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Predicting protein structure from sequence alone is challenging.
Thus, the majority of methods for protein structure prediction
rely on evolutionary information from multiple sequence align-
ments. In previous work we showed that Long Short-Term Bidi-
rectional Recurrent Neural Networks (LSTM-BRNNs) improved
over regular neural networks by better capturing intra-sequence
dependencies. Here we show a single-sequence-based predic-
tion method employing LSTM-BRNNs (SPIDER3-Single), that
consistently achieves Q3 accuracy of 72.5%, and correlation
coefficient of 0.67 between predicted and actual solvent acces-
sible surface area. Moreover, it yields reasonably accurate

prediction of eight-state secondary structure, main-chain
angles (backbone ϕ and ψ torsion angles and Cα-atom-based
θ and τ angles), half-sphere exposure, and contact number.
The method is more accurate than the corresponding
evolutionary-based method for proteins with few sequence
homologs, and computationally efficient for large-scale screen-
ing of protein-structural properties. It is available as an option
in the SPIDER3 server, and a standalone version for download,
at http://sparks-lab.org. © 2018 Wiley Periodicals, Inc.

DOI:10.1002/jcc.25534

Introduction

The protein folding paradigm states that a protein’s structure is
determined solely by its sequence. This is a fundamentally
important concept, as protein structures provide the key to their
functional mechanisms. Experimental techniques for solving pro-
tein structures, such as X-ray crystallography, nuclear magnetic
resonance, and cryo-electron microscopy are time-consuming,
labor-intensive, and costly; leading to a situation where the rate
at which new proteins are discovered far outpaces our ability to
experimentally determine their structures. This adds an urgency
to finding a method to computationally predict a protein’s struc-
ture, from its primary sequence alone. Despite its importance,
the protein folding problem has remained unsolved[1–3] since its
inception over half a century ago[4]. This is due to the difficulty
in formulating an accurate energy function for the solvent-
mediated interaction between amino acid residues.[2]

While it is challenging to predict a protein’s structure directly
from its sequence alone, accurate structure prediction can
now be made using restraints derived from correlated muta-
tions located from Multiple Sequence Alignments (MSAs) of
homologous sequences, if a large number of homologous
sequences are known.[5] Similarly, the accuracy of predicting
protein secondary structure, an important subproblem of pro-
tein structure prediction, increased from approximately 60% by
early single-sequence-based techniques[6] to beyond 70% with
the introduction of evolutionary information from MSA,[7] and to
82%–84% with the latest deep long-range learning techniques
also with evolutionary information as the key input.[3,8–10]

However, the majority of proteins (>90%) have few, if any,
known homologous sequences.[5] In these cases, evolutionary

information is limited or non-existent, and poor prediction accu-
racy is expected. It is quite possible that inaccurate evolutionary
information might reduce the accuracy of prediction. Indeed, a
recent single-sequence-based prediction of solvent Accessible
Surface Area (ASA by ASAquick) is more accurate than
evolution-profile trained methods for those proteins with few
homologous sequences.[11] Thus, it is possible that one can sim-
ply improve prediction accuracy by the alternative use of single-
sequence and evolution-based methods, depending on the size
of the homologous sequence cluster for a given protein.

Moreover, such single-sequence-based prediction is compu-
tationally efficient because greater than 99% of the computa-
tional time is spent on generating evolutionary sequence
profiles. Increasingly inexpensive sequencing techniques have
led to an exponential increase in the number of known
sequences. As a result, the computational time requirement for
finding sequence profiles is continuing to increase. For
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example, PSSM generation, by PSI-BLAST,[12] can take in the
region of 30 min for a short protein (around 100 resides) up to
multiple hours for a longer sequence (around 1000 residues).
More importantly, a single-sequence-based prediction directly
addresses the original subproblem of protein structure predic-
tion: how far can we push the accuracy of predicting protein
secondary structure from its sequence alone?

Although secondary structure prediction is dominated by
methods based on evolutionary information, progress has been
make in single-sequence-based prediction. SIMPA is a method
employing a nearest neighbor model, which reported a Q3 of
67.7%.[13] BSPSS is a Bayesian solution which succeeds in incor-
porating non local information and reports a Q3 of 68.8%.[14]

Kloczkowshi et al. presented a single sequence version of the
GOR V method which reports a Q3 accuracy of 67.5%.[15] IPSSP
extends upon BSPSS with a number of changes including itera-
tive training and improved residue dependency model report-
ing a Q3 of 70.3%.[16] Bidargaddi et al. combined BSPSS with a
Neural Network (NN) to reach a Q3 of 71%.[17] Bouziane
et al. used an ensemble of Support Vector Machine (SVM) and
NN models to achieve Q3 results around 66%.[18] The popular
PSIpred also maintains a single sequence version (hereon
referred to as PSIpred-Single) which achieves results around
70%.[19] All of these methods, however, have not yet taken
advantage of recent computational advancements in deep
learning.[20–22]

Recently, we employed Long Short-Term Memory (LSTM)
Bidirectional Recurrent Neural Networks (BRNNs) to predict sev-
eral one-dimensional structural properties of proteins by itera-
tive learning.[9] LSTM networks take the whole protein
sequence as input, rather than a sliding window, to capture
long-range interactions between residues that are close in
three-dimensional space, but far from each other in sequence
positions. This allows the method (SPIDER3) to achieve the
highest reported accuracy for several one-dimensional struc-
tural properties such as secondary structure (~84% Q3), solvent
accessibility (with a correlation coefficient between predicted
and actual solvent accessibility at 0.8), and backbone torsion
angles (e.g., a mean absolute error of 27� for ψ ).

In this article, we examine if LSTM-BRNNs can make more
accurate single-sequence prediction of secondary structure
than existing techniques, by using the same iterative deep
learning technique as SPIDER3. Unlike previous single-
sequence-based methods, this method (named SPIDER3-Single)
will not only predict secondary structure in three states, but
also in all eight states. Moreover, we will predict four backbone
torsion angles (ϕ, ψ , θ, and τ), solvent accessibility, Half Sphere
Exposure (HSE), and Contact Number (CN). We show that
SPIDER3-Single is able to achieve reasonably accurate predic-
tion for all structural properties predicted.

Methodology
Datasets

Our dataset was obtained by downloading 30% non-redundant
sequences from cullpdb in February 2017, with a resolution of

less than 2.5 Å, and R-factor less than 1.0. Of these, we removed
sequences with a length of less than 30 residues, a similarity
greater than 25% according to BlastClust,[12] and any sequences
with incomplete information. This resulted in 12,442 sequences,
which were split into 11192 submitted before and 1250 after
June 2015 (TS1250). The 11,192 sequences submitted before
June 2015 were used for training and evaluation by separating
into a training set of 9993 proteins called TR9993, and a test set
of 1199 proteins called TS1199. The TR9993 set was used for
10-fold cross validation, in which the set was divided into
10 sets with each employed in turn as the test set and the
remainder as the training set. We obtained a more difficult sub-
set from TS1250 by further excluding potential homologous
proteins from the training set with a PSI-Blast E-value cutoff of
0.1. This subset, labeled TS-Hard, has 280 sequence.

Input features

Each single sequence is represented by a one-hot vector of size
20 × L, where L is the length of the protein chain. Although
single-sequence derived features such as physiochemical prop-
erties[8,9] and the BLOSUM matrix[23] can also be used, we found
that these did not offer any improvement. This is likely because
these features are simply linear weight matrices that are learn-
able by the neural network employed here. Thus, only the one-
hot vector is employed.

Outputs

The secondary structure assignment program Define Secondary
Structure of Proteins (DSSP) specifies eight secondary structure
states, comprised of two helix, two strand, and three coil
states.[24] The three helix states are: 310-helix (G), alpha-helix
(H), and pi-helix (I); the strand states are: beta-bridge (B) and
beta-strand (E); and the three coil types are high curvature loop
(S), beta-turn (T), and coil (C). These eight states are converted
into a three-state problem using the following conversion: G, H,
and I to H; B and E to E; and S, T, and C to C. We designed our
network to independently predict 8 and 3 state secondary
structure for a total of 11 output nodes.

In addition to secondary structure, our method also predicts
Accessible Surface Area (ASA), ϕ, ψ , θ, τ, Half Sphere Exposure
(HSE), and Contact Number (CN). ASA is a measure of the level
of exposure of each residue within the protein to solvent
(water). Active sites of proteins are often located on their sur-
face, therefore knowing the level of exposure of each residue
can provide insight as to where that activity might occur. ϕ and
ψ are two of the backbone torsion angles, along with ω, that
describe a protein’s local backbone structure. ω is not predicted
here because it is usually at 180 due to the planarity of the pep-
tide bond. θ and τ angles describe the orientation between
neighboring residues according to Cα atoms. Specifically θ is
the angle between Cαi − 1 − Cαi − Cαi + 1, and τ is the dihedral
angle rotated about the Cαi − Cαi + 1 vector.

[25] CN is the count
of the number of residues within a distance cutoff, in three-
dimensional space, of a given residue. HSE extends the idea of
CN by adding directionality information and differentiating
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between counts in a top and bottom half of the sphere.[26]

Hamelryck described two methods for defining the plane sepa-
rating the upper and lower hemisphere, HSEα based on the
neighboring Cα–Cα directional vector and HSEβ based on the
Cα−Cβ directional vector. In this work we use the HSEα defini-
tion. For CN and HSE, residue distance is defined as the dis-
tance between Cα atoms with a 13 Å cutoff.

This leads to another 12 outputs: the first for ASA; the next
eight nodes for sin(ϕ), cos(ϕ), sin(ψ ), cos(ψ ), sin(θ), cos(θ), sin(τ),
and cos(τ), respectively; the next two for HSEα-up, HSEα-down;
and the final output node is for CN. Utilizing the sine and
cosine functions for angles is to remove the effect of the
angle’s periodicity.[25] The sine and cosine predictions are con-
verted back to angles by the equation α = tan − 1[sin
(α)/cos(α)].

Model details

SPIDER3-Single utilizes the same LSTM-BRNN networks that we
demonstrated in our previous evolutionary-profile based work,
SPIDER3.[9] Briefly, we use two BRNN layers with 256 nodes per
direction, per layer; followed by two fully-connected hidden
layers with 1024 and 512 nodes, respectively (Figure 1). In the
BRNN layers, we employ LSTM cells for their ability to learn
both distant and close intra-sequence dependencies
(Figure 2).[27] LSTM cells can remember both the long and
short-ranage interactions by enforcing the constant error flow
regardless of sequence seperation, thus permitting the input of
the entire protein sequence. The implementation of the net-
work was done using Google’s Tensorflow library, using the
CUDA version on an Nvidia GeForce Titan X GPU to speed up
training.[28]

The input to the model is simply an L × 20 matrix of one-hot
feature vectors, where L is the sequence length. This input is
then provided to one of two distinct networks, one for the pre-
diction of secondary structure, 3 and 8 states separately, and
one for the remainder of the structural properties: ASA, HSEα,
CN, ϕ, ψ , θ, and τ. As shown in Figure 1, these predictions are
split in such a way that the classification and regression prob-
lems are performed by two separate networks. This allows each
of those networks to have different loss functions that are bet-
ter suited to the task.[29] For the classification of secondary

structure, the network uses cross-entropy loss, while the regres-
sion performed for the rest of the predictions are better served
by a square loss.

During training both of these networks mask any contribu-
tion to the loss made by any undefined labels. These undefined
labels include residues with no secondary structure assignment
according to the program DSSP,[24] or residues with no defined
ϕ, ψ , θ, or τ. In these instances, the residue itself is not ignored,
only any missing labels.

Iterative based methods have previously been shown to have
an increased accuracy over using the same models without iter-
ations.[8,9,25,30,31] SPIDER3 employed four iterations. Here the
networks employed the one-hot vectors as the only input, and
secondary structure or ASA,HSE,CN, ϕ, ψ , θ, and τ as the output
in the first iteration. Then, the output of the first iteration, from
both networks (classification and regression), is appended to
the one-hot features as the input to a second pair of networks,
which predict the same outputs again (Figure 1). This process
of adding one iteration’s output to the following iteration’s
input is repeated for as long as the results continue to improve.

It should be noted that care needs to be taken when using
this iterative procedure so as to not test the network on data
that it has already seen during training. This is an issue because
to be able to train a subsequent iteration, we must have predic-
tions (i.e., outputs from the proceeding iteration) for the train-
ing data. If one was to simply pass the training data through
the first iteration networks, those predictions would be artifi-
cially high because the network has seen that data during train-
ing. To overcome this potential overtraining issue, the training
set is split into 10 folds, and 10 different networks are trained.
Each network is trained on nine of the folds, and tested on the
remaining one. In this way we are able to make predictions for
each of those folds one at a time, using networks that have not
been trained with that data.

For SPIDER3-Single we stop after the third iteration. However,
unless specifically mentioned we will only report the results
from iteration 2 because of the insignificant difference between
the second and third iterations for the majority of outputs.Figure 1. Overview of model.

Figure 2. LSTM-BRNN layer architecture connected with the contant error
carousel (CEC).
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Performance measure

Secondary structure prediction accuracy is defined as the per-
centage of residues for which the state is correctly predicted;
Q3 for three state prediction, and Q8 for eight state prediction.
For ASA,[30] CN,[31,32] and HSE[33] the Pearson Correlation Coeffi-
cient (PCC) between the true and predicted values are calcu-
lated and reported. The accuracy of ϕ, ψ , θ, and τ angles are
reported as the Mean Absolute Error (MAE) between the true
and predicted angle vales. The MAE of the angles is defined as

the smaller of αi and 360 − αi, where αi is j αpredi −αtruei j, to
account for the periodicity of the angles.

Results

Table 1 shows the 10-fold cross validation results of the net-
work. It can be seen that all of the results improve between the
first and second iterations, but plateau by the third. Specifically
the third iteration’s results degrade all except ϕ, ψ , θ, and τ

where there was no change for ϕ and θ, and a minor MAE
improvement (0.1) for ϕ and τ. Thus, here and hereafter, we will
only report the result of the second iteration.

In Table 1 we note that three-state secondary structure con-
verted from 8-state prediction is not as accurate as direct pre-
diction in three states. Thus, hereafter we will report the result
from the direct prediction of three state only for three-state
secondary structure.

Table 2 examines the method’s performance across different
datasets. For 10-fold cross validation and two large indepen-
dent test sets (TS1199 and TS1250), the performance is essen-
tially the same. For example, Q3 varies from 72.4% to 72.6%, Q8
from 59.8% to 60.1%, CC for ASA from 0.66 to 0.67, MAE for ψ
from 43.5 to 43.8 degrees. The consistency of this performance
indicates SPIDER3-Single can provide equally accurate predic-
tions for unseen data.

Table 2 also shows the result for TS-Hard, the subset of
TS1250 after removing any potential homologs to the training
set using PSI-Blast according to an E-value cutoff of 0.1. Inter-
estingly, the overall performance is better for some structural
properties. For example, Q3 increases from 72.5% to 73.2%
although the CC of ASA decreases slightly from 0.67 to 0.66. By

comparison, evolution-profile-based SPIDER3 performs worse
on TS-Hard than TS1250 (Table 2) where Q3 decreases from
84.3% for TS1250 to 81.9% for TS-Hard. Table 3 shows the mean
accuracy of three state secondary structure prediction across
each protein in the data set, along with the standard deviation
of those accuracies, and the p-value of a paired t-test between
the SPIDER3-Single predictions and that of SPIDER3 and
PSIpred-Single. The p-values show that the results of
SPIDER3-Single are significantly different from those of the
other two methods. This suggests that SPIDER3-Single is less
dependent how many homologous sequences a protein has, as
TS-Hard has a higher proportion of proteins with fewer homolo-
gous sequences.

To confirm the above possibility, Figure 3 plots Q3 as a func-
tion of the number of effective homologous sequences (Neff ),
a parameter used in HHblits to measure the size of homologous
sequence cluster.[34] Indeed, SPIDER3 has a systematic reduc-
tion in accuracy as Neff decreases whereas Q3 for
SPIDER3-Single is mostly independent of Neff. Interestingly, Q3
for SPIDER3-Single is higher than Q3 for SPIDER3 for Neff less
than 1.5. This confirms that a lack of homologous sequences is
detrimental to the accuracy of evolutionary-profile based
methods.

Figure 3 also shows the result of PSIpred-Single. Similar to
SPIDER3-Single, it has a Q3 mostly independent of Neff.
SPIDER3-Single consistently outperforms PSIpred-Single across
the entire range of Neff with an overall 3% improvement (from
69.6% to 72.5%) in Q3.

Similar results are also observed for ASA. As shown in
Figure 4 SPIDER3-Single outperforms SPIDER3 for Neff less than
1.5 and is mostly independent of Neff whereas SPIDER3 per-
forms the best for proteins with a higher Neff. Figure 4 also
compares SPIDER3-single with the single-sequence method
ASAquick. SPIDER3-Single consistently outperforms ASAquick
across the entire range of Neff in correlation coefficients.

The improved performance of SPIDER3-Single over SPIDER3
for Neff less than 1.5 is also observed for all other commonly
predicted one-dimensional structural properties (backbone
angles, HSEα-up, and contact numbers) except HSEα-down.
These results are shown in Supporting Information Figures S1–S5.
This performance difference suggests a possible consensus

Table 1. Accuracy of the 10-fold cross validation by SPIDER3-Single in
three iterations with the best performance highlighted, according to the
fraction of residues in correctly predicted three and eight state (Q3 and
Q8), Pearson Correlation Coefficients (CC), and Mean Absolute Error (MAE).

it. 1 it. 2 it. 3

Q3 71.81% 72.42% 72.36%
Q3 from 8 state 70.28% 71.08% 70.96%
Q8 59.30% 60.07% 59.97%
ASA (CC) 0.666 0.670 0.669
HSEα-up (CC) 0.611 0.612 0.610
HSEα-down (CC) 0.551 0.566 0.562
CN (CC) 0.638 0.643 0.640
ϕ (MAE) 24.6 24.3 24.2
ψ (MAE) 44.5 43.8 43.8
θ (MAE) 11.0 10.7 10.6
τ (MAE) 46.6 45.8 45.8

Table 2. SPIDER3-Single performance across different datasets according
to fraction of residues in correctly predicted three and eight states
(Q3 and Q8), Pearson Correlation Coefficients (CC), and Mean Absolute
Error (MAE).

10-fold TS1199 TS1250 TS-Hard

Q3 72.42% 72.56% 72.52% 73.24%
Q8 60.07% 60.11% 59.80% 61.72%
ASA (CC) 0.670 0.671 0.666 0.661
HSEα-up (CC) 0.612 0.612 0.606 0.604
HSEα-down (CC) 0.566 0.568 0.565 0.559
CN (CC) 0.644 0.643 0.638 0.636
ϕ (MAE) 24.3 24.5 24.1 23.4
ψ (MAE) 43.8 43.5 43.5 42.4
θ (MAE) 10.7 11.3 11.3 11.1
τ (MAE) 45.8 45.8 46.0 44.7
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prediction technique: employing SPIDER3 for Neff greater than
1.5 and SPIDER3-Single for Neff ≤ 1.5. This method combination
leads a minor improvement of Q3 from 84.3 from SPIDER3 to
84.4% by the consensus for TS1250 but a larger improvement
from 81.9% to 82.1% for TS-Hard. Obviously, the level of
improvement strongly depends on the fraction of sequences
with Neff ≤ 1.5.

The significant improvement of SPIDER3-Single over previous
single-sequence methods observed in Figures 3 and 4 is likely
due to the ability of LSTM-BRNN to better account for inter-
residue dependencies between sequentially close and distant
residues. To confirm this hypothesis, Figures 5 and 6 compare
the performance of secondary structure prediction by
SPIDER3-Single and by PSIpred-Single as a function of number
of local (j(i–j)j< 20) and long-range (j(i–j)j≥ 20) contacts, respec-
tively, of a residue. For surface residues with few contacts (short
or long-range), SPIDER3-Single and PSIpred-Single have a smal-
ler performance difference (~2%). As the number of contacts
between short and long-range sequentially separated residues
increases, the difference in performance increases to 5%–6%.

These results demonstrate the power of LSTM-BRNN over the
regular NN used in PSIpred-Single.

Figure 7 compares SPIDER3-Single and SPIDER3 in accuracy
of the secondary structure prediction for each residue type. The
overall accuracy of SPIDER3 is higher than that of
SPIDER3-Single for all residue types. There is a strong correla-
tion (CC = 0.98) between two sets of the accuracy. This

Table 3. Performance of secondary structure prediction by SPIDER3,
PSIpred-Single, and SPIDER3-Single, on two datasets at the residue level.

TS1250 TS-Hard

SPIDER3 84.31% 81.87%
PSIpred-Single 69.61% 70.21%
SPIDER3-Single 72.52% 73.24%

1 2 3 4 5 6 7 8 9 10
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0.75

0.8

0.85
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Q
3

SPIDER3-Single

SPIDER3

PSIpred-Single

Figure 3. Accuracy of predicted secondary structure (Q3) given by SPIDER3,
SPIDER3-Single, and PSIpred-Single as labeled as a function of the number
of effective homologous sequences (Neff ). Neff values were binned by
rounding to their nearest integer value.

Table 4. Performance in secondary structure prediction by SPIDER3, PSIpred-Single, and SPIDER3-Single, on two datasets according to mean and standard
devation at the protein level.

TS1250 TS-Hard

Mean Std p-value Mean Std p-value

SPIDER3 84.74% 0.0717 2.67e-201 82.19% 0.0874 5.75e-21
PSIpred-Single 70.78% 0.0901 7.65e-15 71.36% 0.0955 3.55e-04
SPIDER3-Single 73.65% 0.0935 74.36% 0.1015
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Figure 4. Accuracy of predicted ASA (measured by correlation coefficients
between predicted and actual ASA) given by SPIIDER3, SPIDER3-Single, and
ASAquick as labeled as a function of the number of effective homologous
sequences (Neff ). Neff values were binned by rounding to their nearest
integer value.
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Figure 5. Performance comparison between SPIDER3-Single and PSIpred-
Single for secondary structure prediction (Q3) on TS1250, as a function of
residues with different number of non-local (long-range) contacts, along
with the difference in Q3 (SPIDER3-Single minus PSIpred-Single) with its
y-axis to the right.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018 5

http://WWW.C-CHEM.ORG


suggests that the predictability of each residue type is intrinsic
and independent of evolution. One such intrinsic property is
abundance of amino acid residue types in protein sequences,
where there is a moderate correlation between prediction
results and residue abundance (CC = 0.56 for SPIDER3 and
CC = 0.53 for SPIDER3-Single). Interestingly, evolution reduces
the fluctuation in accuracy between residue types, where the
standard deviations are 0.0167 for SPIDER3 and 0.0261 for
SPIDER3-Single.

Conclusions

We have developed a new single-sequence-based method for
predicting several one-dimensional structural properties. This
method employs the same network architecture as the previ-
ously developed SPIDER3, except that SPIDER3 utilizes evolu-
tionary profiles generated from multiple sequence alignment.
We showed that the single-sequence technique results in a

more accurate prediction than the evolution-based technique
when few homologous sequences are available for producing
evolutionary profiles. As the majority of proteins have few
homologous sequences, this computationally efficient method
is expected to be useful for screening analysis of secondary
structure and solvent accessibility in large scale prediction.
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