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Objective evaluation of audio processed with Time-Scale Modification (TSM) has recently
seen improvement with a labeled time-scaled audio dataset used to train an objective measure.
This double-ended measure was an extension of Perceptual Evaluation of Audio Quality and
required reference and test signals. In this paper two single-ended objective quality measures for
time-scaled audio are proposed that do not require a reference signal. Internal representations
of spectrogram and speech features are learned by either a Convolutional Neural Network
(CNN) or a Bidirectional Gated Recurrent Unit (BGRU) network and fed to a fully connected
network to predict Subjective Mean Opinion Scores. The proposed CNN and BGRU measures
respectively achieve average Root Mean Square Errors of 0.61 and 0.58 and mean Pearson
Correlation Coefficients of 0.77 and 0.79 to the time-scaled audio dataset. The proposed
measures are used to evaluate TSM algorithms and comparisons are provided for 15 TSM
implementations. A link to implementations of the objective measures is provided.

0 INTRODUCTION

Time-Scale Modification (TSM) aims to manipulate the
temporal domain of a signal independent of pitch and
timbre. The time-scale ratio (β) denotes time-expansion
(slower playback) for β < 1 and time compression (faster
playback) for β > 1. Subjective testing is undertaken in
order to justify the quality of the processing. However
the testing is expensive and time consuming. Recently [1]
published a dataset of time-scaled signals with subjective
evaluation labels and initial work toward an objective mea-
sure of quality. However this method requires reference
and test signals and additional interpolation to align low-
bandwidth representations of the signals. In this work we
propose multiple single-ended objective measures of qual-
ity for audio processed with TSM and extend the use of deep
learning-based MOS estimation for single-ended measures.
A convolutional or recurrent neural network front-end gen-
erates data-driven features, while a Fully Connected Neu-
ral Network (FCNN) back-end predicts the overall quality.
The measures are trained using the dataset of [1], with the
dataset referred to as TSMDB from this point.

∗Address correspondence to E-mail: timothy.
roberts@griffithuni.edu.au

0.1 Quality Evaluation
Subjective evaluation, such as BS.1284 [2], is the gold

standard for evaluating quality of speech and audio process-
ing. Participants are asked to rate the processing quality of
audio files, often using ratings of Bad, Poor, Fair, Good,
and Excellent that map linearly to the interval [1,5]. Opin-
ion scores are then averaged, giving a Mean Opinion Score
(MOS) per file. However, this process is lengthy and ex-
pensive. Consequently many objective measures of quality
have been proposed to predict MOS.

Objective measures can be classified into double-ended
(DE; invasive) and single-ended (SE; non-invasive) meth-
ods. The former calculates differences between reference
and processed signal pairs, whereas the latter operates
solely on the processed signal. This allows non-invasive
measures to be used in a variety of use cases such as testing
of in-service real-time systems using multiple tests through
a signal path, as in [3] and [4]. SE measures have seen
considerable use for speech quality [4–10] with little use
for general audio quality. These general audio measures,
including [11–15], are DE. Additionally some SE measures
have been trained to DE measures, including [16] and [17].

SE measures are often compared to baseline DE mea-
sures such as Perceptual Evaluation of Speech Quality [18]
and Perceptual Evaluation of Audio Quality (PEAQ) [12].
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However there is no standard for objective quality of TSM,
with minimal published literature on the topic. The total
published research is found in the following papers. [19]
published preliminary work toward an objective measure
by using linear regression of the Mean Square Error (MSE)
of transient, tonal, and noise energy deviations to predict
the Subjective Mean Opinion Score (SMOS). [1] and [20]
proposed measures that use hand-crafted features, derived
using novel and modified PEAQ [2] features, as input to an
FCNN to predict SMOS.

The DE method of [1], referred to as OMOQDE from this
point, aligned signals through time-axis interpolation of the
reference magnitude spectrum to the processed magnitude
spectrum. The resulting PEAQ features were used to retrain
the PEAQ basic neural network. Formulated as a regression
problem, an FCNN was used to predict the MOS targets
of the TSMDB. OMOQDE achieved an average Pearson
Correlation Coefficient (PCC; ρ) of 0.719 and average Root
Mean Square Error (RMSE) loss (L) of 0.668 using the
MOS range of 1–5 for the training, validation, and test
sets. A distance measure that penalized over-fitting was
used to select the ideal network and is discussed further in
Sec. 1. These results were improved in [20] to ρ of 0.864
and an average RMSE L of 0.490 and were able to resolve
statistically significant differences in mean quality between
TSM methods of 0.1 MOS.

0.2 Time-Scale Modification Dataset
OMOQDE was trained using the TSMDB [1], which con-

tains a training subset of 5,280 files and testing subset of
240 files. Six TSM methods at 10 β values were used to pro-
cess 88 reference signals to create the training subset. Three
additional methods at randomized β within four bands were
used to process 20 additional reference signals to create the
testing subset. This resulted in no overlap between training
and testing subsets when considering TSM methods, β, or
reference signals. The test set reference signals were also
processed by 15 TSM methods at 20 β values between 0.2
and 2 to create an evaluation set used to compare the TSM
methods. These methods are:

� Phase Vocoder (PV) [21],
� Identity Phase-Locking Phase Vocoder (IPL) and

Scaled Phase-Locking Phase Vocoder (SPL) [22],
� Waveform Similarity Overlap Add (WS) [23],
� Fuzzy Epoch Synchronous Overlap-Add (FES) [24],
� Harmonic Percussive Separation Time-Scale Modi-

fication (HP) [25],
� Mel-Scale Sub-Band Modeling (uTVS) [26] and the

version used in subjective testing (uTVS),
� Elastique (EL) [27],
� Phase Vocoder using fuzzy classification of bins

(FPV) [28],
� Non-Negative Matrix Factorization Time-Scale

Modification (NMF) [29],
� PhaVoRIT (IPL and SPL) [30],
� Epoch Synchronous Overlap-Add (ES) [31], and
� IPL implementation of [25] (DIPL).
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Fig. 1. Distribution of frames per Mean Opinion Score (MeanOS)
in training set.

These were chosen to cover most TSM approaches.
Time-domain, frequency-domain, and source separation
methods are represented as well as filterbank and non-
negative matrix factorization methods. TSMDB quality la-
bels were provided as MOS and median opinion scores
calculated before and after session normalization in the in-
terval [1,5]. The scores were collated from 42,529 ratings
by 263 participants in 633 sessions, with a minimum of
seven ratings per file. All files in the dataset have a single
channel, sampling rate of 44.1 kHz, and bit depth of 16
bits. Some reference files are stereo and were converted to
a single channel by summation and normalization to the
interval [–1,1].

The files of the TSMDB were split into training, vali-
dation, and testing subsets as per [1] and [20]. The first
six TSM methods in the list above were used for training
and validation, while the next three methods were used for
testing, resulting in no overlap of TSM method, source file,
or β. 10% of the training subset was randomly selected to
be used as the validation set. The evaluation set uses the
training subset source files processed by all of the TSM
methods listed above with a unique set of β values [20]. As
TSM quality changes based on β and signal source [1], the
aim of the TSMDB therefore is to cover a wide variety of
signal sources and β for a variety of TSM methods.

Objective measures have historically been difficult to de-
velop because of the lack of a large enough set of files with
subjective ratings. Within the recently published dataset,
the number of frames for β < 1 in the training subset is
significantly greater than for β > 1; however the number
frames is relatively uniform for 2 ≤ SMOS ≤ 4.5, see Fig.
1. The reduced number of frames for 1 ≤ SMOS ≤ 1.5
and 4.5 ≤ SMOS ≤ 5 may impact the estimation at the
extremes of the Objective Mean Opinion Score (OMOS)
range as there is less data for network training. Additionally
the difference in time-base between original and processed
signals has meant traditional objective measures cannot be
applied. Deep learning is allowing for non-intrusive mea-
sures of quality, bypassing the need for identical time-bases
between original and processed signals.

0.3 Deep Learning and Features
Deep learning is often used in objective measures of

quality. Convolutional Neural Networks (CNNs) [32] are

J. Audio Eng. Soc., Vol. 69, No. 9, 2021 September 645



ROBERTS ET AL. PAPERS

commonly used on spatial domain tasks, such as image
classification. They have also found use in speech and au-
dio because of the spatio-temporal representation of short-
time frequency analysis, as in [11]. CNNs learn weights of
convolutional kernels that are applied successively, creating
higher-order representations of the signal. Recurrent Neural
Networks (RNNs) differ from standard fully connected net-
works through the inclusion of a memory cell and suitability
to time-series data. In this paper Long Short-Term Memory
(LSTM) [33] and Gated Recurrent Units (GRU) [34] are the
used cell types. LSTM cells are controlled by three gates
(input, output, and forget) that determine what information
is added to or removed from the cell. GRU is a variant of
LSTM that removes the output gate and has fewer param-
eters. Bidirectional Recurrent Neural Networks [35], such
as the Bidirectional Long Short-Term Memory (BLSTM)
and Bidirectional Gated Recurrent Units (BGRU), extend
RNNs with forward and backward passes over the time-
series.

Introduced by [36], Mel Frequency Cepstral Coefficients
(MFCCs) have found extensive use as a lower-bandwidth
transformed signal representation in speech processing, as
in [37]. MFCCs are computed by first estimating the pe-
riodogram of the short-time power spectrum. A bank of
triangular-shaped filters spaced uniformly on the Mel-Scale
is then applied, resulting in the energy of each filter. The
logarithm of the filterbank energies is then taken, followed
by a Discrete Cosine Transform to decorrelate the filterbank
energies. Differential and acceleration coefficients are often
used to give an indication of the dynamics of the MFCCs
and are generally known as Deltas (D) and Delta-Deltas
(D′).

The contributions of this paper include the application of
CNN and BGRU networks in the context of non-intrusive
quality assessment of general audio. It also presents the
first SE quality measures for time-scaled audio as well as
the effectiveness of different input features such as magni-
tude, phase, MFCCs, and Deltas for this task. Finally the
paper makes general inference of the relative quality of
TSM methods in three different classes of signals: music,
solo instruments, and voice. The paper is organized as fol-
lows: Sec. 1 presents the proposed Single Ended Objective
Measure of Quality (OMOQSE) methods; Sec. 2 presents
network results as well as a comparison of TSM algorithms.
Availability, future research, and conclusions are presented
in Secs. 3, 4, and 5, respectively.

1 METHOD

First we describe the audio processing. Signals were pre-
pared by normalizing to the interval [–1,1] and trimming
silence at the beginning and end of the signal. Silence was
determined, according to [38], as the first and last time the
sum of four consecutive samples is greater than 0.0061.
The magnitude spectrum (|X|), magnitude and phase spec-
tra ([|X|;∠X]), power spectrum (|X|2), MFCCs, MFCCs and
D ([MFCCs;D]), and MFCCs, D and D′ ([MFCCs;D;D′]),
where [· ; ·] is concatenation, were tested during devel-
opment. The magnitude, phase, and power spectra used a

frame length of N = 2,048 samples, overlap of N/2, and
Hann window. MFCCs were of length 128, with D and D′

width 9 from t − 4 to t + 4 with respect to the current
time-step. Overall or per frequency-bin standardization of
the input features was explored.

Because of the variable length of the input signal, trun-
cating and duplicating the signal were explored. For the
CNN, sequences were truncated to the overall minimum
length (L), starting from a different random location in
each epoch. During testing the OMOS was averaged over
16 segments to capture more information of the processed
signal for a wider sampling of the signal. An alternative
method of pooling could be considered in future work. Re-
peating the input signal to the duration of the longest signal
was also considered for RNNs; however as LSTM and GRU
operate sequentially on each frame, input signals were used
in their entirety. An attention mechanism could be used in
the future to improve the loss function.

Prior to network training, target scores were scaled to the
interval [0,1] using

SM O S ← SM O S − 1

4
. (1)

1.1 Network Structure
The proposed CNN data structure, shown in Fig. 2, was

based on that of [11]. It contains four convolution layers,
of filter sizes 16, 32, 64, and 32, with batch normalization
and a 5 x 5 kernel for the first layer and 3 x 3 for the
remaining layers. The first two convolutional layers are
followed by max pooling layers, with 2 x 2 kernels and
2 x 2 stride. After concatenation and 10% dropout, three
fully connected layers of output size 128 are used. The final
layer has a single output. This results in 821,857 trainable
parameters. Rectified linear unit (ReLU) activation is used
throughout except for the output layer where the Sigmoid
activation is used. Residual connections around the second
and third fully connected layers are used. RMSE is used
as the loss function. Features were concatenated in time-
aligned input panes.

The proposed final-frame (FF) model for LSTM,
BLSTM, GRU, and BGRU networks can be seen in Fig. 3.
FF RNN models use backpropagation through time to learn
from the error between the final output and SMOS. The
total feature dimension (DF) is set by the concatenation of
input features. For the proposed network using [MFCCs;D]
features, DF is 256. Two RNN layers were used with the
memory layer size (DH) set to the number of directions (n)
multiplied by DF. L is the sequence length and ranged from
53 to 2,179 frames. An RNN architecture of many-to-one
was used, with the final frame used as input to an FCNN
after 10% dropout. The FCNN contained 3 layers of output
size 256, 128, and 1, respectively. Layer normalization and
ReLU activation were used for layers 1 and 2, while Sig-
moid activation was used for the output layer. This results
in 16,370,945 trainable parameters. Again RMSE is used
as the loss function. Magnitude, phase, and power spectra
(DF = 1025, DH = 512) were also explored as input to this
network.
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Fig. 2. Proposed CNN dataflow. Kernel sizes in brackets, numbers denote layer size and number of channels, FC is a fully connected
layer, LN is layer normalization, and ReLU activation used unless specified. Conv[x,y] is Convolution[Filtersize], BatchNorm is Batch
Normalization, MaxPool is Max Pooling, and Concat. is Concatenation.

Fig. 3. Proposed FF RNN dataflow. DF is feature depth, DH is hidden dimensions, n is the number of directions, numbers denote layer
sizes, FC is a fully connected layer, LN is layer normalization, and ReLU activation used unless specified. Mel-Frequency Cepstral
Coefficients (MFCC) and first differences (Deltas) are used as input.

Fig. 4. Proposed GRU-FT network dataflow. DF is feature depth, DH is hidden dimensions, n is the number of directions, L is sequence
length, numbers denote layer sizes, FC is a fully connected layer, and hashed sections are zero-padding to longest file in mini-batch.
Mel-Frequency Cepstral Coefficients (MFCC) and first differences (Deltas) are used as input.
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The proposed frame-target (FT) model for GRU and
BGRU networks (GRU-FT and BGRU-FT) can be seen
in Fig. 4. Two GRU layers of DH = 256 with 10% dropout
were used in a similar structure to the previous RNN. How-
ever a single fully connected layer with Sigmoid activation
reduces feature dimensionality to L × 1. The network has
1,972,737 trainable parameters. The MSE between the tar-
get SMOS and each frame estimate is used as loss. Frame
targets are averaged for the length of the sequence to cal-
culate the OMOS. As this calculation is independent of
training, median, minimum, and maximum values of frame
targets were also considered. Minimum frame targets were
considered as quality evaluation of time-scaled signals in
a degradation style analysis, where subjective quality is
heavily influenced by the quality of the worst part of the
signal. As the number of frames as a function of β or MOS
is not a uniform distribution, the impact was explored by
training on signals truncated to the minimum signal length
and signals repeated to the maximum signal length.

1.2 Training
10% of the training dataset was reserved for validation.

The CNN was trained for 100 epochs using a mini-batch
size of 132, while RNNs were trained for 30 to 60 epochs
with a mini-batch size of 48. A learning rate of 1e−4 was
used in most cases, with 1e−5 if network performance
stopped improving within the first 10 epochs. AdamW [39]
was used as the optimizer for all networks. Loss for back-
propagation was calculated using estimates in the interval
of [0,1]. Reported loss values (L) were calculated using
RMSE and estimates scaled back to the original interval of
[1,5], for comparison with OMOQDE. As the prediction of
opinion scores for novel TSM methods is the use case, early
stopping based on validation loss was not used. The opti-
mal epoch minimized the distance measure of [1], where
the minimum overall distance (D) is calculated by

D = ‖[ρ̂, L̂]‖2 , (2)

where ρ̂ and L̂ are calculated by

ρ̂ = ‖[1 − ρ,�ρ]‖2 , (3)

L̂ = ‖[L,�L]‖2 , (4)

where ρ = [ρtr , ρval , ρte]; L = [Ltr , Lval , Lte]; tr, val, and
te denote training, validation, and testing; L is the mean
of L; ρ is the mean of ρ; �ρ = max(ρ) − min(ρ); and
�L = max(L) − min(L). This scheme preferences net-
works with similar training, validation, and testing perfor-
mance by penalizing over-training and allows for the novel
artifacts of the test subset to inform the chosen optimal
network, without their direct use in training.

An evaluation set of 6,000 files, published as part of
[40], was generated from the test set reference files. Twenty
new time-scales in the range of 0.22 < β < 2.2, with all
TSM methods listed in Sec. 0, were used to process the
reference files. During evaluation, averages do not include
β = 0.2257, as the minimum for EL is β = 0.25. β = 1 has
also been excluded from averaging as it should be a unity
system. Checking this is useful during development, but

average OMOS should not improve for letting the output
equal the input if β = 1.

2 RESULTS

2.1 Network Performance
A wide range of testing and network configurations were

considered during the development of the proposed mea-
sures. Network hyper-parameters were optimized through a
systematic non-exhaustive search. Deterministic training of
all networks was conducted using seeds from 0 to 29. The
use of RMSE, MSE, and Mean Absolute Error were ex-
plored, with the best performing loss function used in each
proposed method. Fig. 5 shows the box plot distribution of
the best D for each seed, where lower is better.

Median overall distance (˜D) and best case D with as-
sociated training, validation, and test loss and correlation
values can be found in Table 1. While the improvement in
performance appears linear in Fig. 5, many network con-
figurations have not been included. Most networks trained
with [MFCCs;D] achieved 0.55 < Lte < 0.67, with only
BGRU-FT achieving Lte > 0.68 or D < 0.72. This appears
to be the Lte and D limit for these network configurations
and input features, even with ρtr approaching 1 when al-
lowed to over-train.

The results in Table 1 can be summarized as follows: The
proposed CNN achieved an Lte of 0.801 and ρte of 0.637,
while the proposed BGRU-FT network achieved an Lte of
0.762 and ρte of 0.682. In comparison to subjective session
mean loss (L) and mean PCC (ρ), the CNN was placed at
the 74th and 32nd percentiles, and the proposed BGRU-FT
network was placed at the 84th and 39th percentiles.

To give an indication of what the networks may be learn-
ing, correlation between OMOQSE, OMOS, and OMO-
QDE features was calculated for CNN and BGRU-FT net-
works. No significant correlation was found with maximum
correlations of 0.210 and 0.206 for CNN and BGRU-FT,
respectively.

Several trends were seen across testing. Networks trained
using [MFCCs;D] features out-performed those trained us-
ing [MFCCs;D;D′] as well as solely MFCCs, magnitude
spectra, magnitude and phase spectra, and the power spec-
trum. In all cases, magnitude only features out-performed
combined magnitude and phase features. Decreased per-
formance due to the inclusion of phase is likely because of
its noise-like quality. Results for networks trained on the
power spectrum are not shown in plots to increase compre-
hension. Improved performance was found using MFCCs
generated with Librosa over TorchAudio with identical set-
tings. For RNNs, FT measures outperformed FF measures,
GRU outperformed LSTM, and bidirectional networks gen-
erally outperformed single direction networks for the same
input features and network size. As such, RNN analysis
will focus on BGRU-FT, alongside analysis of CNN per-
formance.

The BGRU-FT network consistently rates TSM meth-
ods that use signal decomposition highly, whereas the
CNN does not favor this method of TSM, with results
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Fig. 5. Distance measure for each network configuration, ordered by median. Network input of |X| is denoted by Mag, ∠X by Ph,
[MFCCs;D] by MD, and hidden size by 64 or 256.

more closely matching SMOS method ordering. While the
BGRU-FT network achieves better loss and correlation re-
sults, it does not rate files greater than four and shows
very little variation in OMOS, between TSM methods, and
across the time-scale range, showing the CNN model to be
the better predictor of SMOS.

2.1.1 CNN Performance
The CNN improved significantly through the use of

[MFCCs;D] over |X|, ∠X, and |X|2, with similar perfor-
mance to FF RNNs. Normalization of input spectra reduced
network performance. Small gains were found through op-
timizing the kernel size; however the maximum kernel size
was limited by the length of the shortest file. Repeating
signals to the length of the longest files decreased net-
work performance as did using a combination of repeating
or truncating to 500 or 1,000 frames. The CNN predicts
across most of the OMOS range, shown in Fig. 6, but fails
to correctly predict values below 2 for the test set. The net-
work also does not predict scores above 4 when using the
evaluation set, Fig. 8, even though it contains files with β

= 1. Overall loss and correlation can be found in Table 1,
while signal class loss and correlation can be found in Table

Fig. 6. Training subset confusion matrix for CNN OMOQSE and
SMOS. Testing subset overlaid as dots.

2. The network gives similar performance between signal
classes for each set.

2.1.2 BGRU-FT Performance
The BGRU-FT was found to give the best performance

of the tested SE networks according to the distance measure

Table 1. Training, Validation, and Test Loss (L) and PCC (ρ), median overall distance (˜D), and minimum overall distance (min(D)).
Best SE results in bold.

Ended Network Features Hidden Ltr ρtr Lval ρval Lte ρte
˜D min(D)

SE BLSTM-FF |X|2 512 0.929 0.002 0.976 0.221 1.123 0.244 1.364 1.344
SE LSTM-FF |X|2 512 0.929 0.011 0.974 0.239 1.064 0.262 1.350 1.322
SE CNN [|X|;∠X] ... 0.754 0.584 0.855 0.502 0.942 0.484 1.039 0.998
SE CNN |X| ... 0.606 0.757 0.685 0.713 0.944 0.553 0.991 0.904
SE LSTM-FF [MFCCs;D] 256 0.854 0.581 0.663 0.295 0.720 0.221 0.898 0.809
SE BLSTM-FF [MFCCs;D] 256 0.567 0.795 0.593 0.757 0.849 0.581 0.887 0.811
SE GRU-FT [MFCCs;D] 64 0.632 0.746 0.646 0.707 0.820 0.649 0.855 0.789
SE BGRU-FT [MFCCs;D] 64 0.491 0.854 0.563 0.782 0.778 0.675 0.809 0.735
SE CNN [MFCCs;D] ... 0.500 0.843 0.522 0.834 0.801 0.637 0.808 0.745
SE BGRU-FF [MFCCs;D] 256 0.536 0.820 0.546 0.801 0.784 0.667 0.789 0.728
DE FCNN PEAQB 3 0.677 0.674 0.637 0.734 0.691 0.749 0.756 0.731
SE BGRU-FT [MFCCs;D] 256 0.454 0.874 0.512 0.824 0.762 0.682 0.738 0.711
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Table 2. Loss and correlation per class for CNN validation and
test sets. Best results in bold.

Class Lval ρval Lte ρte

Music 0.551 0.820 0.840 0.682
Solo 0.516 0.825 0.752 0.600
Voice 0.502 0.841 0.791 0.570

Table 3. Loss and correlation per class for BGRU-FT validation
and test sets. Best results in bold.

Class Lval ρval Lte ρte

Music 0.496 0.832 0.873 0.627
Solo 0.510 0.829 0.696 0.678
Voice 0.531 0.799 0.671 0.713

and gives similar performance to OMOQDE. The proposed
method gives the best Ltr, ρtr, Lval, and ρte performance,
resulting in the best ˜D and min(D) scores. Exact results
are shown in Table 1. When collapsing estimated frame
targets, no significant difference was found between mean
or median of predictions, while selecting the minimum or
maximum prediction reduced performance.

The BGRU-FT predicts across most of the range of
SMOS, seen in Fig. 7; however scores above 3.5 were not
predicted when using the evaluation set, Fig. 9. The net-
work gives similar performance between signal classes for

Fig. 7. Training subset confusion matrix for BRGU-FT OMOQSE
and SMOS. Testing subset overlaid as dots.

each set, seen in Table 2. A hidden size of 256 outperformed
64, 128, and 512 sizes, with 10% dropout outperforming
0%, 25%, and 50%. Including D′ was found to reduce per-
formance, as did increasing the number of MFCCs to 256.
Multiple fully connected layers were also explored but did
not improve performance. FT RNNs slightly improved per-
formance over FF RNNs, with FF improvements following
BGRU-FT results, with the best FF network shown in Fig.
5 and Table 1.

Fig. 8. CNN estimated Mean OMOS for each TSM method as a function of β for: (a) Musical signals, (b) Solo signals, (c) Voice signals,
and (d) All signals combined.
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Fig. 9. BGRU-FT estimated Mean OMOS for each TSM method as a function of β for: (a) Musical signals, (b) Solo signals, (c) Voice
signals, and (d) All signals combined.

Experiments showed using truncated random segments
with BGRU-FT reduced performance, as did extending sig-
nals through repetition. Repeating input for the CNN also
reduced performance.

2.2 TSM Algorithm Evaluation
In this section TSM methods are evaluated using the

aforementioned evaluation set. Tables 4 and 5 show average
OMOS for each signal class per TSM method ordered by
overall mean OMOS, Figs. 8 and 9 show average OMOS per
TSM method and β, and Figs. 10 and 11 show TSM methods
for which differences in mean are statistically significant.
As in [20] the design choice of excluding results for β = 1
and β < 0.25 from averaging calculations forming Tables 4
and 5 was used, as time-scaling is applied for β �= 1, while
β = 0.25 was the minimum available for EL. Common
trends are presented, followed by CNN and then BGRU-FT
analysis.

Estimation of signals time-scaled using NMF was par-
ticularly challenging for all networks. This is likely due to
novel artifacts described by [29] and SMOS distribution
skewed toward low scores. This provides a challenge for
network design as novel TSM methods may not have sim-
ilar artifacts or SMOS distributions to those in the training
set. However the relative rating of EL and FPV to other TSM
methods follows that of subjective testing. As suggested by
network Lte and ρte only a general sense of TSM quality
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Fig. 10. Masked two-sample t-test (A vs. B) for all CNN OMOS
estimates for each TSM method. Showing p > 0.05 for TSM
method comparisons where the difference in mean is not statisti-
cally significant. Unequal means indicated by white.

is obtained. Small details, such as the reduced quality of
uTVS used in subjective testing at β ≈ 1, are not visible.
The networks have also not learned the non-linearity of
SMOS as a function of β, continuing to increase for β > 1,
seen in Figs. 8 and 9. The uniform quality of methods at
β = 1 is however visible, as is the reduction in TSM quality
for β < 1.
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Table 4. Mean OMOS for each class of file and overall result using the proposed CNN OMOQ. Means calculated for β �= 0.2257 and
β �= 1.

ES FES PV WS NMF FPV SPL DIPL SPL IPL IPL HP uTVS uTVS EL

Music 2.291 2.424 3.318 3.045 3.053 3.290 3.259 3.299 3.327 3.335 3.294 3.325 3.460 3.469 3.445
Solo 3.248 3.209 3.202 3.416 3.370 3.396 3.297 3.343 3.375 3.441 3.372 3.553 3.424 3.435 3.419
Voice 2.966 2.938 2.793 3.020 3.082 2.886 3.064 2.982 2.948 2.879 3.053 2.925 2.988 2.999 3.104
Overall 2.781 2.814 3.126 3.149 3.157 3.200 3.212 3.217 3.227 3.230 3.245 3.274 3.307 3.318 3.335
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Fig. 11. Masked two-sample t-test (A vs. B) for all BGRU-FT
OMOS estimates for each TSM method. Showing p > 0.05 for
TSM method comparisons where the difference in mean is not
statistically significant. Unequal means indicated by white.

2.2.1 CNN Evaluation of TSM Methods
For musical files, Fig. 8(a), the CNN differentiates be-

tween frequency and time-domain methods, where quality
rapidly falls for time-domain methods when β < 1. WS
fares the best of the time-domain methods, diverging from
frequency domain methods for β < 0.8. The relative im-
provement in PV quality is also visible for β < 0.5 and
slower falloff of EL. When averaged, the CNN rates uTVS
and subjective uTVS highest followed by EL. For solo files,
Fig. 8(b), HP exceeds other methods for β < 1. This class
is the only evaluation where the highest OMOS is at β = 1.
HP has the highest mean OMOS, followed by PhaVoRIT
IPL, both uTVS methods, EL, and WS, as shown in Table 4.
Voice file OMOS, Fig. 8(c), is comparatively low for time-
domain methods, which is unexpected, as speech is often
scaled well by time-domain methods. The high quality of
NMF is also unexpected based on subjective results in [1].
EL has the highest mean OMOS, followed by NMF, SPL,
and IPL. All other methods gave similar averaged quality.

For all CNN OMOS, EL has the highest average rat-
ing, followed by both uTVS methods and HP. The overall
means can be seen in Fig. 8(d). The five best methods are
separated by < 0.1 OMOS with a maximum difference of
0.554 for all methods. The overall low quality of FPV is
unexpected, given that it builds on IPL; however further
analysis is required to determine if the difference is sta-
tistically significant. A two-sample t-test (α = 0.05) of all
OMOS shows the null hypothesis, TSM methods having
equal means, to be rejected in almost all cases when the
absolute difference of mean OMOS is greater than 0.098.
Fig. 10 shows p-values for the t-tests that were unable to
reject equal means.

2.2.2 BGRU-FT Evaluation of TSM Methods
BGRU-FT OMOS shows the most variance for music

files, Fig. 9(a). Again, time-domain methods rate lower.
FPV is rated highest, followed by uTVS and EL. For
multiple TSM methods, OMOS continues to increase for
β > 1. By combining this information with the improve-
ment when D is included as an input feature, we theorize
that BGRU-FT is learning a relationship between SMOS
and the velocity and duration between D events. As β in-
creases, the time between sound events decreases and the
attack portion of the energy envelope becomes sharper.

For solo files, Fig. 9(b), there is very little vari-
ance between methods, with a maximum difference ≈0.5
OMOS for β = 0.2257. Solo files have the high-
est overall OMOS of the 3 classes, which is con-
sistent with subjective findings. HP has the highest
mean OMOS, followed by uTVS and FPV. Voice file
OMOS, Fig. 9(c), shows the lowest TSM quality of
the 3 classes with a continued increase in OMOS for
β > 1 across all TSM methods. NMF has the highest
mean OMOS, which is unexpected based on [1]. EL is the
next highest, followed by uTVS methods and ES. The high
quality of ES is expected as the method was designed for
TSM of speech.

Table 5. Mean OMOS for each class of file and overall result using the proposed BGRU-FT OMOQ. Means calculated for β �=
0.2257 and β �= 1.

ES FES PV SPL IPL SPL IPL WS HP DIPL NMF uTVS EL uTVS FPV

Music 2.378 2.511 2.723 2.711 2.764 2.733 2.764 2.741 2.699 2.787 2.720 2.890 2.899 2.901 3.016
Solo 2.925 2.947 2.891 2.917 2.917 2.943 2.976 2.978 3.035 2.978 2.988 2.983 2.988 3.005 3.011
Voice 2.503 2.468 2.323 2.350 2.329 2.345 2.334 2.472 2.492 2.443 2.591 2.526 2.544 2.532 2.444
Overall 2.580 2.629 2.653 2.664 2.680 2.680 2.699 2.732 2.738 2.741 2.762 2.809 2.819 2.822 2.843

652 J. Audio Eng. Soc., Vol. 69, No. 9, 2021 September



PAPERS SINGLE ENDED OMOQ FOR TSM

For overall OMOS, Fig. 8(d), FPV has the highest aver-
age rating followed by uTVS methods and EL. The ordered
ranking of methods is close to expected, with only NMF
ranking unexpectedly. This is possibly due to the method
retaining the shape of percussive elements during time-
scaling. The six best methods are separated by < 0.102
OMOS, with a maximum difference of 0.263 for all meth-
ods. A two-sample t-test analysis (α = 0.05) of all OMOS
shows the null hypothesis of equal means to be rejected
in almost all cases when the absolute difference of mean
OMOS is greater than 0.098. Fig. 11 shows p-values for the
t-tests that were unable to reject equal means.

The OMOQDE took approximately 15 h to evaluate the
6,000 files of the evaluation set (approximately 7 h of au-
dio), whereas the proposed networks took approximately
15 min on system with a Xeon E5-2630 and NVIDIA
GTX1080. The majority of this improvement is due to
the removal of time-frequency spreading when calculat-
ing PEAQ features. The elimination of alignment between
reference and test signals is also beneficial as it removes
an additional temporal manipulation before feature calcula-
tion. While OMOQDE is a more accurate estimate of time-
scaling quality, the proposed OMOQSE measures give a
fast relative quality assessment and provide a platform for
future SE objective measures.

3 AVAILABILITY

The proposed CNN and BGRU-FT tools are available
from github.com/zygurt/TSM. This includes Python scripts
for feature generation, proposed methods implemented in
PyTorch, and evaluation methods. A bash script is also
included to simplify use.

4 FUTURE RESEARCH

This study shows promise in non-invasive evaluation of
the quality of TSM methods. However improvements can
be made through input feature selection and exploring the
use of phase derivatives or instantaneous frequency. Gen-
eralization to unseen TSM methods and sound sources is
also an area for future research. More research needs to be
conducted regarding duration invariant transformations that
limit the network’s ability to learn simple relationships such
as the duration of musical events within the signal to SMOS.
Additional attention could also be given to network archi-
tectures, such as Transformer Networks [41]. Pre-training
using a large task-related dataset could also be explored.

5 CONCLUSION

Two single-ended objective measures for time-scaled au-
dio are proposed with performance matching that of simple
OMOQDE measures with reduced processing time. The
SMOS score is estimated from [MFCCs;D] inputs using
CNN and BGRU-FT network architectures, by training the
networks to the SMOS of the TSMDB. The CNN uses four
convolutional layers with batch normalization followed by
concatenation before an FCNN with residual connections

estimates the OMOS. The BGRU-FT network gives a sin-
gle output for each frame that is fed into an FCNN for
final OMOS prediction. The CNN achieves an L of 0.608
and ρ of 0.771, whereas BGRU-FT achieves an L of 0.576
and ρ of 0.794. The proposed measures are used to evalu-
ate TSM methods, with estimates consistent with relative
quality found in subjective testing. Future work includes ex-
ploration of alternative features and network architectures.
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& Pitch Shifting SDKs (Version 3.2.5)” (accessed October
31, 2019).
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[34] K. Cho, B. Van Merriënboer, C. Gulcehre, et al.,
“Learning Phrase Representations Using RNN Encoder-
Decoder for Statistical Machine Translation,” arXiv
preprint arXiv:1406.1078 (2014 Sep.).

[35] M. Schuster and K. K. Paliwal, “Bidirectional
Recurrent Neural Networks,” IEEE Trans. Signal Pro-
cess., vol. 45, no. 11, pp. 2673–2681 (1997 Nov.). https://
doi.org/10.1109/78.650093.

[36] S. Davis and P. Mermelstein, “Comparison of Para-
metric Representations for Monosyllabic Word Recog-
nition in Continuously Spoken Sentences,” IEEE Trans.
Acoust. Speech Signal Process., vol. 28, no. 4, pp. 357–
366 (1980 Aug.). https://doi.org/10.1109/TASSP.1980.
1163420.

[37] A. Nicolson, J. Hanson, J. Lyons, and K. Pali-
wal, “Spectral Subband Centroids for Robust Speaker

Identification Using Marginalization-Based Missing Fea-
ture Theory,” Int. J. Signal Process. Syst., vol. 6, no. 1,
pp. 12–16 (2018 Mar.). https://doi.org/10.18178/ijsps.6.1.
12-16.

[38] ITU-R, “Method for Objective Measurements of
Perceived Audio Quality,” Recommendation ITU-R BS.
1387-1 (2001 Nov.).

[39] I. Loshchilov and F. Hutter, “Decoupled Weight
Decay Regularization,” arXiv preprint arXiv:1711.05101
(2017 Nov.).

[40] T. Roberts and K. K. Paliwal, “An Objective Mea-
sure of Quality for Time-Scale Modification of Audio,” J.
Acoust. Soc. Am., vol. 149, no. 3, pp. 1843–1854 (2021
Mar.). https://doi.org/10.1121/10.0003753.

[41] A. Vaswani, N. Shazeer, N. Parmar, et al.,
“Attention is All You Need,” in Proceedings of the
31st Conference on Neural Information Processing Sys-
tems (NIPS), pp. 5998–6008 (Long Beach, CA) (2017
Dec.).

THE AUTHORS

Timothy Roberts Aaron Nicolson Kuldip K. Paliwal

Timothy Roberts was born in Stanthorpe, Australia, in
1989. He received BMus (Tech), BEng (Class 1A Hons.),
and Ph.D. degrees from Griffith University, Brisbane, Aus-
tralia, in 2009, 2016, and 2021, respectively. He is currently
a research engineer and lecturer at Griffith University. His
research interests include music technology, time-scale
modification, expressive musical controllers, and digital
signal processing.

•
Aaron Nicolson was born in Brisbane, Australia, in 1994.

He received a BEng (Class 1 A Hons.) and Ph.D. degree
from Griffith University, Brisbane, Australia, in 2016 and
2020, respectively. He is currently a postdoctoral research
fellow at the Australian eHealth Research Centre, CSIRO.
His research interests include speech, natural language, im-
age, and multimodal processing using deep learning.

•
Kuldip K. Paliwal was born in Aligarh, India, in

1952. He received a B.S. degree from Agra University,
Agra, India, in 1969; M.S. degree from Aligarh Mus-
lim University, Aligarh, India, in 1971; and Ph.D. de-
gree from Bombay University, Bombay, India, in 1978.
He has worked at a number of organizations includ-
ing Tata Institute of Fundamental Research, Bombay,
India, and AT&T Bell Laboratories, Murray Hill, New
Jersey, USA. Since July 1993, he has been a profes-
sor at Griffith University, Brisbane, Australia, in the
School of Microelectronic Engineering. His current re-
search interests include speech recognition, speech coding,
speaker recognition, speech enhancement, face recogni-
tion, image coding, pattern recognition, and artificial neural
networks.

J. Audio Eng. Soc., Vol. 69, No. 9, 2021 September 655

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.18178/ijsps.6.1.12-16
https://doi.org/10.18178/ijsps.6.1.12-16
https://doi.org/10.1121/10.0003753

