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ABSTRACT: It has been long established that cis con-
formations of amino acid residues play many biologically
important roles despite their rare occurrence in protein
structure. Because of this rarity, few methods have been
developed for predicting cis isomers from protein sequences,
most of which are based on outdated datasets and lack the
means for independent testing. In this work, using a database
of >10000 high-resolution protein structures, we update the
statistics of cis isomers and develop a sequence-based prediction technique using an ensemble of residual convolutional and
long short-term memory bidirectional recurrent neural networks that allow learning from the whole protein sequence. We show
that ensembling eight neural network models yields maximum Matthews correlation coefficient values of approximately 0.35 for
cis-Pro isomers and 0.1 for cis-nonPro residues. The method should be useful for prioritizing functionally important residues in
cis isomers for experimental validations and improving the sampling of rare protein conformations for ab initio protein structure
prediction.

■ INTRODUCTION

Protein backbone structures can be characterized by three
dihedral angles representing rotations around the N−Cα bond
(ϕ), the Cα−C bond (ψ), and the C−N bond between two
residues (ω). Unlike ϕ and ψ, which vary from −180° to 180°,
the resonance in the C−N amide bond results in partial
double-bond characteristics and causes atoms Cα(i), C(i),
O(i), N(i+1), H(i+1), and Cα(i+1) to be approximately in the
same plane. As a result, ω is bound to either approximately
180° in the trans conformation or approximately 0° in the cis
conformation. Because of steric restraints, the trans con-
formation is energetically more favorable than the cis
conformation by 2.5−2.6 kcal/mol for most residues.
However, this energetic difference is only 0.5 kcal/mol for
proline residues because of the cyclic side chain. As a result,
while only 0.03% of Xaa−NonPro (where Xaa refers to any
amino acid residue type) bonds are in the cis conformation,
5.2% of Xaa−Pro bonds in the Protein Data Bank (PDB) are
cis isomers.1 For these rare cases, the relative inherent
instability of the cis isomer compared with the trans isomer
has to be overcome by its nonlocal interactions with other
residues that are close in three-dimensional structure but far
away in sequence position. This extra evolutionary effort must
occur for a structurally/functionally important reason.
Indeed, rare cis conformations are often located at

functionally important regions2 such as active sites3 and
binding interfaces4,5 and are more conserved than trans
conformations.6 Cis−trans isomerization has been found to

serve as molecular switches,7 channel gaters,8 protein
stabilizers,9 and expression regulators.10

The biological importance of thermodynamically stable cis
conformations makes it important to identify residues with this
rare conformation. Relying completely on experimental
techniques such as NMR spectroscopy and X-ray crystallog-
raphy is impractical because the structures of a massive number
of proteins are unknown. Thus, it is highly desirable to employ
computational methods to predict residues in cis conforma-
tions prior to experimental validations.
Unlike the prediction of protein secondary structure and

backbone angles ϕ, ψ, θ, and τ,11 only a few methods have
been developed for detecting cis−trans isomerization of
residues, many of which predict only for imide (Xaa−Pro)
bonds and not amide (Xaa−nonPro) bonds in a protein. The
first method for cis-proline prediction was developed by
Frömmel and Preissner12 using a vector of physicochemical
properties for six neighboring residues, obtaining a recovery
rate of 75% for 235 known cis-prolyl residues without false
positives. Analysis of X-ray structures revealed residue type,
secondary structure, and solvent accessibility preferences in the
neighborhood of cis peptide bonds.13 Later, Wang et al.14

employed a one-hot encoding representation of the amino acid
sequence in a 20-residue window as input to a support vector
machine (SVM)15 to achieve about 70% accuracy for an
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independent test set of 1159 cis- and 5080 trans-prolyl samples.
Song et al.16 showed the importance of evolutionary sequence
profile and predicted secondary structure in 21-residue
windows and obtained an accuracy of 71.5% for 5-fold cross-
validation of 2424 nonhomologous proteins. Exarchos et al.17

analyzed patterns surrounding cis-nonPro peptide bonds and
found that structural similarity has the most discriminative
power in resolving ω angles. More recently, several methods
for predicting cis-prolyl conformations were developed by
using intelligent voting of multiple SVM models with
evolutionary information as input and achieved a reported
accuracy of >80%.18,19 However, their results were based on a
1:1 ratio of cis and trans samples without independent tests.
To the best of our knowledge, none of the computational
servers for all of these methods are available except for
CISPEPpred.16 Our evaluation reveals its low precision (5%)
and sensitivity (12%).
Several methods for predicting cis conformations for all 20

residue types have also been developed. Pahlke et al.20

developed a rule-based technique (secondary structure and
amino acid propensities) for all cis residues. Exarchos et al.21

employed multiple SVM models with selected features from
evolutionary profiles, secondary structure, solvent accessibility,
and physicochemical properties in an 11-residue window and
achieved 70% accuracy, 75% sensitivity, and 71% precision on
a fully balanced data set. The actual performance in a real-
world application (severely unbalanced data) is unknown, as
no server is available for making an independent assessment.
One interesting observation is the lack of neural networks

and other modern machine learning technologies to predict
residue cis conformations. In contrast, the prediction of
secondary structure or local backbone angles other than ω has
been improved greatly by neural-network-based techniques.11

This could perhaps be due to the hitherto limited and
unbalanced data in the training and test sets, particularly for
non-prolyl residues. Nevertheless, the effectiveness of deep
feature abstraction and the propagation of long-range nonlocal
interactions throughout the whole protein sequence have been
shown to contribute to significant improvements in several
bioinformatics areas, such as intrinsically disordered regions in
proteins,22 protein contact map prediction,23,24 microRNA
secondary structure,25,26 and, most relevant to this work,
prediction of protein secondary structure,27,28 including
backbone torsion angles and other local structural proper-
ties.29−32 This has been achieved through the use of deep long
short-term memory bidirectional recurrent neural networks
(LSTM-BRNNs),33−35 and convolutional neural networks
(CNNs).36

LSTM-BRNNs are designed to be effective in propagating
long-range dependencies throughout an entire sequence. This
ability is important in protein analysis, where interacting
structural neighbors may be distantly separated in the protein
primary sequence. CNNs also have this potential, but because
of their typically small kernel sizes, they lack the network depth
necessary to propagate information throughout particularly
long sequences. Residual connections in ResNets (residual
CNNs)37,38 have overcome this problem by allowing CNNs to
have a greatly increased depth by minimizing the vanishing
gradient problem in neural network training. Our previous
work showed that these residually-connected networks, like
those in ResNets and residual LSTMs (ResLSTMs),39 can be
combined to provide state-of-the-art results in protein contact
map prediction.23 Convolutional and recurrent architectures

are particularly useful in protein sequence learning because of
their ability to accept variable-length inputs, as the base
module can be “unfolded” for each sequence position. Each
sequence residue is treated dependently on its surrounding
sequence context.
In this paper, we first update the statistics of cis isomers

using more than 10 000 nonredundant high-resolution protein
structures. We have found that 4.6% of proline and 0.14% of
non-proline residues are in cis isomers. The former resembles
the values presented in Jabs et al.1 from their small data set,
whereas the latter is about 5 times higher. Moreover, we have
found that more than 50% of proteins with 190 residues or
longer have at least one cis isomer. Here we applied an
ensemble of selected ResNet and ResLSTM network top-
ologies to the problem of protein ω angle prediction to exploit
the benefits of capturing both long- and short-range depend-
encies in sparse data. This model, named SPOT-Omega,
achieves highly precise prediction for both imide and amide
bonds without being trained specifically for either case. This
performance is also obtained without training on an artificially
balanced data set and thus is a more useful guide for real-world
applications. This work confirms the effectiveness of capturing
long-range nonlocal dependencies in local protein structure
analysis despite the sparsity of the class labels. Independent
tests on publicly available datasets also set a new benchmark
for future ω angle prediction analysis. SPOT-Omega is
available as a web server and as a stand-alone program along
with training and test sets at http://sparks-lab.org.

■ METHODOLOGY

The Machine Learning Approach.We conducted several
tests on different models to find the best approach for
predicting ω angles. On the basis of results from our previous
paper,23 we form an ensemble of high-performing ResNets,
ResLSTMs, and hybrid ResLSTM/ResNets for ω angle
prediction.
The ResNet segments in our models consist of consecutive

residual blocks, as illustrated in Figure 1A. Each residual block
in our model follows the preactivation ResNet architecture
shown in He et al.,38 with each convolution using a one-
dimensional (1D) kernel of size 3 with a varying number of
filters and an exponential linear unit (ELU) activation

Figure 1. (A−C) Layout of three network blocks employed for
building our deep learning models: (A) ResNet, (B) ResLSTM, and
(C) fully connected (FC) architecture. (D) Example of a neural
network model (model 1 from Table 1) using the ResNet and FC
blocks in (A) and (C), respectively.
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function.40 Because this model employs the preactivation
architecture, a convolution operation is applied prior to the
first residual block, and the output of the last residual block is
activated and then normalized.
The ResLSTM segments consist of the residual blocks

shown in Figure 1B. Each block contains one bidirectional
LSTM (BLSTM) layer with 128 one-cell memory blocks for
both the forward and backward directions concatenated
together to produce 256 inputs in the succeeding layer. In
some of our models, it was found that a bottleneck layer
increased the performance of our ResLSTM blocks, as shown
in Figure 1B. This bottleneck connection consisted of a 1 × 1
convolution operation with ELU activation and layer normal-
ization.
All of the trained networks conclude with hidden fully

connected (FC) layers and an output FC layer. The hidden FC
layers have ELU activation, are regularized using dropout
(p(d) = 0.5),41 and consist of varying numbers of neurons and
one bias neuron. The output layer, on the other hand, has no
dropout, three output nodes, a bias neuron, and softmax
activation. The three outputs are used to represent the
predicted probabilities that a residue will be in a trans, cis-Pro,
or cis-nonPro conformation. We can combine our outputs to
obtain the probability that a residue will be in a cis
conformation by summing the two cis output nodes, as it is
only useful to separate amide and imide bonds in training. In
our work, we found it beneficial to provide separate thresholds
for amide and imide bonds in order to give a binary output
label for each input residue.
We have developed a number of models based on various

combinations of ResNet, ResLSTM, and FC segments. The
network parameters (numbers of segment blocks and neurons
in each block) were obtained by extensive testing to find the
most effective architectures as determined by their perform-
ance on a validation set. Specifically, we trained models based
on all combinations of ResNet and/or ResLSTM blocks, 5−20
ResNet blocks with 64−128 filters, varying FC neuron depth,
and varying ResLSTM layer size with and without bottleneck
layers. The layouts of the eight final chosen models (three
ResNets, one ResLSTM model, and four hybrid ResNet/
ResLSTM models with varying numbers of ResNet, ResLSTM,
and FC blocks and sizes) are elaborated in Table 1. As an
illustration, the network architecture of model 1 from Table 1
is shown in Figure 1D.
The results of the eight models are combined to minimize

generalization errors made on the data by each of our
individual predictors.42 As the cis conformation labels are few
and far between, we examined several methods of combining
each predictor’s outputs and found similar performance. Thus,
the mean over all of the outputs is employed as the final model.

Each network was trained in TensorFlow version 1.443 using
the Adam optimization algorithm44 with a weight of 10 placed
on the corresponding output node when computing the
network cost to account for the class disparity. A higher class
weight, more relative to the actual class disparity, led to
degraded precision from the network. Each activated output in
the residual blocks (i.e., all but the FC blocks) is normalized by
layer normalization.45 Training the model in TensorFlow and
other similar libraries enables training to take place on our
Nvidia GTX TITAN X graphics processing unit (GPU), which
has been shown to speed up network training time by up to a
factor of 20 for neural networks.46 The total training time for a
purely ResNet model was 1 min/epoch over our training set
for a batch size of 50 sequences, whereas a pure ResLSTM
model took 8−10 min/epoch depending on the network
parameters.

Datasets. Here we have employed the same training and
testing datasets as in our previous work.23,32 In brief, we
obtained 12 450 nonredundant proteins from the cullpdb
website in February 2017 using the following criteria:
resolution < 2.5 Å, R-factor < 1.0, and sequence identity
cutoff < 25% according to BlastClust.47 This gave us a database
of 12 450 proteins, which we split into sets Train (10 200
proteins), TestI (1000 proteins), and TestII (1250 proteins).
Set TestII was made of the set of proteins deposited after June
2015, and the Train and TestI sets were randomly divided
from the remaining pool of proteins.
Here we consider a protein to be in the trans state when its

measured ω is in the range of [150°, 210°) and in the cis state
when ω is in the range of [−30°, 30°). Other residues that are
measured outside of these ranges are ignored during back-
propagation and in analysis but not during the feed-forward
stage.

Input Features. Our method utilizes two evolutionary
profiles, physicochemical representations of the amino acid
residues, and the outputs of predicted 1D structural properties
as its inputs. Each protein’s PSSM profile was generated by
three iterations of PSI-Blast against the NCBI’s Non-
Redundant (NR) database47 updated in 2017. The HHM
profile was generated by HHBlits version 2.0.15 by searching
the 20% nonredundant Uniprot2016 database48 using the
default search parameters of HHBlits.49 We also employ the
outputs of our previous 1D structural property predictor
SPIDER3,31 consisting of the predicted values of the three
secondary structure probabilities (for a residue to be in the
helix, coil, or strand conformation), one relative ASA, eight
sines/cosines of the θ, τ, ϕ, and ψ angles, and two HSEα up
and down. To avoid training on data seen during the training
of SPIDER3, we obtain the cross-validation outputs of the
third iteration of SPIDER3 for proteins in our Train set that

Table 1. Network Parameters for the Individual Networks Used in the Ensemble Model

no. of blocks no. of block neurons

model layout ResNet ResLSTM FC ResNet ResLSTM FC bottleneck

0 ResNet 15 − 1 64 − 256 −
1 ResNet 10 − 1 64 − 512 −
2 ResLSTM − 2 1 − 128 256 no
3 ResNet 10 − 1 128 − 256 −
4 ResLSTM/ResNet 10 2 1 64 128 256 yes
5 ResLSTM/ResNet 5 2 1 64 128 256 yes
6 ResLSTM/ResNet 15 2 1 64 128 256 no
7 ResNet/ResLSTM 15 2 1 64 128 256 no
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were used in training of SPIDER3. All of the input data were
standardized to have zero mean and unit variance using the
means and variances of the training set before being input into
the network.
Performance Evaluation. Because of the severe class

disparity in this problem (∼5% for cis-imide and 0.1% for cis-
amide bonds), it is important to have skew-independent
metrics, which can represent the accuracy of cis prediction
levels against an overwhelming number of trans labels. One
commonly used pair of performance measures are the
sensitivity (fraction of correctly predicted positives,

= +Se TP
TP FN

, where TP is the number of true positive

predictions and FN is the number of false negative predictions)
and the specificity (fraction of correctly predicted negatives,

= +Sp TN
TN FP

, where TN is the number of true negative

predictions and FP is the number of false positive predictions).
However, the dominance of negative cases (trans conforma-
tions) makes it easier to maximize the specificity by simply
predicting all of the residues to be in trans states, which gives
an overall accuracy of 99.6%. Thus, a number of performance
measures are employed. In addition to the area under the
receiver operating characteristic (ROC) curve (plot of Se vs 1
− Sp) (AUCROC), we calculate the Matthews correlation
coefficient (MCC),50

=
+ +

+ + + +

MCC
(TP TN)(FP FN)

(TP FP)(TP FN)(TN FP)(TN FN)
(1)

which is a measure of the correlation between the expected and
obtained class labels, and generate the precision−recall curve,
where the precision is the fraction of correct positive

predictions out of all positive predictions ( = +Pr TP
TP FP

). The

precision is a more practically useful guide for experimentalists
to estimate the minimum number of predicted cis conformers
to be experimentally tested to yield some positive outcomes.
This leads to another single-valued metric, the area under the
precision−recall curve (AUCPR), which provides a more
informative analysis for unbalanced class prediction.51 For
completeness, we also calculated the overall accuracy,

= +
+ + +Q2 TP TN

TP FN TN FP
. We should note that a naıv̈e single-

state prediction would lead to a Q2 of 0.948 for proline and
0.998 for non-proline.
Because of the large propensity for cis conformations in

imide bonds compared to amide bonds, we separately analyze
the performance of our model for proline only and non-proline
only. This is achieved by masking the outputs and labels
corresponding to the amino acid residue for each sequence.
Thus, we obtain separate thresholds for amide bonds and
imide bonds.
There is only one method for which a functioning server is

available to compare to our model. CISPEPpred16 offers
comparisons of sequence- and profile-based methods for
proline residues and is available at http://sunflower.kuicr.
kyoto-u.ac.jp/~sjn/cispep/.

■ RESULTS

Statistical Analysis of Cis Conformations. Analyzing the
database of 12 450 proteins reveals that 4.6% of proline and
0.14% of non-proline residues are cis isomers. The former
value is similar to a previous estimate of 5.2% while the latter is
about 5 times higher than the value of 0.03% for Xaa-nonPro
residues reported by Jabs et al.1 To confirm the statistics, we
examined a high-resolution subset of the 12 450 proteins
(2929 proteins at 1.6 Å) and found that the fractions of cis-Pro
and cis-nonPro isomers are 5.2% and 0.14%, respectively. Thus,
our obtained cis-nonPro isomer percentage is not caused by
the resolution of protein structures. On the other hand, a slight
increase in the fraction of cis-Pro isomers in high-resolution
structures (5.2% vs 4.6%) suggests a possible underestimation
of cis-Pro isomers for low-resolution structures. For the
training set and two test sets, the fractions of proline residues
in cis isomers are 4.8%, 4.8%, and 5.1%, respectively. For non-
proline residues, they are 0.139%, 0.134%, and 0.140%,
respectively. These fractions are consistent with each other
despite the fact that the two test sets are substantially smaller
than the training set, indicating reasonably representative test
sets.
In analyzing the residue-wise constitution of cis isomers, it

was found that different residues behaved differently. In the
12 450 protein set, glycine has the highest fraction of cis
isomers (0.28%) and isoleucine has the lowest (0.08%), as
shown in Table 2. We formed a correlation analysis between
the fraction of cis isomers of 19 residue types and >500
physicochemical properties collected in AAindex (http://www.
genome.jp/aaindex/).52 We found that the highest correlation

Table 2. Cis and Trans Conformation Counts for Each Amino Acid Residue in Each of Our Datasets

ω conf. P non-P A C D E F G H I K

cis 6185 3892 304 57 322 263 116 583 183 119 207
trans 127387 2804798 236770 36462 173845 199852 121320 205814 72718 169044 167998
% cis 4.855 0.139 0.128 0.156 0.185 0.132 0.096 0.283 0.252 0.070 0.123
ω conf. L M N Q R S T V W Y

cis 226 97 228 159 150 342 226 168 41 101
trans 279255 63126 126612 111060 152233 177974 158832 204250 41756 105877
% cis 0.081 0.154 0.180 0.143 0.099 0.192 0.142 0.082 0.098 0.095

Table 3. Cis Conformation Counts and Percentages for Each Secondary Structure State and Surface Exposures for Amide and
Imide Bonds

helix coil sheet core surface

cis-Pro 12 (0.19%) 5968 (96.82%) 184 (2.99%) 2344 (38.26%) 3783 (61.74%)
cis-nonPro 18 (0.53%) 3240 (96.09%) 114 (3.38%) 869 (29.96%) 2032 (70.04%)
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coefficients (CCs) are 0.784 and 0.770 for the weights for a
coil at window positions −1 and 0, respectively.53 This link
between the coil propensity and the cis isomer of a residue
suggests that cis isomers are likely to be located in coil regions.
Indeed, as shown in Table 3, we found that more than 96% of
both cis-Pro and cis-nonPro isomers are in coil regions, whereas
only 3% and 0.2−0.5% are in sheet and helix conformations,
respectively. If we define surface residues as those residues with
more than 25% solvent-accessible surface area, the majority of
cis isomers are at the surface (61.7% for cis-Pro and 70.0% for
cis-nonPro). Similar trends but with significantly less data were
observed previously.13

To further explore possible patterns in neighboring residues
surrounding cis isomers, we employed WebLogo plots54 for
sequence and secondary structure distributions around the cis
isomers. Figures 2 and 3 show the distributions of five

neighboring residues for cis-Pro and cis-nonPro isomers,
respectively. No clear amino acid patterns can be found for
either case. On the other hand, the WebLogo plot of secondary
structure around cis isomers (Figure 4) shows the dominant

coil at the center with a gradual increase in the residues in
strand or helical states away from the center. These results
suggest that it is nearly impossible to locate cis isomers by
relying on single-sequence and secondary structure informa-
tion alone.
To get statistics of how many proteins have cis isomers,

Figure 5 shows a cumulative distribution of proteins with at
least one cis isomer as a function of protein chain length. The
figure demonstrates that more than 50% of proteins longer
than ∼190 residues and close to 100% of proteins with more
than 600 residues have at least one cis isomer. This confirms

the importance of detecting functionally important cis isomers
in protein structures.

Overall Performance of SPOT-Omega for cis-Pro
Prediction. Table 4 shows the mean results of 10-fold
cross-validation on the Train set for each of the eight
individual models used in the ensemble and for the ensemble
model itself for cis-Pro prediction. For the individual models,
the AUC values range from 0.829 to 0.843, the maximized
MCC values from 0.30 to 0.32, and the sensitivities from 16%
to 21% at a nearly constant precision of 50% according to a
preset threshold. Similar performance among individual deep
learning models indicates similar ability to learn from the same
data without overtraining. The consensus prediction by the
simple average yields the best prediction with an AUC of
0.858, maximized MCC value of 0.35, and sensitivity of 24%.
The low standard deviations across 10 folds for all of the
metrics indicate the stability of performance across each testing
fold. The ensemble model outperforms each individual model
in AUC (0.8575 vs 0.8428 for the best single model) and
MCC (0.350 vs 0.325 for the best single model). The
difference in AUC is statistically significant, with P ≤ 3 ×
10−3.55

Table 5 compares the performances of a baseline model, a
single-state model, and the final ensemble model for predicting
cis-Pro isomers in two independent test sets. The baseline
model was obtained by a random classifier. The single-state
model simply assigns all residues as trans isomers. For cis-Pro
residues, the baseline model achieves a random AUC (0.5),
MCC value (0.0), and Q2 (50%), as expected. The naiv̈e
single-state model obtains a Q2 of 95.4%. For the ensemble
model, the AUC values are 0.852 and 0.860 for the TestI and
TestII sets, respectively. The corresponding MCC values are
0.352 and 0.360, respectively. The ROC curves of the
ensemble model for the TestI and TestII sets are compared
in Figure 6. A slightly better performance for the TestII set is
observed, but the difference between the two ROC curves is
statistically insignificant (P ≤ 0.29). Here, for practical
purposes, the threshold T used to generate the sensitivity,
specificity, precision, and Q2 metrics is chosen so that the
precision on the TestI set is at least 50% for each model. The
MCC value is obtained from a second threshold, taken from
the value that maximizes the MCC value on the TestI set. With
the threshold determined by the TestI set, the ensemble model
achieves a precision of 57% and sensitivity of 25% for the

Figure 2. WebLogo plot for the surrounding amino acid content for
all cis-Pro isomers in the data, with a window size of ±5 residues.

Figure 3. WebLogo plot for the surrounding amino acid content for
all cis-nonPro isomers in the data, with a window size of ±5 residues.

Figure 4. WebLogo plot for the surrounding secondary structure
elements (coil (C), helix (H), and strand (E)) for all cis isomers in
the data, with a window size of ±5 residues.

Figure 5. Cumulative distribution of proteins with a cis conformation.
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TestII set. The consistent performance of the ensemble model
across 10 folds and two test sets confirms the robustness of the
models trained.
The performance of another predictor, CISPEPpred, is also

shown in Table 5. CISPEPpred’s single-sequence and profile-
based predictions for the TestII set (proteins deposited after
June 2015) both show a near-zero MCC value with low
sensitivity (12%) and low precision (5%), indicating that the
method is not generalizable to detect cis isomers in recently
deposited protein structures.
Precision−recall curves of the ensemble model are shown in

Figure 7 for the two test sets. The figure shows that a precision
of nearly 100% is possible at the cost of a minimal sensitivity.
The choice of threshold at 50% precision with about 20%
coverage of all cis-Pro isomers (from the TestI set) is a
compromise to balance the requirements of precision and
sensitivity.

Overall Performance of SPOT-Omega for cis-NonPro
Prediction. Table 6 shows the mean results of 10-fold cross-
validation on the Train set for cis-nonPro prediction. For the
individual network models, the AUC values range from 0.828
to 0.843, maximized MCCs from 0.09 to 0.12, and sensitivities
from 2.1% to 4.2% for precisions ranging from 29% to 31%
according to a preset threshold (set to achieve a precision of
∼30%). It was more difficult to predict at a consistent
precision for cis-nonPro because of the high difficulty of
separating the rare cis-nonPro events. The consensus
prediction by the simple average yields the best prediction
with an AUC of 0.857, MCC of 0.13, and sensitivity of 4.6%
for a precision of 31%. The low standard deviations across 10
folds for all metrics indicate the stability of the performance
across each testing fold. The ensemble model outperforms
each individual model in AUC (0.857 vs 0.843 for the best
single model) and MCC (0.133 vs 0.125 for the best single

Table 4. Performance of 10-Fold Cross-Validation on Our Training Set for cis-Pro Prediction, with Standard Deviations in
Parentheses, by Individual Neural Network Models and the Ensemble

predictor AUCROC AUCPR max MCC Se Sp Pr Q2

model 0 0.8371 (0.02) 0.3019 (0.04) 0.3213 (0.03) 0.1848 (0.06) 0.9912 (0.00) 0.5044 (0.00) 0.9540 (0.00)
model 1 0.8428 (0.01) 0.3156 (0.02) 0.3245 (0.02) 0.2110 (0.03) 0.9900 (0.00) 0.5039 (0.00) 0.9541 (0.00)
model 2 0.8320 (0.01) 0.2895 (0.03) 0.3077 (0.03) 0.1772 (0.05) 0.9917 (0.00) 0.5063 (0.00) 0.9541 (0.00)
model 3 0.8331 (0.03) 0.2948 (0.06) 0.3094 (0.05) 0.1813 (0.07) 0.9915 (0.00) 0.5006 (0.02) 0.9541 (0.00)
model 4 0.8401 (0.01) 0.3035 (0.02) 0.3168 (0.02) 0.1930 (0.04) 0.9908 (0.00) 0.5032 (0.00) 0.9540 (0.00)
model 5 0.8380 (0.01) 0.3018 (0.03) 0.3164 (0.03) 0.1895 (0.04) 0.9910 (0.00) 0.5044 (0.00) 0.9541 (0.00)
model 6 0.8379 (0.01) 0.3037 (0.03) 0.3134 (0.03) 0.1876 (0.04) 0.9912 (0.00) 0.5059 (0.01) 0.9541 (0.00)
model 7 0.8289 (0.01) 0.2804 (0.03) 0.3004 (0.02) 0.1592 (0.06) 0.9925 (0.00) 0.5056 (0.00) 0.9540 (0.00)
ensemble 0.8575 (0.01) 0.3450 (0.02) 0.3503 (0.02) 0.2384 (0.05) 0.9887 (0.00) 0.5030 (0.00) 0.9540 (0.00)

Table 5. Performance of the Ensemble Models in cis-Pro Prediction for Two Independent Test Sets

test set predictor AUCROC AUCPR max MCC T Se Sp Pr Q2

I random 0.5000 0.048 0.0000 0.500 0.5000 0.5000 0.048 0.5000
single-state − − − − 0.0000 1.0000 0.0000 0.9544
ensemble 0.8523 0.3390 0.3523 0.802 0.1992 0.9907 0.5052 0.9546

II ensemble 0.8603 0.3778 0.3603 0.802 0.2489 0.9905 0.5710 0.9546
CISPEP sequence − − 0.0072 − 0.1230 0.8877 0.0519 0.8513
CISPEP profile − − 0.0070 − 0.1230 0.8875 0.0518 0.8511

Figure 6. Receiver operating characteristic (ROC) curves for cis-Pro
predictions by the ensemble model on the two test sets (I and II) as
labeled.

Figure 7. Precision−recall curves for the cis-Pro predictions from the
ensemble model on the two test sets (I and II) as labeled.
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model). The difference between the AUC values is statistically
significant with P ≤ 1.4 × 10−2.55

Table 7 compares the performances of a baseline model, a
single-state model, and the final ensemble method for
predicting cis-nonPro isomers in the two test sets. The baseline
model achieves a random AUC (0.5), MCC (0.0), and Q2
(50%), as expected. The naiv̈e single-state model obtains a Q2
of 99.87%. For the ensemble model, the AUC values are 0.875
and 0.8766 for the two test sets, respectively. The
corresponding maximized MCC values are 0.14 and 0.09,
respectively. The ROC curves of the ensemble model for the
two test sets are compared in Figure 8. The MCC value is

somewhat lower in TestII (0.09) than in TestI (0.14) because
the threshold T used to maximize the MCC on the TestI set
was applied to the TestII set. For the same reason, a much
higher precision but a lower sensitivity was observed in TestII
compared with TestI, as the threshold from TestI at ∼30%
precision was employed. The overall difference in performance
(in terms of AUC) between TestI and TestII is statistically
insignificant (P ≤ 0.44). The precision−recall curve of the

ensemble method for cis-nonPro isomers (Figure 9) is unable
to achieve 100% precision at extremely low sensitivity,

highlighting the challenge of resolving the rare cis-nonPro
isomers from an overwhelming number of trans-nonPro
isomers. Nevertheless, the result for the TestI set is nearly
the same as that for the TestII set, confirming that the model
obtained can be applied to unseen proteins with similar
precision.

Importance of Feature Types. To get a sense of the
contribution of individual feature groups to the performance of
cis isomer prediction, we separate the features into sequence
profiles generated from PSI-Blast (PSSM), profiles from
HHblits (HHM), physicochemical properties (PHYS), and
predicted 1D structural properties from SPIDER3 (SPD3).
The results of these feature tests are shown in Table 8.
Interestingly, removing HHM has the least impact on the AUC
for predicting cis-Pro isomers but the highest impact for cis-
nonPro isomers. HHM is also the best single feature group for
predicting cis-nonPro but not for cis-Pro isomers, suggesting
the inherent difference in the formation of cis-Pro and cis-
nonPro isomers.

Table 6. Performance of 10-Fold Cross-Validation on Our Training Set for cis-NonPro Prediction, with Standard Deviations in
Parentheses, by Individual Neural Network Models and the Ensemble

predictor AUCROC AUCPR max MCC Se Sp Pr Q2

model 0 0.8344 (0.02) 0.0374 (0.01) 0.1245 (0.03) 0.0420 (0.02) 0.9999 (0.00) 0.2925 (0.05) 0.9985 (0.00)
model 1 0.8412 (0.01) 0.0369 (0.01) 0.1241 (0.02) 0.0371 (0.02) 0.9999 (0.00) 0.3058 (0.00) 0.9985 (0.00)
model 2 0.8328 (0.01) 0.0305 (0.01) 0.1122 (0.02) 0.0316 (0.01) 0.9999 (0.00) 0.3111 (0.01) 0.9986 (0.00)
model 3 0.8313 (0.03) 0.0342 (0.01) 0.1152 (0.04) 0.0359 (0.02) 0.9999 (0.00) 0.2898 (0.05) 0.9985 (0.00)
model 4 0.8404 (0.01) 0.0343 (0.01) 0.1167 (0.03) 0.0378 (0.02) 0.9999 (0.00) 0.3067 (0.01) 0.9985 (0.00)
model 5 0.8389 (0.02) 0.0337 (0.01) 0.1169 (0.02) 0.0338 (0.01) 0.9999 (0.00) 0.3074 (0.01) 0.9986 (0.00)
model 6 0.8432 (0.01) 0.0333 (0.01) 0.1161 (0.03) 0.0371 (0.02) 0.9999 (0.00) 0.3026 (0.01) 0.9985 (0.00)
model 7 0.8281 (0.02) 0.0230 (0.01) 0.0933 (0.02) 0.0211 (0.01) 0.9999 (0.00) 0.2862 (0.05) 0.9986 (0.00)
ensemble 0.8566 (0.01) 0.0418 (0.01) 0.1331 (0.02) 0.0467 (0.02) 0.9999 (0.00) 0.3070 (0.00) 0.9985 (0.00)

Table 7. Performance of the Ensemble Models in cis-NonPro Prediction for Two Independent Test Sets

test set predictor AUCROC AUCPR max MCC T Se Sp Pr Q2

I random 0.5000 0.0014 0.0000 0.500 0.5000 0.5000 0.0014 0.5000
single-state − − − − 0.0000 1.0000 0.0000 0.9987
ensemble 0.8754 0.0516 0.1417 0.634 0.0471 0.9999 0.3111 0.9986

II ensemble 0.8766 0.0470 0.0943 0.634 0.0142 1.0000 0.4615 0.9986

Figure 8. As in Figure 6 but for the cis-nonPro predictions.

Figure 9. As in Figure 7 but for the cis-nonPro predictions. The x axis
is in a log scale for clarity.
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■ DISCUSSION
We have developed a new method for an understudied
problem: predicting cis isomers from protein sequences. Our
large-scale statistics from over 10 000 proteins indicate that the
fraction of cis-nonPro isomers (0.14%) is 5 times larger than a
previous estimation. More importantly, more than 50% of
proteins with sequence lengths of 190 residues or longer have
cis isomers. We showed that by using an ensemble of high-
performing ResNets and ResLSTM networks we can achieve
MCCs of about 0.35 for predicting cis-Pro isomers and about
0.1 for cis-nonPro isomers. The performance is consistent
among 10-fold cross-validation and two independent test sets.
For cis-Pro isomers, our results, a sensitivity of 25% and a
precision of 57%, are substantially better than those of the only
available server, which gave a sensitivity of 12% and a precision
of 5%. No method for cis-nonPro isomers is available for
comparison.
One interesting observation is that the fraction of cis-nonPro

isomers is strongly correlated with the propensity for coil
residues, with a correlation coefficient of 0.78, consistent with
the fact that the majority of cis isomers (>96%) are located in
coil regions. It is a possibility that the less structured backbone
makes a possible cis conformation sterically more tolerable.
Our SPOT-Omega method provides reasonably accurate

prediction of cis-Pro isomers. According to the precision−recall
curve (Figure 7), we can achieve >80% precision at about 10%
coverage of all true cis-Pro isomers. In other words, the
confidence is very high if the predicted probability is greater
than 0.914. One can also have a high success rate of 30% at
about 50% coverage with a lower threshold. Thus, employing
the predicted cis-Pro probability to prioritize potential cis-
prolines for experimental studies would allow for a significant
reduction in cost for experimental validation.
Compared with cis-Pro isomers, it is significantly more

challenging to predict cis-nonPro isomers. The maximum
MCC value is about 0.14 for cis-nonPro isomers on TestI,
compared with 0.35 for cis-Pro isomers. Moreover, at 50%
confidence (precision), one can achieve only 1.4% coverage of
all true cis-nonPro isomers, compared with 31% for cis-Pro
isomers. This is largely because the number of positive
instances (only a few hundred per residue type) is too small to
allow the neural networks to learn the relation between the
sequence and cis conformations. Nevertheless, the robust
performance across different datasets indicates that it is
possible to develop a reliable predictive model even for an
extremely imbalanced data set (1.4:1000) without over- or
undersampling techniques commonly used in other machine
learning methods such as support vector machines.56,57 Such
data set balancing techniques often lead to poor performance
in real-world applications, as the real data are deeply
imbalanced. Nevertheless, the method could be further
improved in the future if more cis-nonPro cases are collected.

In summary, this work represents the first reliable neural
network model for predicting cis isomers, which are bio-
logically important. The method will be useful for assisting not
only function prediction but also protein structure prediction.
This is the case because a 180° change in one ω angle will lead
to a completely different orientation in the protein backbone
structure and significantly affect the overall fold of the entire
protein structure in protein folding simulations. Thus, the
coupling of ω angle prediction with the prediction of other
backbone torsion angles (ϕ and ψ) from a method such as
SPIDER3 should be directly useful in sampling rare but
important protein conformations. The method is available as a
server at http://sparks-lab.org.
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