [45].

The degree of overlap (NO ) has two effects: the first is
that as overlap is increased the spatial area used to derive
one feature vector is decreased (see Fig. 4 for an example);
the second is that as the overlap is increased the number of
feature vectors extracted from an image grows in a quadratic
manner. Table 1 shows the amount of feature vectors ex-
tracted from a 56 × 64 face window using our implementa-
tion of the DCTmod2 extractor. As will be shown later, the
larger the overlap (and hence the smaller the spatial area for
each feature vector), the more the system is robust to view
changes.

3.2. PCA-based system

In PCA-based feature extraction [14,15], a given face im-
age is represented by a matrix containing grey level pixel
values. The matrix is then converted to a face vector, f , by
concatenating all the columns. A D-dimensional feature vec-
tor, x, is then obtained by

x = UT(f − f�), (2)

where U contains D eigenvectors (corresponding to the D
largest eigenvalues) of the training data covariance matrix,
and f� is the mean of training face vectors. In our experi-
ments we use frontal faces from group A to find U and f�.

It must be emphasized that in the PCA-based approach,
one feature vector represents the entire face (i.e. it is a holis-
tic representation), while in the DCT approach one feature
vector represents only a small portion of the face (i.e. it is a
local feature representation).

4. GMM-based classifier

The distribution of training feature vectors for each per-
son’s face is modeled by a GMM [12,13,17]. There is also
a secondary model, the generic model, which models the
distribution of a population of faces, or interpreted alterna-
tively, it represents “generic” face.

In the verification task we wish to find out whether a
set of (test) feature vectors, X = {xi}NV

i=1, extracted from
an unknown person’s face, belongs to person C (which we
will refer to as client C) or someone else (i.e. this is a two
class recognition task). We first find the likelihood of set X
belonging to client C with

P(X|�C) =
NV∏
i=1

P(xi |�C), (3)

where P(x|�) = ∑NG

g=1 wgN(x|�g, �g) and � = {wg, �g,

�g}NG

g=1. Here, N(x|�, �) is a D-dimensional gaussian func-
tion with mean � and diagonal covariance matrix �:

N(x|�, �) = exp[− 1
2 (x − �)T�−1(x − �)]
(2�)D/2|�|1/2

(4)

�C is the parameter set for client C, NG is the number of
gaussians and wg is the weight for gaussian g (with con-

straints
∑NG

g=1 wg =1 and ∀g : wg �0). Secondly, we obtain
P(X|�generic), which is the likelihood of set X describing
someone else’s face (which we shall refer to as an impostor
face). A log-likelihood ratio is then found using

�(X|�C, �generic)

= log P(X|�C) − log P(X|�generic). (5)

The verification decision is reached as follows: given a
threshold t, the set X (i.e. the face in question) is classi-
fied as belonging to client C when �(X|�C, �generic)� t

or to an impostor when �(X|�C, �generic) < t . Note that
�(X|�C, �generic) can be interpreted as an opinion of how
more likely set X represents client C’s face than an impos-
tor’s face, and hence can also be used in an open set iden-
tification system. Methods for obtaining the parameter set
for the generic model and each client model are described
in the following sections.
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Note that in (3) each vector in the set X={xi}NV

i=1 was as-
sumed to be independent and identically distributed [16,46].
When using local features, this results in the spatial relations
between face parts to be not used, resulting in robustness to
translations of the face [18,19].

4.1. Classifier training for the DCT-based system

First, the parameters for the generic model are ob-
tained via the expectation maximization (EM) algorithm
[16,17,47], using all 0◦ data from group A. Here, the EM
algorithm tunes the model parameters to optimize the maxi-
mum likelihood criterion. The parameters (�) for each client
model are then found by using the client’s training data and
adapting the generic model. The adaptation is traditionally
done using a form of maximum a posteriori (MAP) estima-
tion [17,48]. In this work we shall also employ the MLLR
model transformation approaches as adaptation methods.
The choice of the adaptation technique depends on the non-
frontal model synthesis method utilized later (Section 6).

4.2. Classifier training for the PCA-based system

The subset of the FERET database that is utilized in this
work has only one frontal image per person. In PCA-based
feature extraction, this results in only one training vector,
leading to necessary constraints in the structure of the clas-
sifier and the classifier’s training paradigm.

The generic model and all client models for frontal faces
are constrained to have only one component (i.e. one gaus-
sian), with a diagonal covariance matrix.2 The mean and
the covariance matrix of the generic model are taken to be
the mean and the covariance covariance matrix of feature
vectors from group A, respectively. Instead of adaptation (as
done in the DCT-based system), each client model inherits
the covariance matrix from the generic model. Moreover, the
mean of each client model is taken to be the single training
vector for that client.

4.3. Error measures

There are two types of errors that can occur in a verifica-
tion system: a false acceptance (FA), which occurs when the
system accepts an impostor face, or a false rejection (FR),
which occurs when the system refuses a true face. The per-
formance of verification systems is generally measured in
terms of false acceptance rate (FAR) and false rejection rate
(FRR), defined as

FAR = number of FAs

number of impostor face presentations
, (6)

FRR = number of FRs

number of true face presentations
. (7)

2 The assumption of a diagonal covariance matrix is supported by the
fact that PCA derived feature vectors are decorrelated [16,46].

To aid the interpretation of performance, the two error mea-
sures are often combined into one measure, called the half
total error rate (HTER), which is defined as HTER=(FAR+
FRR)/2. The HTER can be thought of as a particular case
of the decision cost function (DCF) [49,50]:

DCF = cost(FR) · P(true face) · FRR

+ cost(FA) · P(impostor face) · FAR, (8)

where P(true face) is the prior probability that a true face
will be presented to the system, P(impostor face) is the prior
probability that an impostor face will be presented, cost(FR)
is the cost of a FR and cost(FA) is the cost of a FA. For the
HTER, we have P(true face) = P(impostor face) = 0.5 and
the costs are set to 1.

A particular case of the HTER, known as the equal error
rate (EER), occurs when the system is adjusted (e.g. via
tuning the threshold) so that FAR=FRR on a particular data
set. We use a global threshold (common across all clients)
tuned to obtain the lowest EER on the test set, following the
approach often used in speaker verification [3,50].3

5. Maximum likelihood linear regression

In the MLLR framework [36,52], the adaptation of a given
model is performed in two steps. In the first step the means
are updated while in the second step the covariance matrices
are updated, such that

P(X|̃�)�P(X|̂�)�P(X|�), (9)

where �̃ has both means and covariances updated while �̂
has only means updated. The weights are not adapted as the
main differences are assumed to be reflected in the means
and covariances.

5.1. Adaptation of means

Each adapted mean is obtained by applying a transforma-
tion matrix WS to each original mean:

�̂g = WS�g , (10)

where �g =[1 �T
g ]T and WS is a D× (D+1) transformation

matrix which maximizes the likelihood of given training
data. For WS shared by NS gaussians {gr}NS

r=1 (see Section
5.3 below), the general form for finding WS is

NV∑
i=1

NS∑
r=1

P(gr |xi , �)�−1
gr

xi�
T
gr

=
NV∑
i=1

NS∑
r=1

P(gr |xi , �)�−1
gr

WS�gr �
T
gr

, (11)

3 We note that the posterior selection of the threshold can place an
optimistic bias on the results [51].
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where

P(g|xi , �) = wgN(xi |�g, �g)∑NG

n=1 wnN(xi |�n, �n)
. (12)

As further elucidation is quite tedious, the reader is referred
to Ref. [36] for the full solution of WS .

Two forms of WS were originally proposed: full and
“diagonal” [36]. We shall refer to MLLR transformation
with a full transformation matrix as full-MLLR. When the
transformation matrix is forced to be “diagonal”, it has the
following form

WS =

⎡
⎢⎢⎣

w1,1 w1,2 0 · · · 0
w2,1 0 w2,3 · · · 0

...
...

...
. . .

...

wD,1 0 0 · · · wD,D+1

⎤
⎥⎥⎦ . (13)

We shall refer to MLLR transformation with a “diagonal”
transformation matrix as diag-MLLR. We propose a third
form of MLLR, where the “diagonal” elements are set to
one, i.e.

WS =

⎡
⎢⎢⎣

w1,1 1 0 · · · 0
w2,1 0 1 · · · 0

...
...

...
. . .

...

wD,1 0 0 · · · 1

⎤
⎥⎥⎦ . (14)

In other words, each mean is transformed by adding an off-
set; thus Eq. (10) can be rewritten as

�̂g = �g + �S , (15)

where �S maximizes the likelihood of given training data.
This leads to the following solution:

�S =
⎡
⎣ NS∑

r=1

NV∑
i=1

P(gr |xi , �)�−1
gr

⎤
⎦−1

×
⎡
⎣ NS∑

r=1

NV∑
i=1

P(gr |xi , �)�−1
gr

(xi − �gr )

⎤
⎦ . (16)

The derivation for the above solution is given in Appendix
B. We shall refer to this form of MLLR as offset-MLLR.

5.2. Adaptation of covariance matrices

Once the new means are obtained, each new covariance
matrix is found using [52]:

�̃g = BT
g HSBg , (17)

where

Bg = C−1
g , (18)

CgCT
g = �−1

g . (19)

Here, Eq. (19) is a form of Cholesky decomposition [53].
HS , shared by NS gaussians {gr}NS

r=1, is found with

HS =
∑NS

r=1{CT
gr

[∑NV
i=1 P(gr |xi , �)(xi − �̂gr )(xi − �̂gr )

T]Cgr }∑NV
i=1

∑NS
r=1 P(gr |xi , �)

.

(20)

The covariance transformation may be either full or diag-
onal. When the full transformation is used, full covariance
matrices can be produced even if the original covariances
were diagonal to begin with. To avoid this, the off-diagonal
elements of HS can be set to zero. In this work we restrict
ourselves to the use of diagonal covariance matrices to re-
duce the number of parameters that need to be estimated.
For full covariance matrices the data set may not be large
enough to robustly estimate the transformation parameters,
which could result in the transformed covariance matrices
being ill-conditioned [52].

5.3. Regression classes

If each gaussian is transformed individually, then for full-
MLLR there are D2 + 2D parameters to estimate per gaus-
sian (i.e. D × (D + 1) parameters for each mean and D pa-
rameters for each covariance matrix); for diag-MLLR, there
are D+D+D=3D parameters and for offset-MLLR there
are D + D = 2D parameters. Ideally each gaussian would
have its own transform, however in practical applications the
training data set may not be large enough to reliably esti-
mate the required number of parameters. One way of work-
ing around the small training data set problem is to share a
transform across two or more gaussians [36,52]. We define
which gaussians are to share a transform by clustering the
gaussians based on the distance between their means.

We define a regression class as {gr}NS

r=1 where gr is the
rth gaussian in the class; all gaussians in a regression class
share the same mean and covariance transforms. In our ex-
periments we vary the number of regression classes from one
(all gaussians share one mean and one covariance transform)
to 32 (each gaussian has its own transform). The number of
regression classes is denoted as NR .

6. Synthesizing client models for non-frontal views

6.1. DCT-based system

In the MLLR-based model synthesis technique, we first
transform, using prior information, the frontal generic model
into a non-frontal generic model for angle �. For full-MLLR
and diag-MLLR, the parameters which describe the transfor-
mation of the means and covariances are �={Wg, Hg}NG

g=1,

while for offset-MLLR the parameters are �={�g, Hg}NG

g=1.
Wg , �g and Hg are found as described in Section 5. When
several gaussians share the same transformation parameters,
the shared parameters are replicated for each gaussian in
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question. To synthesize a client model for angle �, the pre-
viously learned transformations are applied to the client’s
frontal model. The weights are kept the same as for the
frontal model. Moreover, each frontal client model is derived
from the frontal generic model by MLLR.

6.2. PCA-based system

For the PCA-based system, we utilize MLLR-based model
synthesis in a similar way as described in the previous sec-
tion. The only difference is that each non-frontal client model
inherits the covariance matrix from the corresponding non-
frontal generic model. Moreover, as each client model has
only one gaussian, we note that the MLLR transformations
are “single point to single point” transformations, where the
points are the old and new mean vectors.

As described in Section 4.2, the mean of each client model
is taken to be the single training vector available. Thus in this
case a transformation in the feature domain is equivalent to a
transformation in the model domain. It is therefore possible
to use transformations which are not of the “single point to
single point” type. Let us suppose that we have the following
multi-variate linear regression model:

B = AW, (21)⎡
⎢⎢⎣

bT
1

bT
2
...

bT
N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 aT
1

1 aT
2
...

1 aT
N

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w1,1 · · · w1,D

w2,1 · · · w2,D

...
...

...

wD+1,1 · · · wD+1,D

⎤
⎥⎥⎦ , (22)

where N > D + 1, with D being the dimensionality of a
and b. W is a matrix of unknown regression parameters.
Under the sum-of-least-squares regression criterion, W can
be found using [53]:

W = (ATA)−1ATB. (23)

Compared to MLLR, this type of regression finds a common
relation between two sets of points; hence it may be more
accurate than MLLR. Given a set of PCA-derived feature
vectors from group A, representing faces at 0◦ and �, we
find W. We can then synthesize the single mean for � from
client C’s 0◦ mean using

�� = [1 (�0 ◦
)T]W. (24)

We shall refer to this PCA-specific linear regression based
technique as LinReg. We note that for this synthesis tech-
nique, (D + 1) × D = D2 + D parameters need to be
estimated.

7. Extending frontal models

In order for the system to automatically handle non-frontal
views, each client’s frontal model is extended by concate-
nating it with synthesized non-frontal models. The frontal
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Fig. 5. Performance of the DCT-based system trained and tested on frontal
faces, for varying degrees of overlap and number of gaussians. Traditional
MAP-based training was used.

generic model is also extended with non-frontal generic
models. Formally, an extended model is created using:

�extended = �0◦ � �+60◦ � �+40◦ · · · � �−40◦ � �−60◦

=
⊔
i∈�

�i , (25)

where �0◦
represents a frontal model, � is a set of angles,

e.g., � = {0◦, +60◦, . . . ,+15◦, −15◦, . . . ,−60◦}, and � is
an operator for joining GMM parameter sets. Let us suppose
we have two GMM parameter sets, �x and �y , comprised of
parameters for Nx

G and N
y
G gaussians, respectively. The �

operator is defined as follows:

�z = �x � �y

= {�wx
g, �x

g, �
x
g}N

x
G

g=1 ∪ {	w
y
g, �

y
g, �

y
g}N

y
G

g=1, (26)

where � = Nx
G/(Nx

G + N
y
G) and 	 = 1 − �.

8. Experiments and discussion

8.1. DCT-based system

In the first experiment we studied how the overlap setting
in the DCTmod2 feature extractor and number of gaussians
in the classifier affects performance and robustness. Client
models were trained on frontal faces and tested on faces at
0◦ and +40◦ views; impostor faces matched the testing view.
Traditional MAP adaptation was used to obtain the client
models. Results, in terms of EER (Section 4), are shown in
Figs. 5 and 6.

When testing with frontal faces, the overall trend is that
as the overlap increases more gaussians are needed to de-
crease the error rate. This can be interpreted as follows: the
smaller the area used in the derivation of each feature vec-
tor, the more gaussians are required to adequately model the
face. When testing with non-frontal faces, the overall trend
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Fig. 6. Performance of the DCT-based system trained on frontal faces
and tested on +40◦ faces, for varying degrees of overlap and number of
gaussians. Traditional MAP-based training was used.

is that as the overlap increases, the lower the error rate.
There is also a less defined trend when the overlap is four
pixels or greater: the more gaussians, the lower the error
rate.4 While not shown here, the DCT-based system ob-
tained similar trends for non-frontal views other than +40◦.
The best performance for +40◦ faces is achieved with an
overlap of seven pixels and 32 gaussians, resulting in an
EER close to 10%. We chose this configuration for further
experiments.

In the second experiment we evaluated the performance
of models synthesized via the full-MLLR, diag-MLLR and
offset-MLLR techniques, for varying number of regression
classes. Results are presented in Tables 2–5. As can be
observed, the full-MLLR technique falls apart when there
are two or more regression classes. Its best results (ob-
tained for one regression class) are in some cases worse
than for standard frontal models. Frontal client models,
obtained by using full-MLLR as an adaptation method,
resulted in an EER of 0% for frontal faces for all config-
urations of regression classes. Thus while the full-MLLR
transformation is adequate for adapting the frontal generic
model to frontal client models, the synthesis results sug-
gest that the transformation is only reliable when applied
to the specific model it was trained to transform. Further
investigation of the sensitivity of the full-MLLR trans-
form, presented in Appendix C, shows that the full-MLLR
transform is easily affected by the starting point. We con-
jecture that this is probably due to the training data set
being too small to robustly estimate the transformation
parameters.

Compared to full-MLLR, the diag-MLLR technique ob-
tains lower EERs (Table 3). We note that the number of
transformation parameters for diag-MLLR is significantly

4 This is true up to a point: eventually the error rate will go up as
there will be too many gaussians to train adequately with the small size
of the training data set. Preliminary experiments showed that there was
little performance gain when using more than 32 gaussians.

less than for full-MLLR. The overall error rate (across all
angles) decreases as the number of regression classes in-
creases from one to eight; the performance then deteriorates
for higher numbers of regression classes. The results are
consistent with the scenario that once the number of regres-
sion classes reaches a certain point, the training data set is
too small to obtain robust transformation parameters. The
best performance, obtained at eight regression classes, is for
all angles better than the performance of standard frontal
models.

The offset-MLLR technique (Table 4) has the lowest EERs
when compared to full-MLLR and diag-MLLR. It must be
noted that it also has the least number of transformation
parameters. The overall error rate consistently decreases as
the number of regression classes increases from one to 32.
The best performance, obtained at 32 regression classes, is
for all angles better than the performance of standard frontal
models.

8.2. PCA-based system

In the first experiment we studied how the dimensionality
of the feature vectors used in the PCA-based system affects
robustness to varying pose. Client models were trained on
frontal faces and tested on faces from −60◦ to +60◦ views;
impostor faces matched the testing view. Results for −60◦
to 0◦ are shown in Fig. 7 (results for +15◦ to +60◦, not
shown here, have very similar trends).

As can be observed, a dimensionality of at least 40 is re-
quired to achieve perfect verification on frontal faces (this
is consistent with the results presented in Ref. [23]). For
non-frontal faces at ±60◦ and ±40◦, the error rate gen-
erally increases as the dimensionality increases, and satu-
rates when the dimensionality is about 15. Hence there is
somewhat of a trade-off between the error rates on frontal
faces and non-frontal faces, controlled by the dimensional-
ity. Since in this work we are pursuing extensions to stan-
dard 2D approaches, the dimensionality has been fixed at
40 for further experiments. Using a lower dimensionality
of, say 4, offers better performance for non-frontal faces,
however it comes at the cost of an EER of about 10% on
frontal faces.

We note that the PCA-based system (which is holistic
in nature) is much more affected by view changes than
the DCT-based system. This can be attributed to the rigid
preservation of spatial relations between face areas, which
is in contrast to the DCT/GMM-based approach, where
the spatial relations between face parts are very loose. The
loose spatial relations allow for the deformations and move-
ments of face areas, which can occur due to view changes.
Interestingly, recent empirical evidence suggests that hu-
mans recognize faces by parts rather than in a holistic
manner [54].

In the second experiment we evaluated the performance
of models synthesized using LinReg and MLLR-based
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Table 2
EER performance of full-MLLR synthesis technique for varying number of regression classes

Angle NR = 1 NR = 2 NR = 4 NR = 8 NR = 16 NR = 32

−60◦ 23.58 48.83 49.50 49.56 49.94 49.81
−40◦ 13.11 49.61 49.58 49.50 49.47 49.56
−25◦ 5.81 50.39 49.56 49.56 49.97 49.64
−15◦ 1.58 49.83 49.47 49.67 49.75 49.69
+15◦ 1.28 50.19 49.58 49.61 49.81 49.58
+25◦ 4.69 50.17 49.67 49.69 49.97 49.56
+40◦ 9.39 49.25 49.67 49.67 49.64 49.53
+60◦ 19.53 49.81 49.64 49.81 49.75 49.64

Table 3
EER performance of diag-MLLR synthesis technique for varying number of regression classes

Angle NR = 1 NR = 2 NR = 4 NR = 8 NR = 16 NR = 32

−60◦ 23.56 22.69 22.11 18.33 23.67 32.61
−40◦ 11.86 11.97 11.14 11.19 15.28 25.17
−25◦ 5.25 5.72 4.75 3.86 8.06 16.75
−15◦ 1.64 1.58 1.56 1.50 3.53 16.81
+15◦ 1.36 1.36 1.33 1.36 2.50 15.67
+25◦ 4.97 4.42 4.36 3.69 5.92 20.72
+40◦ 8.97 8.33 7.86 8.78 17.14 29.28
+60◦ 19.81 16.97 16.86 15.31 31.22 31.25

Table 4
EER performance of offset-MLLR synthesis technique for varying number of regression classes

Angle NR = 1 NR = 2 NR = 4 NR = 8 NR = 16 NR = 32

−60◦ 23.31 22.78 22.47 19.67 16.97 17.94
−40◦ 12.28 11.00 10.06 10.83 9.25 7.94
−25◦ 4.89 5.31 4.64 3.72 3.33 3.44
−15◦ 1.58 1.58 1.56 1.53 1.44 1.44
+15◦ 1.36 1.36 1.33 1.33 1.42 1.42
+25◦ 4.94 4.67 4.42 3.33 3.08 3.28
+40◦ 9.00 7.42 7.08 7.42 6.81 6.67
+60◦ 19.86 18.94 18.81 17.11 15.44 14.33

Table 5
EER performance for standard frontal models (obtained via traditional
MAP-based training) and models synthesized for non-frontal angles via
MLLR-based techniques

Angle Standard full-MLLR diag-MLLR offset-MLLR
(frontal models) (NR = 1) (NR = 8) (NR = 32)

−60◦ 22.72 23.58 18.33 ∗17.94
−40◦ 11.47 13.11 11.19 ∗7.94
−25◦ 5.72 5.81 3.86 ∗3.44
−15◦ 2.83 1.58 1.50 ∗1.44
+15◦ 2.64 ∗1.28 1.36 1.42
+25◦ 5.94 4.69 3.69 ∗3.28
+40◦ 10.11 9.39 8.78 ∗6.67
+60◦ 24.72 19.53 15.31 ∗14.33

Best result for a given angle is indicated by an asterisk.

techniques. As there is only one gaussian per client model,
there was only one regression class for MLLR techniques.

Results in Table 6 show that model synthesis with full-
MLLR and diag-MLLR was unsuccessful. Since the Lin-
Reg technique works quite well and has a similar number
of free parameters as full-MLLR, we attribute the failure of
full-MLLR and diag-MLLR to their sensitivity to the start-
ing point, which is described in Appendix C. While mod-
els synthesized by offset-MLLR exhibit better performance
than standard frontal models, they are easily outperformed
by models synthesized via the LinReg technique. This sup-
ports the view that “single point to single point” type trans-
formations (such as MLLR) are less useful for a system uti-
lizing PCA derived features.

8.3. Performance of extended frontal models

In the experiments described in Sections 8.1 and 8.2, it
was assumed that the angle of the face is known. In this
section we progressively remove this constraint and propose
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Fig. 7. Performance of PCA-based system (trained on frontal faces) for
increasing dimensionality and the following angles: −60◦, −40◦, −25◦,
−15◦ and 0◦ (frontal).

to handle varying pose by extending each client’s frontal
model with the client’s synthesized non-frontal models.

In the first experiment we compared the performance of
extended models to frontal models and models synthesized
for a specific angle; impostor faces matched the test view.
For the DCT-based system, each client’s frontal model was
extended with models synthesized by the offset-MLLR tech-
nique (with 32 regression classes) for the following an-
gles: ±60◦, ±40◦ and ±25◦. Synthesized models for ±15◦
were not used since they provided little performance benefit
over the 0◦ model (see Table 5). The frontal generic model
was also extended with non-frontal generic models. Since
each frontal model had 32 gaussians, each extended model
had 224 gaussians. Following the offset-MLLR-based model
synthesis paradigm, each frontal client model was derived
from the frontal generic model using offset-MLLR.

For the PCA-based system, model synthesis was accom-
plished using LinReg. Each client’s frontal model was ex-
tended for the following angles: ±60◦, ±40◦, ±25◦ and
±15◦. The frontal generic model was also extended with
non-frontal generic models. Since each frontal model had
one gaussian, each extended model had nine gaussians.

Table 6
EER performance comparison between frontal models and synthesized non-frontal models for the PCA-based system

Angle Frontal full-MLLR diag-MLLR offset-MLLR LinReg

−60◦ 40.97 49.67 50.00 38.56 ∗14.92
−40◦ 32.61 50.00 49.97 25.75 ∗17.19
−25◦ 19.31 49.69 49.75 ∗13.81 15.78
−15◦ 8.69 49.58 49.72 6.86 ∗6.44
+15◦ 10.39 49.67 49.69 8.36 ∗5.72
+25◦ 20.83 49.58 49.97 14.00 ∗7.78
+40◦ 34.36 49.78 50.00 28.97 ∗15.00
+60◦ 44.92 49.83 49.47 38.44 ∗14.89

Best result for a given angle is indicated by an asterisk.

Table 7
EER performance of frontal, synthesized and extended frontal models,
DCT-derived features; offset-MLLR-based training (frontal models) and
synthesis (non-frontal models) was used

Angle Frontal Synth. Ext.

−60◦ 28.22 17.94 18.25
−40◦ 15.17 7.94 9.36
−25◦ 6.06 3.44 3.28
−15◦ 1.61 1.44 1.64
+15◦ 1.44 1.42 1.67
+25◦ 5.67 3.28 3.53
+40◦ 9.39 6.67 5.94
+60◦ 23.75 14.33 16.56

Table 8
EER performance of frontal, synthesized and extended frontal models,
PCA features; LinReg model synthesis was used

Angle Frontal Synth. Ext.

−60◦ 40.97 14.92 15.33
−40◦ 32.61 17.19 17.56
−25◦ 19.31 15.78 14.94
−15◦ 8.69 6.44 9.17
+15◦ 10.39 5.72 3.67
+25◦ 20.83 7.78 8.11
+40◦ 34.36 15.00 15.67
+60◦ 44.92 14.89 16.08

As can be seen in Tables 7 and 8, for most angles
only a small reduction in performance is observed when
compared to models synthesized for a specific angle.
These results suggest that the model extension approach
could be used instead of selecting the most appropri-
ate synthesized model (via detection of the face an-
gle), thus reducing the complexity of a multi-view face
verification system.

In the first experiment impostor attacks and true claims
were evaluated for each angle separately. In the second ex-
periment we relaxed this restriction and allowed true claims
and impostor attacks to come from all angles, resulting in
90 ×9=810 true claims and 90 ×20 ×9=16 200 impostor
attacks; an overall EER was then found. For both DCT- and
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Table 9
Overall EER performance of frontal and extended frontal models

Feature type Model type

Frontal Extended

PCA 27.34 11.51
DCT 14.82 10.96

PCA-based systems two types of models were used: frontal
and extended. For the DCT-based system, frontal models
were derived from the generic model using offset-MLLR.
From the results presented in Table 9, it can be observed
that model extension reduces the error rate in both PCA and
DCT-based systems, with the DCT-based system achieving
the lowest EER. The largest error reduction is present in the
PCA-based system, where the EER is reduced by approxi-
mately 58%; for the DCT-based system, the EER is reduced
by approximately 26%.

9. Conclusions and future work

In this paper, we addressed the pose mismatch problem
which can occur in face verification systems that have only
a single (frontal) face image available for training. In the
framework of a Bayesian classifier based on mixtures of
gaussians, the problem was tackled through extending each
frontal face model with artificially synthesized models for
non-frontal views. The synthesis was accomplished via
methods based on several implementations of maximum
likelihood linear regression (MLLR) (originally devel-
oped for tuning speech recognition systems), and standard
multi-variate linear regression (LinReg). To our knowl-
edge this is the first time MLLR has been adapted for face
verification.

All synthesis techniques rely on prior information and
learn how face models for the frontal view are related to face
models at non-frontal views. The synthesis and extension ap-
proach was evaluated by applying it to two face verification
systems: a holistic system (utilizing PCA derived features)
and a local feature system (using DCT derived features).

Experiments on the FERET database suggest that for the
PCA-based system, the LinReg technique (which is based
on a common relation between two sets of points) is more
suited than the MLLR-based techniques (which are “single
point to single point” transforms in the PCA-based system).
For the DCT-based system, the results show that synthesis
via a new MLLR implementation obtains better performance
than synthesis based on traditional MLLR (mainly due to a
lower number of free parameters). The results further suggest
that extending frontal models considerably reduces errors in
both systems.

The results also show that the standard DCT-based system
(trained on frontal faces) is less affected by view changes
than the PCA-based system. This can be attributed to the

parts based representation of the face (via local features)
and, due to the classifier based on mixtures of gaussians, the
lack of constraints on spatial relations between face parts.
The lack of constraints allows for deformations and move-
ments of face areas, which can occur due to view changes.
This is in contrast to the PCA-based system, where, due to
the holistic representation, the spatial relations are rigidly
kept. Interestingly, recent empirical evidence suggests that
humans recognize faces by parts rather than in a holistic
manner [54].

Future areas of research include whether it is possible to
interpolate between two synthesized models to generate a
third model for a view for which there is no prior infor-
mation. A related question is how many discrete views are
necessary to adequately cover a wide range of poses. The
dimensionality reduction matrix U in the PCA approach was
defined using only frontal faces; higher performance may be
obtained by incorporating non-frontal faces. The local fea-
ture/GMM approach can be extended by embedding posi-
tion information into each feature vector [19,21], thus plac-
ing a weak constraint on the face areas each gaussian can
model (as opposed to the current absence of constraints).
This in turn could make the transformation of frontal models
to non-frontal models more accurate, as different face areas
effectively “move” in different ways when there is a view
change. Alternatively, the GMM-based classifier can be re-
placed with a (more complex) pseudo-2D hidden Markov
model-based classifier [19,21,22], where there is a more
stringent constraint on the face areas modeled by each gaus-
sian. Lastly, it would be useful to evaluate alternative size
normalization approaches in order to address the scaling
problem mentioned in Section 2.
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Appendix A. Class IDs for group A, B and the impostor
group

Classes for group A: 00019, 00029, 00268, 00647, 00700,
00761, 01013–01018, 01020–01032, 01034–01048, 01050,
01052, 01054–01066, 01068–01076, 01078–01081, 01083,
01084, 01085, 01086, 01088–01092, 01094, 01098, 01101,
01103, 01106, 01108, 01111, 01117, 01124, 01125, 01156,
01162, 01172.
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Classes for group B: 01095–01097, 01099, 01100,
01102, 01104, 01105, 01107, 01109, 01110, 01112–01116,
01118–01120, 01122, 01127–01136, 01138–01142, 01144,
01146–01150, 01152–01155, 01157–01161, 01163–01168,
01170, 01171, 01173–01178, 01180–01202, 01204–01206.

Classes for impostor group: 01019, 01033, 01049, 01051,
01053, 01067, 01077, 01082, 01087, 01093, 01121, 01123,
01126, 01137, 01143, 01145, 01151, 01169, 01179, 01203.

Appendix B. Derivation of offset-MLLR

In the offset-MLLR approach, each mean is redefined as
[c.f. Eq. (10)]:

�̂g = �g + �g , (27)

where �g maximizes the likelihood of given training data.
Substituting Eq. (27) into Eq. (4) results in

P(x|̂�g, �g)

= exp[−1/2(x − {�g + �g})T�−1
g (x − {�g + �g})]

(2�)D/2|�g|1/2
.

(28)

In the framework of the EM algorithm, we assume that our
training data X is incomplete and assume the existence of
missing data Y ={yi}NV

i=1, where the values of yi indicate the
mixture component (i.e. the gaussian) that “generated” xi .
Thus yi ∈ [1, NG]∀i and yi =m if the ith feature vector (xi)
was “generated” by the mth gaussian. An auxiliary function
is defined as follows:

Q(�, �old) = EY [log P(X, Y |�)|X, �old]. (29)

It can be shown [47], that maximizing Q(�, �old), i.e.:

�new = arg max
�

Q(�, �old) (30)

results in P(X|�new)�P(X|�old) (i.e. the likelihood of
the training data X increases). Evaluating the expectation in
Eq. (29) results in [55]

Q(�, �old)

=
NG∑
g=1

NV∑
i=1

log[wg]P(g|xi , �
old)

+
NG∑
g=1

NV∑
i=1

log[P(xi |�g, �g)]P(g|xi , �
old) (31)

= Q1 + Q2, (32)

where

P(g|xi , �
old) = woldg N(xi |�oldg , 
oldg )∑NG

n=1 woldn N(xi |�oldn , 
oldn )
. (33)

A common maximization technique is to take the derivative
of Q(�, �old) with respect to the parameter to be maxi-
mized and set the result to zero. Since we are interested in
finding �g , we only need to take the derivative of Q2:

0 = �

��g

NG∑
g=1

NV∑
i=1

log[P(xi |�g, �g)]P(g|xi , �
old) (34)

= �

��g

NG∑
g=1

NV∑
i=1

[
−1

2
(xi − {�g + �g})T

× �−1
g (xi − {�g + �g})

]
P(g|xi , �

old) (35)

=
NV∑
i=1

P(g|xi , �
old)�−1

g (xi − {�g + �g}), (36)

where −(D/2) log(2�) and −(1/2) log(|�g|) were omitted
in Eq. (35) since they vanish when taking the derivative.
Re-arranging Eq. (36) yields

�g =
∑NV

i=1 P(g|xi , �
old)xi∑NV

i=1 P(g|xi , �
old)

− �g . (37)

Substituting Eq. (37) into Eq. (27) yields

�̂g =
∑NV

i=1 P(g|xi , �
old)xi∑NV

i=1 P(g|xi , �
old)

, (38)

which is the standard maximum likelihood re-estimation
formula for the mean. Following [36], we modify the re-
estimation formula for tied transformation parameters (e.g.
a single � shared by all means). If �S is shared by NS gaus-
sians {gr}NS

r=1, Eq. (35) is modified to

0 = �

��S

NS∑
r=1

NV∑
i=1

[
−1

2
(xi − {�gr + �S})T

×�−1
gr

(xi − {�gr + �S})
]

P(gr |xi , �
old) (39)

=
NS∑
r=1

NV∑
i=1

P(gr |xi , �
old)�−1

gr
(xi − {�gr + �S}), (40)

which leads to

�S =
⎡
⎣ NS∑

r=1

NV∑
i=1

P(gr |xi , �
old)�−1

gr

⎤
⎦−1

×
⎡
⎣ NS∑

r=1

NV∑
i=1

P(gr |xi , �
old)�−1

gr
(xi − �gr )

⎤
⎦ . (41)

Appendix C. Analysis of MLLR sensitivity

The results presented in Section 8.1 show that the full-
MLLR technique is only reliable when applied directly to
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Table 10
Mean of the average log-likelihood (Eq. (42)) computed using +60◦
generic model; the +60◦ generic model was derived from a noise corrupted
frontal generic model using a fixed transform (either full-MLLR, diag-
MLLR or offset-MLLR)

Noise variance full-MLLR diag-MLLR offset-MLLR

0 −74.81 −74.81 −74.81
1 × 10−7 −76.51 −74.81 −74.81
1 × 10−6 −78.76 −74.81 −74.81
1 × 10−5 −83.34 −74.81 −74.81

1 × 10−4 −91.63 −74.82 −74.81
1 × 10−3 −119.95 −74.85 −74.81
1 × 10−2 −367.01 −75.14 −74.81

1 × 10−1 −246.57 × 101 −75.55 −74.82
1 −313.49 × 102 −76.80 −74.92
1 × 10+1 −205.79 × 103 −78.29 −75.96

1 × 10+2 −172.71 × 104 −84.32 −81.59
1 × 10+3 −283.12 × 105 −104.29 −95.81

the specific model it was trained to transform, making the
full-MLLR transform unsuitable for model synthesis (where
a related model is transformed, instead of the model for
which the transformation was learned). In this section, we
explore this observation further by measuring how sensi-
tive the full-MLLR, diag-MLLR and offset-MLLR trans-
forms are to perturbations of the model they were trained to
transform.

The sensitivity is measured as follows. The transformation
of the frontal generic model to a +60◦ generic model is
learned (using 32 regression classes) and the average log-
likelihood of +60◦ data from group A is found:

A(X|�+60◦
generic) = 1

NV

log P(X|�+60◦
generic). (42)

The mean vectors of the frontal generic model are then
“corrupted” by adding gaussian noise with zero mean and
various levels of variance. Formally

[�corrupted
g ]T = [�original

g,d + R(0, �2)]Dd=1, (43)

where �g,d is the dth element of �g and R(0, �) is a gaussian
distributed random variable with zero mean and variance
�2. The previously learned transformation is applied to the
“corrupted” frontal generic model to obtain a “corrupted”
+60◦ generic model. The average log-likelihood of +60◦
data from group A is then found as per Eq. (42). This pro-
cess is repeated ten times for each variance setting and the
mean of the average log-likelihood is taken. The mean value
represents how well the transformed model represents the
+60◦ data; the lower the value, the worse the representation.
Results are presented in Table 10.

By treating the mean vectors of frontal client models as
noisy instances of the frontal generic model mean vectors
(where the frontal client models were derived from the orig-
inal frontal generic model), it is possible to measure the

overall “variance” of the frontal mean vectors; this is the
variance that a synthesis technique must handle. While the
frontal client models also differ from the frontal generic
model in their covariance matrices, we believe this approach
nevertheless provides suggestive results.

The full-MLLR, diag-MLLR and offset-MLLR ap-
proaches for deriving frontal client models (from the original
frontal generic model) obtained similar overall “variance”
of frontal client means of around 90. From the results
shown in Table 10 it can be observed that the full-MLLR
transformation is easily affected by small perturbations of
the frontal generic model. Close to level of the required
variance (i.e. at 100), the full-MLLR approach produces
a +60◦ generic model which very poorly represents the
data on which the transform was originally trained. In com-
parison, the diag-MLLR and offset-MLLR transforms are
largely robust to perturbations of the frontal generic model,
with the offset-MLLR approach the most stable.
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