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Abstract

An accurate Ideal Binary Mask (IBM) estimate is essential
for Missing Feature Theory (MFT)-based speaker identifica-
tion, as incorrectly labelled spectral components (where a com-
ponent is either reliable or unreliable) will degrade the perfor-
mance of an Automatic Speaker Identification (ASI) system ad-
versely in the presence of noise. In this work a Bidirectional Re-
current Neural Network (BRNN) with Long-Short Term Mem-
ory (LSTM) cells is proposed for improved IBM estimation.
The proposed system had an average IBM estimate accuracy
improvement of 4.5% and an average MFT-based speaker iden-
tification accuracy improvement of 3.1% over all tested SNRyp
levels, when compared to the previously proposed Multilayer
Perceptron (MLP)-IBM estimator. When used for speech en-
hancement the proposed system had an average MOS-LQO (ob-
jective quality measure) improvement of 0.32 and an average
QSTI (objective intelligibility measure) improvement of 0.01
over all tested SNRgg levels, when compared to the MLP-IBM
estimator. The results presented in this work highlight the effec-
tiveness of the proposed BRNN-IBM estimator for MFT-based
speaker identification and IBM-based speech enhancement.
Implementation and Availability: The proposed BRNN-
IBM estimator and further results are available at https:
//github.com/anicolson/bidirectional_ 2018
Index Terms: ideal binary mask estimation, missing feature
theory, robust speaker identification, speech enhancement

1. Introduction

Speech is often not the only sound source present in real-world
environments, making the problem of speaker identification
more difficult. An Automatic Speaker Identification (ASI) sys-
tem should not be affected by non-target sources, or in other
words, the system must be robust to noise. Missing Feature
Theory (MFT) is a technique used to negate the effects of non-
target sources during classification. Many MFT-based meth-
ods were proposed when Gaussian Mixture Model - Hidden
Markov Model (GMM-HMM) Automatic Speech Recognition
(ASR) systems were prominent, providing a significant increase
to their robustness [1][2].

MEFT is based upon the human perception system and its
ability to perform auditory scene analysis [3]. The psycholog-
ical process involves segregating components that come from
different sound sources, and grouping components that come
from the same sound source. A component may have a mix-
ture of multiple sources present, requiring a criterion to decide
if a component reliably represents the target speech. In MFT,
a component is classified as either a reliable or an unreliable
representation of the target speech. The impact of non-target
sources on recognition performance is reduced by treating the
unreliable components as ‘missing’. Cooke et al. [1] described

that the solution to the following two problems is required for
MFT-based speech recognition:

1. The identification of reliable spectral components.

2. The modification of recognition algorithms to handle in-
complete data.

The work presented in this paper is focused on the first problem.
A binary mask is able to identify the time-frequency lo-
cations of reliable components [4]. When finding a binary
mask, clean speech is treated as the target source, and non-
target sources are treated as noise. Noisy speech is a mixture
of both clean speech and noise. An Ideal Binary Mask (IBM) is
computed from the spectral components of both the clean and
noisy speech, where reliable components have an SNR above
a set threshold [4]. However, in real-world environments only
the noisy speech components are observed. This requires the
IBM to be estimated from the noisy speech components, a task
that Raj et al. [S]] described as the most difficult aspect of MFT.
An MFT-based ASI system will suffer if reliable and unreliable
spectral components are misclassified. This means that an accu-
rate IBM estimator is essential for an MFT-based ASI system.

An early IBM estimation approach used the Gaussian distri-
bution of the noise spectrum to estimate the original speech via
Spectral Subtraction (GSS) [6]. A Multilayer Perceptron (MLP)
was recently used to estimate the IBM for an MFT-based ASI
system [7]. MLP-IBM estimators have also been used for tasks
other than MFT; an MLP-IBM estimator with an inverse fast
Fourier transform layer was used for source separation [8]]. Re-
lated source separation tasks have used Recurrent Neural Net-
works (RNN) with Long-Short Term Memory (LSTM) cells to
produce state-of-the-art results [9]][LO].

This work aims to solve the first problem of MFT proposed
by Cooke et al. [1] by using a Bidirectional RNN (BRNN) [[L1]
with LSTM cells for IBM estimation (Section [2). The perfor-
mance of RNNs for speech separation indicates the potential
performance of a BRNN-IBM estimator for MFT. By producing
an accurate IBM estimator, it is hoped that future research into
MFT-based methods for modern ASR systems is encouraged.
The proposed BRNN-IBM estimator and previous IBM estima-
tors are compared in terms of their IBM estimation accuracy
(Sectionfd) and their MFT-based speaker identification accuracy
(Subsection [5.1). While the emphasis of this work is to evalu-
ate the proposed BRNN-IBM estimator for MFT-based ASI, its
speech enhancement performance is also evaluated (Subsection
5.2). Conclusions are drawn in Section[6]

2. BRNN-IBM Estimator

The proposed system shown in Figure [I] takes as its input the
noisy speech spectral components, X(n), of frame n. The
system then estimates the IBM of X(n), as given by y(n).
The spectral feature types used in this work include Magnitude
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Spectrum (MS) components and Log-Spectral Subband Energy
(LSSE) componenty’}| ‘BRNN-MS-IBM estimator’ denotes the
BRNN used to estimate the IBM for the noisy speech MS com-
ponents and ‘BRNN-LSSE-IBM estimator’ denotes the BRNN
used to estimate the IBM for the noisy speech LSSE compo-
nents.

y(n)

X(n)

Figure 1: Proposed BRNN-IBM estimator. The input features
X(n) are the noisy speech MS/LSSE components for the nth
frame. The output of the network y(n) is the IBM estimate for
the nt" frame.

The IBM is used as the training target for a BRNN-IBM es-
timator. To compute the IBM of a noisy speech MS/LSSE com-
ponent, the SNRgg of each component is found. When clean
speech is mixed with uncorrelated additive noise, the k" noisy
speech MS/LSSE component, X(n, k) for the n*" frame can be
modeled as the sum of its corresponding clean speech MS/LSSE
component S(n, k) and noise MS/LSSE component D(n, k):

X(n, k) = S(n, k) + D(n, k). (1)

The SNRp for the k" noisy speech MS/LSSE component of
frame n is calculated by

SNRas (n, k) = 20  log;, ( S(n, k) ) !

X(n, k) —S(n, k)

It is assumed that noisy speech MS/LSSE components with an
SNRgg above a set threshold 6 are reliable estimates of the cor-
responding clean speech MS/LSSE components. The IBM is
found by

1, if SNRgs (n, k) >0
0, otherwise,

IBM(n, k) = { 3)

where 0 = 0 is used in this work [4].

The proposed BRNN-IBM estimator in Figure[T]consists of
three BRNN layers, with LSTM cells as in [13]. Each hidden
layer has a forward LSTM cell, F, with 512 units and a back-
ward LSTM cell, B, with 512 units. The output layer, O, is a
sigmoidal fully-connected layer with its number of units equal
to the number of input dimensions. BRNNs with LSTM cells

'LSSE components are also known as log-filterbank energy compo-
nents [12].

are better able to model time sequences than MLPs, due to the
internal memory of the LSTM cells. The proposed BRNN-IBM
estimator is able to store information about the noise sources
and the target speech over time, enabling it to make more in-
formed decisions about a component’s reliability.

3. Datasets and Experiment Setup

The TIMIT corpus [[14] (16 kHz, single-channel) which consists
of 630 speakers with 10 utterances each, was used as the clean
speech set. For the LSSE-IBM estimators and the speaker iden-
tification tests, it was required that the speakers in the training
and test sets were matched. Therefore, the si* and sz subsets
were used for training (5040 utterances) and the sa* subset was
used for testing (1260 utterances). For the MS-IBM estima-
tors and the speech enhancement tests, it was required that the
speakers in the training and the test sets were separate. The si*
and sz™ subsets were split into 462 speakers for training (3696
utterances) and 168 speakers for testing (1344 utterances). The
sa™ subset was removed as the utterances are the same across
all speakers.

The RSG-10 noise dataset [15] (16 kHz, single-channel),
which includes 24 different noise sources as described in Table
[I] was used as the noise set. Noise was added to the speech at
an SNRgg level of 0 to 30 dB, in 5 dB increments. The entire
test set was used at each SNRgp level for each experiment.

Table 1: The 24 noise sources included in the RSG-10 noise
dataset [15]]. f. is the cutoff frequency.

Source MM:SS Description
Sinusoid 00:57 1000 Hz
Pink noise 02:59 Equal energy per 1/3-oct
White noise 03:54 Equal energy per Hz
White -6 dB/oct 03:54 fe = 250 Hz, -6 dB/oct
White -12 dB/oct 03:54 fe = 250 Hz, -12 dB/oct
Speech noise 03:54 Average speech spectrum
M 109 03:54 30 km/h
Buccaneer 03:54 Pilot 190 Knots 1000 Feet
Leopard 2 03:54 70 km/h
Wheel carrier 03:54 50-60 km/h
Buccaneer 03:54 450 Knots 300 Feet
Lynx 03:54 Platform
Leopard 1 03:54 70 km/h
Operations room 03:54 Destroyer operations room
Destroyer 03:54 Engine room
Machine gun 03:54 Calibre 0.50 repeated
HF radio 03:54 Noise from HF radio channel
STITEL 03:54 STI test signal
Voice babble 03:54 Canteen, 100 people
F-16 two-seat 03:54 300-600 Feet, 500 Knots
Car Factory 03:54 Electrical welding
Car Factory 03:54 Car production hall
Car Volvo-340 03:54 120 km/h, asphalt road
Car Volvo-340 03:54 50 km/h, brick road

A frame length of 32 ms and a shift of 16 ms was used
for signal framing. Features were computed from the 512-point
Discrete Fourier Transform (DFT) of the frames. The 257-point
single-sided MS included both the DC frequency component
and the Nyquist frequency component. The LSSE components
were computed from a 26 filter mel-scaled filterbank as in [7]].

Each neural network employed the following architecture
and training strategy:

A fully-connected output layer with sigmoidal units.
* Cross-entropy as the loss function.



* The Adam algorithm [[16] for gradient descent optimisa-
tion.

* 5% of the training set was used as a validation set.

¢ Clean speech signals, noise signals, and SNRgg levels
were all randomly chosen for each mini-batch.

* A random section of each noise signal was extracted for
the mini-batch.

* A mini-batch size of 20 noisy speech signals.

* Validation error was found every 50 mini-batches, and
the network parameters saved if the lowest validation er-
ror was achieved.

* The network parameters were replaced by the saved net-
work parameters every 2 000 mini-batches.

¢ A total of 100 000 mini-batches.

4. IBM Estimate Accuracy

An IBM estimator must be able to correctly classify the time-
frequency components of noisy speech into reliable and unreli-
able components. The binary variable a(n, k) determines if the
k" component of the n'” frame has been correctly classified:

0 ifg(n,k) # IBM(n, k), @

1 ifg(n,k) =1IBM(n,k

o k) = { if §(n, k) (n, k)

where §(n,k) is the IBM estimate of the noisy speech

MS/LSSE component, and IBM(n, k) is its target value. The

accuracy of the IBM estimator is found over all N frames in the
test set:

Do g (n, k)

Accuracy (%) = 100 x N ,

5)
where K is the total number of components in a frame.

LSSE-IBM estimators were compared by their LSSE-IBM
estimate accuracy, as shown in Table[2] The proposed BRNN-
LSSE-IBM estimator (3 hidden layers, 1024 units per layer)
was compared to an MLP-LSSE-IBM estimator (5 hidden lay-
ers, 1024 Rectified Linear Units (ReLU) [17] per layer) and the
GSS-LSSE-IBM estimator. The proposed BRNN-LSSE-IBM
estimator was the most accurate at all SNRgyg levels, with an av-
erage improvement of 4.5% over all tested SNRgg levels when
compared to the MLP-LSSE-IBM estimator.

Table 2: LSSE-IBM estimate accuracy (%). The highest accu-
racy at each SNRyg level is shown in boldface.

SNR Level (dB)
LSSE-IBM Estim. 0 5 10 15 20 25 30

GSS-LSSE-IBM [6] 70.5 628 549 472 405 351 31.0
MLP-LSSE-IBM [7] 912 903 89.6 89.7 90.6 91.7 92.6
BRNN-LSSE-IBM 946 944 945 949 956 962 96.8

MS-IBM estimators were also compared by their MS-IBM
estimate accuracy, as shown in Table[3] The proposed BRNN-
MS-IBM estimator (3 hidden layers, 1024 units per layer) was
compared to an MLP-MS-IBM estimator (5 hidden layers, 1024
ReLUs per layer) and the GSS-MS-IBM estimator. The pro-
posed BRNN-MS-IBM estimator was the most accurate at all
SNRgyg levels, with an average improvement of 3.1% over all
tested SNRgyg levels when compared to the MLP-MS-IBM esti-
mator.

Table 3: MS-IBM estimate accuracy (%). The highest accuracy
at each SNRyp level is shown in boldface.

SNR Level (dB)
MS-IBM Estim. 0 5 10 15 20 25 30

GSS-MS-IBM [6] 788 738 679 614 549 49.0 44.1
MLP-MS-IBM [7] 879 865 854 849 854 86.7 884
BRNN-MS-IBM  89.8 888 883 883 891 904 92.0

5. IBM Estimate Applications

5.1. Automatic Speaker Identification

Table 4: Marginalisation vs. no marginalisation speaker iden-
tification accuracy (%) with an SSC-GMM-ASI system — clean
speech is given to compute the LSSE-IBM. The accuracy of the
system on clean speech is 96.8%. The highest accuracy at each
SNRp level is shown in boldface.

SNR Level (dB)
Marg. 0 5 10 15 20 25 30

No [7] 8.9 141 275 480 69.7 848 925
Yes [1][7Z] 591 71.6 78.7 851 89.6 926 94.2

An MFT-based ASI system was used to compare the LSSE-
IBM estimators. The Spectral Subband Centroid (SSC) [18][19]
diagonal-covariance GMM-ASI system from [7] was used to
compare the LSSE-IBM estimators, where marginalisation [1]
is the MFT-based method used by the system. Marginalisa-
tion is a classifier-compensation method that ignores the un-
reliable components during classification. The ASI system
has 32-mixture GMM speaker models, and uses an LSSE-
IBM estimate to identify the reliable SSC component The
performance difference of the SSC-GMM-ASI system when
marginalisation was used can be seen in Table ] where the
system became significantly more robust at all SNRgg levels.
An LSSE-IBM was used to obtain the marginalisation results in
Table [] (i.e. clean and noisy speech was used to compute the
LSSE-IBM).

Table 5: Speaker identification accuracy (%) with a
marginalisation-based SSC-GMM-ASI system. LSSE-IBM es-
timators were used to identify the reliable SSCs. The highest
accuracy at each SNRyp level is shown in boldface

SNR Level (dB)
LSSE-IBM Est. 0 5 100 15 20 25 30

GSS-LSSE-IBM [6] 372 54.1 67.6 783 86.0 90.6 93.7
MLP-LSSE-IBM [7] 512 634 724 793 86.0 91.1 94.1
BRNN-LSSE-IBM  55.6 694 77.2 829 882 918 94.1

An LSSE-IBM estimate is required by the ASI system when
clean speech is not given to compute the LSSE-IBM. Table [3]
shows the accuracy of the ASI system when the LSSE-IBM es-
timators were used. The proposed BRNN-LSSE-IBM estimator
achieved the best speaker identification accuracy at all SNRyg
levels, with an average improvement of 3.1% over all tested

2SSC components are computed from the same 26 filter mel-scale
filterbank as the LSSE components.



SNRgyg levels when compared to the MLP-LSSE-IBM estima-
tor. The results of the proposed BRNN-LSSE-IBM estimator
more closely match the LSSE-IBM results in Table [ than the
results of the MLP-LSSE-IBM estimator.

5.2. Speech Enhancement

The proposed BRNN-MS-IBM estimator can be used for
speech enhancement by using the MS-IBM estimate as a gain
function [20]. The unreliable components of the noisy speech
MS are suppressed completely. Figure [2] displays the results of
using the proposed BRNN-MS-IBM estimator for speech en-
hancement.
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Figure 2: (a) Clean speech magnitude spectrogram of a female
uttering: “The viewpoint overlooked the ocean”. (b) Noisy
speech magnitude spectrogram (‘operations room’ at 0 dB). (c)
MS-IBM for (b). (d) MS-IBM estimate for (b) using the pro-
posed BRNN-MS-IBM estimator. (e) Resultant enhanced speech
magnitude spectrogram after (d) has been applied.

Objective measures were used to evaluate the quality and
intelligibility of the enhanced speech produced by the proposed
BRNN-MS-IBM estimator. The proposed BRNN-MS-IBM es-
timator was compared to the MLP-MS-IBM estimator, the Min-
imum Mean Square Error - Log-Spectral Amplitude (MMSE-
LSA) estimator [21]], the perceptually Motivated Bayesian MS
Estimator (pMMSE) [22] with noise estimation from [23]], and
noisy speech. Mean Opinion Score - Listening Quality Objec-
tive (MOS-LQO) (P.800.1) [24] was used for objective quality
evaluation, where Wideband Perceptual Evaluation of Speech
Quality (Wideband PESQ) (P.862.2) [25] was used to obtain the
MOS-LQO. Table @ shows the average MOS-LQO over the test
set. It can be seen that the proposed BRNN-MS-IBM estimator
achieved the highest average MOS-LQO at most SNRyg levels
(0, 15, 20, 25, and 30 dB), with an average improvement of 0.32
over all tested SNRgg levels when compared to the MLP-MS-
IBM estimator.

Table 6: Average MOS-LQO for the speech enhancement meth-
ods (obtained using Wideband PESQ). The highest average
MOS-LQO at each SNRgp level is shown in boldface. Clean
speech is given to compute the MS-IBM.

SNR Level (dB)
Method 0 5 10 15 20 25 30

Noisy speech 1.17 131 156 193 246 3.04 3.56
MLP-MS-IBM [7] 142 160 191 235 285 331 3.65
MMSE-LSA [21] 143 172 211 257 3.05 3.50 3.86
PMMSE [22] [23] 1.53 1.85 223 2.64 3.05 342 3.71

BRNN-MS-IBM 158 1.82 220 271 326 3.72 4.06

MS-IBM 210 250 296 342 382 4.12 433

The Quasi-stationary Speech Transmission Index (QSTI)
was used for objective intelligibility testing, and is more cor-
related with subjective intelligibility testing than the Speech
Transmission Index (STI) [26]. Tableshows the average QSTI
over the test set. The proposed BRNN-MS-IBM estimator was
able to score the highest average QSTI at all SNRgg levels, with
an average improvement of 0.01 over all tested SNRgg levels
when compared to the MLP-MS-IBM estimator. The average
MOS-LQO and QSTI of the MS-IBM are also shown in Table
[6] and [7] respectively, indicating the performance upper limit
of the proposed BRNN-MS-IBM estimator for speech enhance-
ment.

Table 7: Average QSTI for the speech enhancement methods.
The highest average QSTI at each SNRgp level is shown in bold-
face. Clean speech is given to compute the MS-IBM.

SNR Level (dB)
Method 0 5 10 15 20 25 30

pMMSE [22] [23] 0.82 0.87 091 094 096 098 0.99
MMSE-LSA [21] 0.83 088 092 095 097 098 0.99
Noisy speech 0.84 0.89 093 096 098 099 1.00
MLP-MS-IBM [7] 085 090 0.93 096 098 0.99 0.99
BRNN-MS-IBM 0.88 091 094 0.96 098 099 1.00

MS-IBM 090 092 095 097 098 099 1.00

6. Conclusion

The robustness of an MFT-based ASI system suffers when given
a poor IBM estimate. In this work, a BRNN with LSTM cells
was used for IBM estimation. The proposed BRNN-LSSE-IBM
had an average IBM estimate accuracy improvement of 4.5%
and an average MFT-based speaker identification accuracy im-
provement of 3.1% over all tested SNRyg levels when compared
to the previously proposed MLP-LSSE-IBM estimator. When
used for speech enhancement, the proposed BRNN-MS-IBM
estimator had an average MOS-LQO improvement of 0.32 and
average QSTI improvement of 0.01 over all tested SNRyg lev-
els when compared to the MLP-MS-IBM estimator. The results
of the proposed method have demonstrated that it is the most
accurate IBM estimator for MFT-based ASI systems and IBM-
based speech enhancement. By providing an accurate IBM es-
timator, it is hoped that research into MFT-based methods for
modern ASR systems is encouraged. This work will be used
in the development of future MFT-based methods for modern
ASR systems.
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