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ABSTRACT: Recognizing the widespread existence of
intrinsically disordered regions in proteins spurred the
development of computational techniques for their detection.
All existing techniques can be classified into methods relying
on single-sequence information and those relying on evolu-
tionary sequence profiles generated from multiple-sequence
alignments. The methods based on sequence profiles are, in
general, more accurate because the presence or absence of
conserved amino acid residues in a protein sequence provides
important information on the structural and functional roles of the residues. However, the wide applicability of profile-based
techniques is limited by time-consuming calculation of sequence profiles. Here we demonstrate that the performance gap
between profile-based techniques and single-sequence methods can be reduced by using an ensemble of deep recurrent and
convolutional neural networks that allow whole-sequence learning. In particular, the single-sequence method (called SPOT-
Disorder-Single) is more accurate than SPOT-Disorder (a profile-based method) for proteins with few homologous sequences
and comparable for proteins in predicting long-disordered regions. The method performance is robust across four independent
test sets with different amounts of short- and long-disordered regions. SPOT-Disorder-Single is available as a Web server and as
a standalone program at http://sparks-lab.org/jack/server/SPOT-Disorder-Single.

■ INTRODUCTION

Intrinsically disordered proteins (IDPs) or intrinsically
disordered regions (IDRs) in proteins refer to proteins or
protein regions that do not possess well-defined, three-
dimensional structures at their corresponding physiological
conditions. IDPs and IDRs are found abundantly in every
domain of life1,2 with a wide range of function3,4 and are
implicated in many diseases including cancer and neuro-
degenerative diseases.5,6 The importance of intrinsic disorder
in living organisms can be revealed by the fact that natural
proteins are even more intrinsically disordered than proteins
with random sequences,7 likely due to the unique evolutionary
advantages of flexibility and multistructural states that
disordered proteins have over structured.8,9

IDPs and IDRs can be identified by a number of
experimental techniques, such as missing regions in X-ray
crystallography10 and dynamics from nuclear magnetic
resonance experiments.11 This data has been collected and
annotated in manually curated databases such as DisProt12 and
MobiDB.13 However, these annotated proteins are only a tiny
fraction of all known proteins. Given the high cost of
identifying intrinsic disorder by experimental techniques, it is
practically necessary to prioritize possible IDRs/IDPs by
computational methods, prior to experimental studies.
More than 60 computational methods for ID prediction

have been developed14,15 since the first attempt was made in
1979 by Williams.16 The first reliable, neural-network-based

technique was developed almost 20 years later by Romero et
al.17 Many early methods utilized only single protein sequences
and their derived information for prediction through window-
based analysis of the physicochemical properties, amino acid
propensities, and statistical potentials (e.g., IUPred,18

Globplot,19 and FoldIndex20). These methods have been
shown to generally be outperformed by single-sequence
machine learning methods,21,22 such as the PONDR series,23

DisEMBL,24 CSpritz,25 and Espritz.26 However, these single-
sequence-based techniques are often less accurate than
machine-learning techniques using evolutionary sequence
profiles generated from multiple sequence alignment.22,27

This is because sequence profiles, generally created by
programs such as PSI-Blast and HHBlits,28,29 contain
important information pertaining to the presence or the lack
of evolutionarily conserved amino acid residues due to their
respective structural and functional roles. Examples of some
recent methods based on sequence profiles are SPOT-
Disorder,21 SPINE-D,30 NetSurf,31 MDFp2,32 and AUCpred.33

However, generating the evolutionary profile for a given
sequence is computationally intensive as the library size of
known protein sequences has exponentially increased in recent
years because of increasingly cheaper sequencing techniques.
As a result, it is often too time-consuming to perform genome-
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scale analysis of protein intrinsic disorder using profile-based
techniques. Moreover, in real-world applications, the majority
of proteins (>90%) do not belong to a large sequence cluster.34

In other words, the quality of sequence profiles for the majority
of proteins is poor due to limited evolutionary information. In
this case, single-sequence-based techniques may well be more
accurate than profile-based techniques as demonstrated for
single-sequence prediction of solvent accessible surface area35

and secondary structure.36 Thus, it is highly desirable to have a
highly accurate single-sequence-based method. Improving
existing single-sequence-based methods also addresses the
fundamental question of how far we can push the accuracy
limit without relying on evolutionary information, knowing
that protein intrinsic disorder is wholly determined by its
sequence alone.
Improving over existing single-sequence methods is possible.

This is because these single-sequence techniques are based on
outdated machine learning architectures, such as a small
SVM37 or simple Neural Network,38 except Espritz which
employed a vanilla Recurrent-NN (RNN). On the other hand,
several recent profile-based disorder predictors demonstrated
the power of advanced machine-learning techniques in
improving disorder prediction. Examples are deep convolu-
tional neural fields,33 deep bidirectional long short-term
memory (LSTM) RNN,21 and combined convolutional and
LSTM networks.31

This work was inspired by our recent success in using an
ensemble of coupled residual Convolutional Neural Networks
(residual CNNs or ResNets)39 and LSTM networks.40 Such an
ensemble allows the removal of prediction noise and improves
robustness of performance in protein contact map prediction41

and protein ω angle prediction.42 Although LSTM methods
have already provided high accuracies for protein disorder
prediction in previous works,21,31 their combinations with
ResNets can increase the effectiveness in propagating
information throughout the protein sequence. Here we showed
that an ensemble of ResNets with LSTM networks leads to the
most accurate single-sequence-based technique based on the
comparison to existing state-of-the-art techniques.

■ METHODS AND DATA

Neural Network. SPOT-Disorder-Single utilizes an
ensemble of 8 models each consisting of ResNets and/or
LSTM BRNNs (Table 1). To simplify the description of their
implementations, we discuss each of these architectures as a
culmination of several functional blocks, as provided in Figure
1a-c, with each block representing the LSTM, ResNet, and
Fully-Connected (FC) segments of the architecture, respec-
tively. One example of the full model in the ensemble (Model

2 in Table 1) is illustrated as a flowchart of these blocks in
Figure 1d.
The LSTM blocks, shown in Figure 1a, consist of a

bidirectional LSTM layer with NLSTM one-cell memory blocks
in each direction, concatenating together to provide an output
of size 2 × NLSTM.

40,43 Unlike our previous methods on contact
map and ω angle prediction,41,42 the LSTM blocks employed
neither residual connections across the LSTM layer nor
normalization of the LSTM layer because we found that they
are not useful for improving performance in disorder
prediction. A dropout of 50% is applied to the output of the
LSTM layer.44

The ResNet blocks follow the preactivation architecture in
He et al.,39 in which the residual connection is applied over the
unactivated outputs of the convolution layer, rather than the
activation layer, as in He et al.45 The layout used is shown in
Figure 1b. The one-dimensional (1D) convolution layers
applied in our models utilize a filter depth of NCNN at a kernel
size of KCNN. Each convolution layer is normalized using the
batch normalization technique46 and activated by the
Exponential Linear Unit (ELU).47 Dropout is applied prior
to the secondary convolution layer in the ResNet block, at a
ratio of 25%. As the input needs to be prior to activation, we
apply an unactivated convolution layer prior to the first ResNet
block in each model. To compensate for this, the output of the
last ResNet block is activated and normalized.
The FC blocks shown in Figure 1c are simply multilayer

perceptron layers with a size of NFC, an ELU activation, and
dropout of 50%.38 The output layer is a single neuron with a
sigmoid activation and no dropout.

Table 1. Architecture of Each of the Nine Ensemble Methods

model no. RNN first NLSTM BlocksLSTM NCNN KCNN BlocksCNN NFC BlocksFC

0 N 200 2 - - - 500 1
1 Y 200 2 120 3 10 250 1
2 Y 200 2 60 3 10 250 2
3 Y 200 1 60 3 10 250 1
4 Y 200 2 60 3 10 125 1
5 Y 200 2 60 7 5 250 2
6 N 200 2 60 9 5 250 1
7 Y 200 2 60 15 5 250 1
8 Y 200 2 60 15 10 500 1

Figure 1. Each of the model blocks used in these experiments: A) the
LSTM block; B) the preactivation ResNet block; C) the Fully-
Connected (FC) block; and D) the architecture of Model 2 from
Table 1, utilizing each of the three previous model blocks.
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We trained numerous models, all formed from these three
base blocks, and selected the top 9 models based on their
performance on the validation set across several analysis
metrics. These 9 models are then combined as an ensemble
predictor, providing a more general output due to the
suppression of spurious generalizations made after progressing
through the unique learning path of each model.48 While
ensembles are generally a combination of several diverse
machine learning techniques or other computational meth-
ods,49 we have found that slightly altering the topologies of an
already accurate model is sufficient to provide diverse and
independent outputs, two fundamental properties of an
accurate ensemble.50 Thus, our final output is the mean of
all 9 models (1 LSTM model, 1 ResNet-LSTM model, and 7
LSTM-ResNet models).
Each model was implemented in Tensorflow v1.4,51 allowing

us to accelerate training up to 20 times faster than CPU on an
NVIDIA TitanX GPU.52 The weights in the network were
optimized using the Adam optimizer,53 using the default
hyperparameters.
Input Features. In this work, our input feature vector

representing the protein chain is a binary one-hot matrix of size
20 × L with each row representing one amino acid type (1 for
the amino acid type at that position and 0 otherwise), where L
is the protein sequence length. As was noted by Heffernan et
al.,36 using a different matrix representation such as the
BLOSUM62 matrix54 or physicochemical properties of each
amino acid55 does not provide any substantial difference to
performance as these are easily learnable by the network as a
linear transformations on the one-hot vector. The input feature
vector for each residue was standardized to have zero mean
and unit variance according to the means and standard
deviations of the training data.
Datasets. We used the same datasets as our previous

protein disorder prediction work.21,30 In brief, we obtained
4229 proteins which were randomly split into a train set of
3000 chains (DM3000) and a test set of 1229 chains
(DM1229). These datasets were obtained from chains in the
Disprot database:56 72 fully disordered chains from v5.0 of the
Disprot database12 and 4125 high-resolution structures derived
from X-ray crystallography prior to the 5th of August, 2003.
These sequences have a sequence similarity of <25% according
to BlastClust.28 A validation set was also randomly taken from
the training set, leaving a final training and validation sets of
2700 and 300 proteins, respectively.
Additionally, we employed three independent test sets,

SL329,30,57 Mobi11924,21,58,59 and Disprot267.27 The SL329
dataset is a reduced set from the SL477 protein set released by
Sirota et al.57 By removing the overlap between DM4229 and
SL477, we obtained 329 nonredundant protein sequences as
an independent test set. The MobiDB dataset58 consists of the
entire DisProt database, indirectly inferred IDRs and IDPs
from the Protein DataBank (PDB), and, most commonly,
predictions from a large ensemble of various disorder
predictors. The original set was reduced to 11924 proteins
after filtering for 25% sequence identity against DM4229,
removing sequences less than 30 residues or more than 20000
residues in length, and removing sequences with unknown
amino acid residues. Finally, we also obtained the Disprot
Complement set from Necci et al.,27 which are newly
annotated proteins in Disprot v7.0.60 This dataset is dominated
by long IDRs and IDPs. We removed one protein with
unknown amino acids to obtain Disprot267.

Performance Evaluation. As our output is a singular node
whose value has been compressed to be in the range of [0,1),
we can treat our output as the probability of the residue at that
position of being disordered. By using a cutoff threshold T for
each model, we can linearly separate our outputs into the two
classes and analyze the results based on the accuracies of these
thresholded values. These thresholded values can thus be
separated into True Positives (TP), False Positives (FP), True
Negatives (TN), and False Negatives (FN).
As protein disorder prediction has an innately skewed class

distribution in DM4229, it would be trivial to gain ≈90%
accuracy by simply designating every residue as ordered. As
such, it is important to obtain skew-independent metrics with
which we can analyze the performance of our model for both
classes. The two simplest metrics are sensitivity (Se TP

TP FN
= + )

and specificity (Sp TN
TN FP

= + ), which can be seen as the

accuracy of class 1 and class 0 prediction, respectively.
The specificity and sensitivity of a model can be combined

to form the Receiver Operating Characteristic (ROC) curve.
The Area Under the ROC Curve (AUC) is an unbiased metric
which provides the probability that a randomly sampled
positive sample will obtain a higher ranking than a randomly
sampled negative sample.61 For comparison between two ROC
curves, it is often necessary to calculate the significance
between the AUC values using the P-value in order to reject
the null hypothesis.62

Finally, we use the Matthew’s Correlation Coefficient
(MCC) to gauge the correlation of the predicted labels and
true labels.63 The formula for the MCC value is

MCC
TP TN FN FP

(TP FN)(TP FP)(TN FN)(TN FP)
= · + ·

+ + + +
(1)

Supplementary to these analysis metrics (which are based on
a residue-level analysis), we can also analyze the predicted
disorder content on a per-protein basis. We take the Pearson
Correlation Coefficient (PCC)64 and calculate the Root Mean
Squared Error (RMSE) of the predicted and actual disordered
content for each protein in the test set. The RMSE is provided
by

y x

N
RMSE

( )n
N

n n0
1 2

=
Σ −=

−

(2)

where N is the number of proteins in the dataset, and yn and xn
are the actual and predicted disordered content for protein n,
respectively. The content is normalized for each protein by the
number of annotated residues as to not bias longer proteins in
the dataset.
The maximum value of all of our per-residue analysis metrics

is 1, indicating that the predictor which obtains the highest
value for AUC of the ROC and/or MCC can be considered to
be the most accurate for disorder prediction. The predictor
which minimizes the RMSE can be considered to perform the
best for that analysis.

Method Comparison. Because this method is a single-
sequence based technique, we will mostly compare to other
single-sequence-based methods. To this end, we downloaded
the standalone versions of MobiDB-lite65 (available at http://
protein.bio.unipd.it/mobidblite/) and DisEMBL (available at
http://dis.embl.de/html/download.html) and accessed the
online server of IUPred2A66 (Server URL: https://iupred2a.
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elte.hu/), sequence-only Espritz (X-ray-, NMR-, and Disprot-
trained) (Server URL: http://protein.bio.unipd.it/espritz/),
and PONDR-VLXT (Server URL: http://www.pondr.com/).
The MobiDB-lite version downloaded utilizes the short and
long IUPred, DisEMBL 465, and hot-loops, sequence-only
Espritz D/N/X, and Globplot predictors in its consensus
modeling. In addition, we compare to the profile-based
technique SPOT-Disorder as a baseline for profile-based
methods (available athttp://sparks-lab.org/jack).

■ RESULTS
The results of SPOT-Disorder-Single on the validation and
four independent test sets are presented in Table 2. As Table 2
shows, these datasets have substantially different ratios of
ordered to disordered residues ranging from 15:1 in
Mobil1249, 10:1 in validation, 9.5:1 in DM1229, 3.8:1 in
Disprot267, and 1.3:1 in SL329. This is largely due to different
numbers of fully disordered proteins included in each set.
Thus, it is not surprising that the performance varies across
different datasets. Nevertheless, the AUC values for validation,
DM1229, SL329, and Mobil1249 varied slightly from 0.86 to
0.89, suggesting an overall robustness of the method. The
DisProt267 set, the latest annotations from DisProt v7.0, turns
out to be the hardest dataset with an AUC of 0.788.
Using the DM1229 test set as an example, Table 3 compared

the performance of individual models with those of the final

consensus. Although the AUC value only improved by 0.005
over the best single model, the MCC value increases by 3%.
The improvement is statistically significant with a P-value of 1
× 10−3.
Figures 2, 3, and 4 show the ROC curves produced by

various methods for three independent test sets SL329,
Mobi11924, and DisProt267, respectively. Performance
measures of these methods are also tabulated in Table 4.
SPOT-Disorder-single has the highest AUC and MCC values
for SL329 (5% higher in AUC and 9% higher in MCC than the
next best) and Mobi11924 (3% higher in AUC and 16% higher
in MCC than the next best) among all single-sequence

methods compared. The AUC by SPOT-Disorder-single is
only 3−4% lower than that by the profile-based method
SPOT-Disorder for SL329 and Mobi11924. For DisProt267,
SPOT-Disorder-Single is only slightly worse than Espritz
trained on the DisProt dataset in AUC (0.781 versus 0.796)
and slightly better in MCC (0.416 versus 0.414). However,
Espritz-DisProt performs significantly worse than SPOT-
Disorder-Single for Mobil11924 (0.732 versus 0.858 in AUC,
0.209 versus 0.442 in MCC), suggesting Espritz-DisProt is not
as general as SPOT-Disorder-Single. This is possibly due to the
fact that Espritz-Disprot was trained on long-disordered chains
from the Disprot database, which forms the bulk of the
Disprot267 dataset.
Long-disordered regions have different preference for amino

acid residues.15 Thus, it is of interest to examine if the method

Table 2. Performance of the Proposed Methods on All Test Sets

Dataset AUCROC MCC Pr Se Sp no. Ord no. Dis

Validation 0.888 0.575 0.712 0.517 0.979 61231 6083
DM1229 0.868 0.518 0.707 0.432 0.981 276748 29082
SL329 0.887 0.604 0.939 0.563 0.972 51292 39544
Mobi11249 0.858 0.438 0.561 0.389 0.980 2917685 194753
Disprot267 0.788 0.425 0.528 0.668 0.787 82989 29579

Table 3. Performance of the Ensemble Methods on the
DM1229 Set

Model AUC MCC Pr Se Sp

Model 0 0.862 0.490 0.683 0.404 0.980
Model 1 0.862 0.500 0.714 0.400 0.983
Model 2 0.861 0.496 0.744 0.375 0.986
Model 3 0.863 0.498 0.728 0.387 0.985
Model 4 0.849 0.489 0.761 0.355 0.988
Model 5 0.854 0.496 0.678 0.418 0.979
Model 6 0.852 0.498 0.679 0.421 0.979
Model 7 0.841 0.482 0.644 0.421 0.976
Model 8 0.858 0.504 0.686 0.425 0.980
SPOT-Disorder-Single 0.868 0.518 0.707 0.432 0.981

Figure 2. Receiver Operating Characteristic curve for all predictors on
the SL329 dataset.

Figure 3. Receiver Operating Characteristic curve for all predictors on
the Mobi11924 dataset.
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developed has a particular bias toward sizes of intrinsically
disordered regions. Figure 5 plots MCC values as disordered
and ordered regions are binned according to their sizes. The
largest Mobi11924 set was used so that we have sufficient
statistics in each bins. Except for a few methods, the majority
has a similar trend: the medium size around 30 residues has the
best discrimination between unstructured and structured
regions. SPOT-Disorder-Single is comparable to a few
methods in short IDRs but are more accurate than all single-
sequence methods in long-disordered regions. In fact, it is even
closer to the MCC values of the profile-based SPOT-Disorder
in long-disordered regions.
The above analysis is based on performance per residues.

Another way to evaluate method performance is to examine
the overall performance at the protein level: the fraction of the
residues in disordered regions (disordered content). The
performance can be measured by RMSE and PCC values.
SPOT-Disorder-Single was not specifically trained for protein-
level disordered contents. Thresholds used for optimizing
MCC values are not necessarily optimized to measure disorder
contents. Table 4 compared RMSE and PCC values given by
SPOT-Disorder-Single to other single-sequence-based techni-
ques. If the threshold for optimizing MCC values is employed,

the performance of our method is comparable to other
methods.
To understand the performance difference between a profile-

based and single-sequence methods, we plot the AUC value as
a function of the Number of effective homologous sequences
(Neff) in Figure 6. Neff is a parameter used in HHblits to
measure the effective size of its homologous sequence cluster.
The figure confirms that SPOT-Disorder-Single performs
significantly better than the profile-based SPOT-Disorder
when there is a lack of homologous sequences (very low
Neff), similar to single-sequence-based method for solvent
accessibility35 and secondary structure prediction.36

For illustrative purposes, we present the predictions on
cellular tumor antigen p53 (UniProt ID: P04637), a tumor
suppressing protein found in multicellular organisms contain-
ing several IDR67 in Figure 7. We selected the models
DisEMBL-465, Espritz-X, and IUPred-Long for comparison
due to their high performance across each test set. Espritz-D is
potentially biased as this protein also exists in the DisProt
database (DisProt ID: DP00086) and was thus not chosen. As
shown in Figure 7, SPOT-Disorder-Single is able to accurately
map all ordered and disordered regions, achieving an MCC of
0.826 for this protein, higher than the next highest of 0.759
achieved by IUPred-Long. While it achieves the third-lowest
sensitivity (94.8% vs 100% for Espritz-X and 96.0% for
IUPred-Long), SPOT-Disorder-Single achieves the highest
precision of 85.6% due to its lower occurrence of false
positives, compared to 65.9% and 78.0% for Espritz-X and
IUPred-Long, respectively.

■ DISCUSSION

In this paper, we have developed a method called SPOT-
Disorder-Single to predict intrinsic disorder of proteins by
using the sequence of amino acids only, with an ensemble of
coupled deep recurrent and convolutional neural networks. We
showed that employing the ensemble of deep neural networks
allows the method to improve over other sequence-only
techniques in terms of the ability to separate intrinsically
disordered from structured regions of proteins. The robust
performance is demonstrated by using several independent test
sets (DM1229, SL329, Mobi11249, and Disprot267) with
varying amounts of disordered content in short- and long-

Figure 4. Receiver Operating Characteristic curve for all predictors on
the Disprot267 dataset.

Table 4. Performance of Several Predictors on the Independent Test Setsd

SL329 Mobi11924 Disprot267

Predictor AUC MCC RMSE PCC AUC MCC RMSE PCC AUC MCC RMSE PCC

SPOT-Disordera 0.905 0.672 0.358 0.646 0.891 0.498 0.160 0.436 0.792 0.431 0.298 0.515
PONDR 0.755 0.384 0.330 0.569 0.73 0.191 0.256 0.276 0.680 0.234 0.28 0.439
IUP-Short 0.830 0.506 0.389 0.615 0.784 0.343 0.138 0.369 0.720 0.273 0.258 0.143
IUP-Long 0.838 0.552 0.386 0.587 0.741 0.273 0.159 0.359 0.706 0.292 0.305 0.201
DisEMBL-Coils 0.694 0.226 0.376 0.335 0.687 0.105 0.554 0.062 0.623 0.152 0.378 0.161
DisEMBL-Hotloops 0.682 0.243 0.366 0.408 0.724 0.169 0.312 0.196 0.614 0.128 0.246 0.310
DisEMBL-465 0.770 0.404 0.440 0.565 0.788 0.325 0.117 0.333 0.657 0.179 0.244 0.216
Espritz-Xray 0.842 0.543 0.324 0.660 0.829 0.354 0.187 0.388 0.754 0.372 0.269 0.591
Espritz-NMR 0.826 0.473 0.302 0.610 0.796 0.239 0.303 0.342 0.735 0.303 0.320 0.447
Espritz-Disprot 0.863b 0.608b 0.358 0.594 0.732 0.209 0.404 0.208 0.796 0.414 0.439 0.500
MobiDB-lite 0.835 0.554 0.369 0.643 0.791 0.376 0.140 0.394 0.762 0.397 0.253 0.607
Spot-Disorder-Singlec 0.887 0.604 0.403 0.600 0.857 0.438 0.139 0.393 0.788 0.425 0.269 0.600

aProfile-based method. bThe training set for Espritz-Disprot had significant overlap with the SL329 set (23 proteins left after filtering for 25%
sequence similarity). The results are listed here for completeness. cUsing the threshold from the validation set in Table 2 for MCC calculation.
dThe best sequence-based method is in boldface, while the second best is underlined.
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disordered regions. More importantly, we showed that the
single-sequence method is more accurate than the profile-
based technique for proteins with few homologous sequences.
One advantage of SPOT-Disorder-Single is its speed. We

obtained the computing time required for processing the large
Mobi11924 dataset. The timing was measured on CPU (Intel
Xeon CPU E5-1650 v2 @ 3.50 GHz) and GPU (Nvidia GTX
Titan X). This ended up making no difference during testing,
as the CPU and GPU versions both took 85 min for a full
ensemble pass over the data without parallelization. By
comparison, the profile-based SPOT-Disorder took more
than 3 weeks for the same set, even with parallel processing
of the profiles over multiple machines. A single-machine
implementation would have taken over a month. Meanwhile,
the Espritz server, which splits incoming jobs into 8 parallel
batches for processing on a high-performance computing
cluster, processed the Mobi11924 set in approximately 20 min.
Thus, SPOT-Disorder-Single is competitive in terms of
computing speed against other single-sequence servers as
well. This method allows a fast genome-scale prediction that is
often too time-consuming for profile-based techniques.

Another advantage of SPOT-Disorder-Single is that its
performance is more accurate than the modern profile-based
technique SPOT-Disorder for proteins with few homologous
sequences. This is important as most proteins have few
homologous sequences.34 Moreover, the method has a
comparable performance to SPOT-Disorder for long-disor-
dered regions as shown in Figure 5. This significantly enhances
the quality of the results for genome-scale prediction where
locating a stretch of disordered regions separating structured
domains is often needed.
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Figure 5. MCC of each predictor on the Mobi11924 dataset when binned by the length of both ordered and disordered regions.

Figure 6. AUC of the ROC curve when binned by the cumulative
Neff value of the proteins from the Mobi9981 dataset.

Figure 7. Predictions of several different predictors on the p53
protein (UniProt ID: P04637). The dashed horizontal line in each
graph represents the threshold of that predictor (e.g., 0.426 for SPOT-
Disorder-Single), and the remaining disjointed lines are the labels for
the target protein. There are several discontinuities (residues 92,
115−119, 181−186, 292, 312−325) where the curated and indirectly
inferred labels are conflicting in the MobiDB database.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00636
J. Chem. Inf. Model. 2018, 58, 2369−2376

2374

mailto:k.paliwal@griffith.edu.au
mailto:yaoqi.zhou@griffith.edu.au
http://orcid.org/0000-0001-6956-6748
http://dx.doi.org/10.1021/acs.jcim.8b00636


Notes
The authors declare no competing financial interest.
To further facilitate the usage, SPOT-Disorder-Single is freely
available as a Web-based server, and a downloadable version
for local implementation and all datasets employed in this
study for this article may be accessed at http://sparks-lab.org.

■ ACKNOWLEDGMENTS

We would like to thank M. Necci and S. C. Tosatto for
providing us the dataset of DisProt267 and the results of the
methods they tested. This work was supported by Australia
Research Council DP180102060 to Y.Z. and K.P. and in part
by the National Health and Medical Research Council
(1121629) of Australia to Y.Z. We also gratefully acknowledge
the use of the High Performance Computing Cluster
“Gowonda” to complete this research and the aid of the
research cloud resources provided by the Queensland Cyber
Infrastructure Foundation (QCIF).

■ REFERENCES
(1) Xue, B.; Dunker, A. K.; Uversky, V. N. Orderly Order in Protein
Intrinsic Disorder Distribution: Disorder in 3500 Proteomes From
Viruses and the Three Domains of Life. J. Biomol. Struct. Dyn. 2012,
30, 137−149.
(2) Peng, Z.; Yan, J.; Fan, X.; Mizianty, M. J.; Xue, B.; Wang, K.; Hu,
G.; Uversky, V. N.; Kurgan, L. Exceptionally Abundant Exceptions:
Comprehensive Characterization of Intrinsic Disorder in All Domains
of Life. Cell. Mol. Life Sci. 2015, 72, 137−151.
(3) Dyson, H. J.; Wright, P. E. Intrinsically Unstructured Proteins
and Their Functions. Nat. Rev. Mol. Cell Biol. 2005, 6, 197−208.
(4) Dunker, A. K.; Silman, I.; Uversky, V. N.; Sussman, J. L.
Function and Structure of Inherently Disordered Proteins. Curr. Opin.
Struct. Biol. 2008, 18, 756−764.
(5) Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Intrinsically
Disordered Proteins in Human Diseases: Introducing the D2
Concept. Annu. Rev. Biophys. 2008, 37, 215−246.
(6) Shigemitsu, Y.; Hiroaki, H. Common Molecular Pathogenesis of
Disease-related Intrinsically Disordered Proteins Revealed by NMR
Analysis. J. Biochem. 2018, 163, 11−18.
(7) Yu, J.-F.; Cao, Z.; Yang, Y.; Wang, C.-L.; Su, Z.-D.; Zhao, Y.-W.;
Wang, J.-H.; Zhou, Y. Natural Protein Sequences Are More
Intrinsically Disordered Than Random Sequences. Cell. Mol. Life
Sci. 2016, 73, 2949−2957.
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Dependent Prediction of Protein Disorder as a Function of Redox
State and Protein Binding. Nucleic Acids Res. 2018, 46, W329−W337.
(67) Kastan, M. B.; Onyekwere, O.; Sidransky, D.; Vogelstein, B.;
Craig, R. W. Participation of p53 Protein in the Cellular Response to
DNA Damage. Cancer Res. 1991, 51, 6304−6311.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00636
J. Chem. Inf. Model. 2018, 58, 2369−2376

2376

http://dx.doi.org/10.1093/bioinformatics/bty481
http://dx.doi.org/10.1093/bioinformatics/bty481
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1021/acs.jcim.8b00636

