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ABSTRACT: RNA three-dimensional structure prediction has been relied on using a predicted or experimentally determined
secondary structure as a restraint to reduce the conformational sampling space. However, the secondary-structure restraints are
limited to paired bases, and the conformational space of the ribose-phosphate backbone is still too large to be sampled efficiently.
Here, we employed the dilated convolutional neural network to predict backbone torsion and pseudotorsion angles using a single
RNA sequence as input. The method called SPOT-RNA-1D was trained on a high-resolution training data set and tested on three
independent, nonredundant, and high-resolution test sets. The proposed method yields substantially smaller mean absolute errors
than the baseline predictors based on random predictions and based on helix conformations according to actual angle distributions.
The mean absolute errors for three test sets range from 14°−44° for different angles, compared to 17°−62° by random prediction
and 14°−58° by helix prediction. The method also accurately recovers the overall patterns of single or pairwise angle distributions.
In general, torsion angles further away from the bases and associated with unpaired bases and paired bases involved in tertiary
interactions are more difficult to predict. Compared to the best models in RNA-puzzles experiments, SPOT-RNA-1D yielded more
accurate dihedral angles and, thus, are potentially useful as model quality indicators and restraints for RNA structure prediction as in
protein structure prediction.

■ INTRODUCTION

RNA structures are the key for understanding their versatile
functions. However, due to the low cost of high-throughput
sequencing and the high cost and difficulty of solving RNA
structures experimentally, computational prediction of RNA
structures becomes increasingly important. Because RNAs fold
hierarchically with their secondary structures (stacked base
pairs) formed first, secondary structures are often predicted to
use as the restraints for modeling tertiary structures. Many
computational methods have been developed over the past
three decades for RNA secondary structure prediction by
folding-based algorithms.1,2 Recent employment of deep
contextual learning leads to a leap in prediction accuracy not
only in canonical base pairs but also in the base pairs stabilized
by tertiary interactions, including pseudoknots and non-
canonical base pairs.3,4

Deep learning has also contributed to the recent advance in
protein structure prediction.5−7 This advance was attributed to

the use of the restraints from much-improved accuracy in
predicted contact maps8,9 and backbone structures.10−13 RNA
secondary structure prediction corresponds to contact map
prediction in proteins.3 Thus, an interesting question is
whether backbone structures can also be predicted with
reasonable accuracy. Unlike protein backbone structures
determined by two torsional angles, often with regular helical
and sheet patterns, RNA ribose-phosphate backbone structures
are characterized by six torsion angles without obvious regular
structural patterns. The six backbone torsion angles (see Figure
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1) are rotations about bonds Pi−O5i′ (α), O5i′−C5i′ (β),
C5i′−C4i′ (γ), C4i′−C3i′ (δ), C3i′−O3i′ (ϵ), and O3i′−Pi+1

(ζ). In addition to these angles, there is another angle chi (χ)
that describes the rotation of the base relative to the sugar
(C1i′−Base) as shown in Figure 1. The RNA backbone can
also be simplified by two pseudotorsion angles (η and θ) only
without losing much information,14 as shown by the dotted
lines in Figure 1. Angle eta (η) is rotation about pseudobond
Pi−C4i′, and angle theta (θ) is rotation about pseudobond
bond C4i′−Pi+1. All these angles vary from −180° and 180°.
In this work, we developed the first method to predict RNA

backbone torsion and pseudotorsion angles by using deep
contextual learning based on single-sequence information only,
inspired by previous work for the RNA secondary structure3

and solvent accessibility prediction.16−18 The method SPOT-
RNA-1D employed a dilated convolutional neural network
architecture, which can predict seven torsions and two
pseudotorsion angles. It achieves mean absolute error
(MAE) between 14° and 44° for nine angles that are
substantially lower than the random-baseline predictor (17°−
62°) and the helix-baseline predictor (14°−58°) according to
three independent test sets. Moreover, the predicted angles are
even more accurate than those angles provided by the best
RNA-puzzles models. Thus, these predicted angles will likely
be useful as new restraints for RNA structure prediction as well
as structure-quality assessment.

■ METHODOLOGY
Data Sets. The data sets used for SPOT-RNA-1D training,

validation, and testing were obtained from the protein data
bank (PDB).19 More specifically, we downloaded all the RNA
structures with X-ray resolution <3.5 Å from PDB on October
3, 2020. All the PDB structures were split into individual
chains using a program from Biopython.20 All these PDB chain
sequences were clustered using CD-HIT-EST21 with the
lowest allowed identity cutoff of 80%. RNA sequences without
any clusters were kept for a noncluster set, and the remaining
sequences were kept for the training set (TR).
As an 80% sequence identity cutoff may not be strict

enough, we further employ the BLAST-N22 tool on noncluster
sequences against the training set and within itself with an e-
value cutoff of 10. Any sequences in the training set having hits
with the noncluster sequences were removed. Furthermore,
any sequences having hits within themselves were also
removed.

The noncluster RNA sequences obtained after CD-HIT-
EST and BLAST-N processing were randomly divided into
one validation (VL) and two test sets (TS1 and TS2). To
make VL and TS2 nonredundant from the training set and
within itself even at the remote homologue level, we built the
covariance models for RNAs in VL and TS2. To build a
covariance model, each sequence from VL and TS2 was
searched against NCBI’s database23 for homologous sequences
using the BLAST-N tool with the e-value cutoff of 10 and the
maximum number of 50,000 aligned sequences. Next, the
covariance model was built using the cmbuild program in the
INFERNAL24 tool from the BLAST-N alignment along with a
consensus secondary structure derived from the PDB files.
These covariance models were searched against the training
data to find any remote homologues using the cmsearch
program in INFERNAL with an e-value cutoff of 0.1 for VL
and 10 for TS2 set. We employed 10 for TS2 to purposely
make this test set as hard as possible by removing all potential
remote homologues while using 0.1 for VL is to avoid removal
of too many training RNAs because any hits with the training
data were removed from the training set. The same procedures
were used to make VL and TS2 RNA sequences nonredundant
within themselves and from TS1.
The final training (TR), validation (VL), and two test sets

(TS1 and TS2) have 286, 30, 63, and 30 RNA chains,
respectively. The number of RNAs in each data set, median
and maximum sequence lengths, and the number of base pairs
in each data set are shown in Supplementary Table S1. The
DSSR25 program was used to calculate native torsion angles
and identify base pairs and secondary structures from 3D
structures.
While preparing the PDB data sets, we purposely kept the

maximum number of RNA chains in test sets (TS1 and TS2)
that belong to the RNA-Puzzles benchmarking test set.26−29

The RNA-Puzzles data set is widely used for benchmarking
RNA tertiary structure prediction tools. There were 12 RNA-
Puzzles chains in TS1 and TS2 that were nonredundant from
the training (TR) and validation (VL) sets. We used these 12
RNAs as a separate test set (named RNA-Puzzles) for
benchmarking SPOT-RNA-1D.
In addition to the above three test sets (TS1, TS2, and

RNA-Puzzles), we prepared another test set (TS3) by
downloading all the NMR structures (707 RNAs) from the
PDB on April 5, 2021. After removing redundancy within TS3
and from all other RNA structures (TR, VL, TS1, and TS2)
using the exact same specifications as TS1, we obtained 54
nonredundant RNA chains in TS3. The native angles for TS3
were obtained from their 3D Model-1 structures using the
DSSR program. The length and base pair information for TS3
is shown in Supplementary Table S1.
Besides the comparison to native angles, we also compare

predicted angles with the angles of the models predicted for
RNA-puzzles. We downloaded 3D structural files of the best
five (based on RMSD) RNA 3D structure predictors from the
RNA-Puzzles repository (https://github.com/mmagnus/RNA-
Puzzles-Standardized-Submissions, Release-1.2). Among 12
RNAs, the structural files for four RNAs were missing, and
there was a chain mismatch in two RNAs. Thus, we obtained
complete structural files for only six RNAs (out of 12). There
were up to ten predicted structural models for each puzzle per
predictor, and we considered only the most accurate model
based on the RMSD (w.r.t. native structure) for each predictor
to compare with SPOT-RNA-1D.

Figure 1. RNA backbone torsion and pseudotorsion angles. Diagram
adapted with permission from Frellsen et al.15 Copyright 2009 The
Authors under Creative Commons Attribution 4.0 International
License (https://creativecommons.org/licenses/by/4.0/).
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We also downloaded the RNAPOT30 data set of 85 RNA
structures from http://melolab.org/supmat/RNApot/Sup._
Data.html. In addition to native structures, each RNA has
500 non-native structures (decoys) built by MODELLER31

with a set of Gaussian restraints for dihedral angles and atom
distances. From 85 RNAs, there were only ten nonredundant
RNAs from our training data with the exact same specification
as TS1 and TS3. These ten RNAs were also a subset of TS1
and TS3. We used these ten RNAs to examine the relation
between the errors of predicted angles and the model accuracy
according to the root-mean-square deviation (RMSD) and
global distance test (GDT)-score compared to the native
structure.
Dilated Convolutional Neural Network. The neural

network architecture of SPOT-RNA-1D (shown in Figure 2)
was inspired by our previous work of RNA solvent accessibility
predictor RNAsnap2.16 Similar to RNAsnap2, we employed a
residual dilated convolutional neural network,32,33 which is
better at learning long-range interactions between nucleotides
as compared to standard ResNets32 and LSTMs34 neural
networks.
The SPOT-RNA-1D neural network architecture (shown in

Figure 2) consists of an initial 1D (one-dimensional)
convolutional layer (Conv1D) with 1024 filters and a kernel
size of 15. After the initial convolutional layer, we employed a
dilated residual neural network (ResNet), which consists of
two 1D convolutional layers (Conv1D) with 1024 filters and a
kernel size of 15. Dilation rates/factors (DF) of two and four
were utilized in the first and second layers of the ResNet block,
respectively. The fully connected (FC) layer was used for
output with 18 nodes.
The input to each layer (except for the initial convolutional

layer) was activated with an exponential linear unit (Elu)35

activation function and normalized using the batch instance
normalization (BIN) technique.36 To avoid overfitting of
model parameters on the training data, a dropout rate (d) of
40% was used before each layer except for the initial
convolutional layer during training. The order of operations
was normalization (BIN), activation (Elu), and, finally, dropout
(d) before each layer.

SPOT-RNA-1D was implemented in Google’s deep learning
framework TensorFlow Version 1.15.37 The model parameters
(shown in Figure 2) were learned using the RMSProp38 back-
propagation algorithm with a learning rate of 0.001 and the
Mean Squared Error (MSE) as a loss function. The model was
trained using a minibatch size of 8 for 25 epochs. Due to the
variable-length sequences, minibatches were padded with
zeroes up to the length of the longest sequence in the
minibatch. To minimize the effect of padding, we mask the
padded zeroes from the output of every layer of the neural
network architecture during the training. The model hyper-
parameters such as the kernel size (k), the number of filters,
the activation function, the normalization technique, the
dropout rate (d), the dilation factor (DF), the number of
convolutional layers (Conv1D), the choice of the back-
propagation algorithm, and the learning rate were optimized
based on the model’s performance on the validation set (VL).

Input. The input to the SPOT-RNA-1D is an RNA
sequence represented by a binary one-hot vector of size L×4 as
shown in Figure 2, where L is the length of the RNA sequence,
and four corresponds to the number of base types (A, U, G,
and C). In one-hot encoding, a value of 1 was assigned to the
corresponding base-type position in the vector and 0
elsewhere. One-hot encoded input features were standardized
to have a zero mean and unit variance according to the training
data before inputting to the neural network model.

Output. The SPOT-RNA-1D model attempts to predict
nine backbone angles. Because these angles vary from −180°
to 180°, we predicted the sine and cosine of the angles instead
of predicting angles directly to remove the effect of angle
periodicity. Thus, the output FC layer shown in Figure 2 has
18 nodes, i.e., two nodes per angle. The predicted sine and
cosine values from the model were converted back to angles by

using ( )angle tan angle
angle

1 sin( )
cos( )

= − . Such transformation is com-

monly used for protein torsion angle prediction using a deep
neural network.10,11,39

Performance Evaluation. For the performance evalua-
tion, we used the mean absolute error (MAE), which is the
average absolute difference between predicted and exper-
imentally determined angles in degrees. The periodicity of the

Figure 2. Network architecture of SPOT-RNA-1D. k, d, DF, and BIN are the size of the filter, dropout rate, dilation factor, and batch instance
normalization, respectively, and L is the length of the input RNA. Scalar 4 and 1024 represent the number of features per nucleotide and the
number of filters in each convolutional layer, respectively.
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angles was taken into consideration by utilizing the smaller
value of the absolute difference di = |anglei

Pred − anglei
Actual| and

360 − di for average. To obtain the statistical significance (P-
value) of improvement made by SPOT-RNA-1D, we
performed a one-tailed paired t-test. The smaller the P-value
is, the more significant improvement by SPOT-RNA-1D over
the baseline predictor. Here, the baseline predictor is a random
prediction according to the native distribution of specific

angles generated from training (TR) RNA structures. Each
angle was randomly predicted 100 times, and the average mean
absolute error of 100 predictions was reported. We also
introduced a baseline predictor based on A-form helical
conformations by random predictions derived from the
distribution of angles in the helical regions of the training
data only.

Table 1. Performance Comparison in Terms of Mean Absolute Errors (MAEs) on VL (30 RNAs), TS1 (63 RNAs), TS2 (30
RNAs), TS3 (54 RNAs), and RNA-Puzzles (12 RNAs) Sets by SPOT-RNA-1D and a Random-Baseline Predictora

standard backbone torsion angles virtual torsion angles

alpha (α) beta (β) gamma (γ) delta (δ) epsilon (ϵ) zeta (ζ) chi (χ) eta (η) theta (θ)

SPOT-RNA-1D
VL 45.18 20.58 33.88 17.99 20.72 37.50 23.01 33.55 37.02
TS1 43.94 21.94 32.98 14.61 20.69 33.27 19.59 30.25 32.91
TS2 39.50 18.92 29.47 16.01 17.46 28.91 18.20 28.14 30.25
TS3 37.89 21.04 34.68 13.83 22.32 27.87 17.01 25.31 27.22
RNA-Puzzles 39.29 19.71 30.08 16.60 18.73 33.76 19.99 31.58 36.09

Random-Baseline Predictor
VL 61.59 30.17 48.68 19.32 27.45 46.75 28.83 39.92 44.92
TS1 62.15 31.25 48.79 16.66 28.44 44.21 26.27 39.34 42.63
TS2 60.42 30.06 46.79 17.80 27.17 43.86 26.17 38.20 42.69
TS3 60.17 32.03 50.57 17.80 28.94 43.32 25.56 35.47 40.86
RNA-Puzzles 59.63 29.12 46.45 16.96 25.72 43.63 25.72 38.73 43.29

aAn average of over 100 random predictions.

Figure 3. Distribution of mean absolute errors (MAEs) for individual RNA chains on test sets (a) TS1, (b) TS2, and (c) TS3 by a random-baseline
predictor (in blue) and by SPOT-RNA-1D (in red). On each box, the central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The outliers are plotted individually by using the “+” symbol.
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■ RESULTS
The SPOT-RNA-1D model (shown in Figure 2) was trained
using the training set TR, validated using the validation set VL,
and tested on three independent test sets TS1, TS2, and TS3.
Table 1 and Figure 3 show the performance comparison
between SPOT-RNA-1D and the random-baseline on
validation (VL) and three test sets (TS1, TS2, and TS3)
along with a separate list of RNAs in RNA-puzzles on seven
standard torsion angles (α, β, γ, δ, ϵ, ζ, and χ) and two
pseudo/virtual torsion angles (η and θ). Both baseline and
SPOT-RNA-1D predictors indicate a small error for delta (δ),
epsilon (ϵ), beta (β), and chi (χ), followed by gamma (γ) and
zeta (ζ), with alpha (α) being the most difficult angle to
predict. The same trend indicates that the distribution of an
angle largely controls its level of difficulty in prediction. We
also observed that torsion angles closer to the base (χ, ϵ) are
easier to predict than those away from the base (α, γ, ζ).
Exceptions are angles beta (β) and delta (δ). They were easier
to predict due to their narrower distributions not completely
spanned from −180° to 180° (as shown in Supplementary
Figure S1). Nevertheless, SPOT-RNA-1D leads to more than a
20% improvement over random prediction except for delta (δ),
where about a 10% improvement was observed. For virtual
torsion angles (η and θ), an MAE of around 30° by SPOT-
RNA-1D was obtained for both test sets (TS1 and TS2), which
is also more than a 20% reduction from the random prediction.
Virtual torsion angles are relatively more difficult to predict
than the standard torsion angles because of the distributions.
For the neural network architecture (in Figure 2), wide and
evenly distributed angles (α, γ, ζ, η, and θ) are more difficult to
predict than uneven and narrowly distributed angles (β, δ, ϵ,
and χ) as shown in Table 1 and Supplementary Figure S1.
Similar performance trends were observed for the TS3 (NMR
structures) and RNA-Puzzles test sets, indicating the model’s

robustness for different types of test sets. These performance
improvements are statistically significant according to the P-
values obtained through a paired t-test for respective angles, as
shown in Supplementary Table S2.
One interesting observation from Table 1 is that there is a

systematic trend that MAE values for all angles are the largest
for VL and the smallest for TS3 (except β, γ, and ϵ) with the
second-lowest (or the lowest for β, γ, and ϵ) for TS2. This
trend is less obvious for the random prediction. This
observation is somewhat counterintuitive because VL was
optimized for performance, and both VL and TS2 do not have
any remote homologues in the training set. By comparison, we
only exclude close homologues in TS1 and TS3 from the
training set to maintain a reasonable number of RNAs. If there
were overfitting, we would expect that the MAEs for VL were
the smallest and followed by TS1/TS3 and TS2. The fact that
the opposite is true suggests the robustness of the method
trained. An inspection of each data set shows that the VL set
has the most tertiary interactions (23.7% noncanonical base
pairs and 30.4% multiplets), followed by TS1 (22.7%
noncanonical base pairs and 26.4% multiplets), TS2 (20.2%
noncanonical base pairs and 25.4% multiplets), and TS3
(17.0% noncanonical base pairs and 21.3% multiplets) as
shown in Supplementary Table S1. In other words, it seems
that fewer tertiary interactions make angles easier to predict.
To confirm this, we compare the performance of prediction

in TS1, TS2, and TS3 according to the nucleotides associated
with tertiary interactions (lone pairs, pseudoknots, multiplets,
and noncanonical pairs) and those are not (canonical nested
base pairs and nucleotides not paired). As shown in Table 2,
the angles for the nucleotides involved in the tertiary
interaction are indeed more difficult to predict than the
nucleotides in canonical nested interactions. Therefore, more
tertiary interaction in an RNA increases the difficulty of

Figure 4. Mean absolute errors (MAEs) as a function of RNA sequence length for nine angles on combined 147 RNAs from three test sets (TS1,
TS2, and TS3).
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backbone angle prediction. Of course, the angles associated
with unpaired bases are the most difficult to predict because of
higher flexibility. All three data sets have a similar level of
unpaired bases (20.92%, 20.92%, 20.54% for VL, TS1, and
TS2, respectively). TS2 also has slightly more pseudoknots
(6.6%) than TS1 (5.8%). This difference is compensated by
the lower factions of noncanonical base pairs and multiplets in
TS2. A similar trend is overserved for TS3 except for the
pseudoknot region. This is perhaps because the test set TS3
had a significantly different distribution of nucleotides in
structural regions as compared to VL, TS1, and TS2 sets. TS3
structures are derived from distance restraints obtained by the
NMR technique, whereas the other data sets’ structures are
from X-ray crystallography.
Table 2 also demonstrates MAEs of the random-baseline

predictor for different interactions. As shown by the numbers
specified inside the parentheses of Table 2, a similar difficulty
is observed for the baseline predictors with the maximum for
the unpaired nucleotides and minimum for the nucleotides in
canonical nested pairs. Overall, SPOT-RNA-1D has consis-
tently outperformed the random-baseline predictor for differ-
ent pairing interactions and unpaired nucleotides.
Because the maximum sequence length (64) of RNA in the

validation set (VL) is significantly less than those in the
training (418) and test sets (186), it is of interest to know if
this difference would lead to poorer performance for long
RNAs. Figure 4 plotted the performance of SPOT-RNA-1D for
nine angles as a function of sequence length. Some angles have
the largest MAE at RNA lengths between 120 and 150. Others
have essentially the same MAE across all lengths. Thus,
different lengths of RNA between the validation set and the
test sets do not lead to a systematic bias.
The distribution of native and predicted angles from SPOT-

RNA-1D on combined test sets TS1 and TS2 is shown in
Figure 5. The predicted angles (in red) follow the distribution
of native angles (in blue). For instance, the distribution of
native α angle peaks at around −70°, and predicted angles

distribution also peaks around the same point. Similarly, the
distribution of other predicted angles is also in good agreement
with native angles. In addition to a one-dimensional (1D)
distribution plot, Supplementary Figures S2 and S3 show two-
dimensional (2D) Ramachandran-like plots of two standard
torsion angles (α and β) and pseudotorsion angles (η and θ).
In both plots, SPOT-RNA-1D was able to detect angles in
different regions of native distributions.
Although SPOT-RNA-1D can detect angles in most of the

regions of their native distributions, there were still a few
regions in angles beta (β), gamma (γ), epsilon (ϵ), and chi (χ)
that are not in their respective predicted distributions as shown
in Figure 5. There may be a possibility that these predicted
angles are more like those in an A-form helix region only. As
most RNA helices are of the A-form, we compared the
performance of SPOT-RNA-1D with random predictions
derived from the distribution of angles in the helix regions of
training data only (the helix-baseline predictor). As shown in
Supplementary Table S3, SPOT-RNA-1D consistently out-
performed the helix-baseline predictor except for angle delta
(δ). In this case, the helix-baseline predictor is slightly more
accurate. This may be because the delta angle distribution is
narrow and most accurately predicted and helical and
nonhelical regions have indistinguishable angles.
To understand the relationship between MAE of torsion

angles, we plotted a correlation matrix of torsion angles shown
in Figure 6 on combined test sets TS1 and TS2. In general,
MAEs of torsion angles are highly correlated with 1−2
neighboring angles and less correlated with those angles further
away. Interestingly, the MAEs of angle chi (χ) strongly
correlate (CC > 0.67) with essentially all angles except the one
furthest away (angle α), and the MAEs of angle beta (β)
strongly correlate (CC > 0.66) with essentially all angles except
the angle delta (δ), whereas the angle delta (δ) does not show
much correlation with other torsion angles except for the angle
chi (χ), likely due to the delta angle being restricted due to the
ribose ring structure. The correlation network shown in Figure

Figure 5. Distribution plots of native (in blue) and predicted (in red) torsion angles on combined test sets TS1 and TS2.
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6 is consistent with the expectation that the base pairing is the
dominant determinant of backbone angles. It is of interest to
note that the errors for pseudotorsion angles (η and θ)
correlate not only with each other but also strongly with zeta
(ζ).
To further assess the performance of SPOT- RNA-1D, we

obtained the same angles derived from the best models from
the best five predictors of 6 RNA-Puzzles that are non-
redundant from our training data. As shown in Supplementary
Table S4, SPOT-RNA-1D consistently produces the most
accurate alpha, beta, gamma, and epsilon angles in most cases
and comparable results for other angles.
The fact that most predicted angles are more accurate than

the angles from best-predicted models suggests the possibility
of using the difference between predicted angles and model
angles as a quality assessment score. To demonstrate this
possibility, we obtained the RNAPOT data set, which contains
a nearly continuous distribution of decoy models with different
levels of accuracy. Figure 7a,b plots the mean absolute errors
between SPOT-RNA-1D angles and the angles from decoy
model structures as a function of structural accuracy
represented by RMSD and GDT-score, respectively, for PDB
ID 2zni (Chain C). The MEA is consistently increasing with

RMSD and decreasing with GDT-score. Similar trends were
observed for the remaining nine RNAs of the RNAPOT data
set, as shown in Supplementary Figures S4 and S5. This
indicates that the deviation from SPOT-RNA-1D predicted
angles could be used for model quality assessment.
One interesting question is that at what MAE level a

predicted angle will be useful enough to judge the model
quality. Figure 8 shows the MAE between the native angles and
angles from the RNAPOT models for an rRNA (PDB ID:
1i6u, Chain C) as a function of RMSD. The remaining nine
RNAs are shown in Supplementary Figures S6−S14. Except for
one RNA (tRNA in PDB ID 2dr2), all results indicate smaller
angle errors are closer to native structures. For the exception
(tRNA in PDB ID 2dr2), RMSD at 4.32 Å for near-perfect
angles is caused by a large error introduced by the last five
nucleotides at the terminal (see Supplementary Figure S15).
The average MAE for these five nucleotides was 52.47
compared to 13.34 for all nucleotides in this RNA. The
majority region of the structure is nearly perfect, as shown in
Supplementary Figure S15. The results indicate that all angles
are useful for indicating near-native models (5 Å RMSD or
less) if its error is <60° for alpha (α), gamma (γ), delta (δ),
and zeta (ζ), <40° for beta (β) and epsilon (ϵ), and <20° for

Figure 6. Correlation coefficients (CCs) of mean absolute errors (MAEs) between torsion angles on combined test sets TS1 and TS2.
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chi (χ), eta (η), and theta (θ). The average MAEs for all angles
except pseudotorsion angles are much less than the above

thresholds, confirming the usefulness of using the predicted
angles for assessing model quality.

Figure 7. (a) MAE vs RMSD scatterplot of RNA 2zni (Chain C), where MAE is evaluated from SPOT-RNA-1D angles and the angles derived
from a 3D model structure for different values of RMSD from the native 3D structure. (b) MAE vs GDT-score scatterplot of RNA 2zni (Chain C),
where MAE is evaluated from SPOT-RNA-1D angles and the angles derived from a 3D model structure for different values of GDT-score from the
native 3D structure.

Figure 8.Mean absolute error (MAE) between the native angles and the angle from the RNAPOT models for RNA with PDB ID: 1i6u, Chain C as
a function of RMSD.
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■ DISCUSSION

In this work, we have developed SPOT-RNA-1D to make
backbone angle prediction for RNAs. The single-sequence-
based method provides a substantial improvement of over 20%
for most angles compared to random predictions. The accuracy
of predicted angles strongly depends on whether bases are
paired or unpaired and paired bases associated with tertiary
interactions or not. The backbone angles of unpaired bases are
the most difficult to predict, followed by those bases associated
with tertiary interactions. This is likely because the most stable
canonical base pairs provide the strongest restriction to
backbone angles (thus easier to predict).
This dilated convolutional neural network-based architecture

can predict RNA torsion angles with reasonable accuracy
because of its ability to use a wide receptive field for the
predictions. The receptive field is the total number of the
surrounding nucleotides’ features used by the neural network
to predict a given nucleotide’s angles. The receptive field for
the SPOT-RNA-1D architecture (in Figure 2) was 127, which
means the model considered features of 63 nucleotides from
either side of a given nucleotide for the prediction. This wide
receptive field allows the SPOT-RNA-1D network to efficiently
learn both sequence-neighboring and nonlocal interactions.
Furthermore, to avoid the model overfitting on the small
training data, we did not use the architecture with a very deep
neural network. The SPOT-RNA-1D network architecture
consists of only three convolutional layers because we found
that additional layers would lead to model overfitting. We also
trained SPOT-RNA-1D for 25 epochs only to avoid overfitting.
Careful training is what makes a SPOT-RNA-1D a general-
izable model.
To improve the performance of SPOT-RNA-1D, we also

examined the use of predicted secondary structure base pair
probability from the single-sequence-based method LinearPar-
tition40 as an input feature. The use of predicted base pair
probability from LinearPartition40 improved the performance
of RNA solvent accessibility prediction in our previous work
RNAsnap2.16 The predicted base pair probability from
LinearPartition was a 2D feature of size L×L, where L is the
length of the sequence. We converted this 2D base pair
probability to 1D features of size L×1 by taking summation
across one dimension. These 1D features (L×1) were
concatenated with one-hot encoding (L×4) to yield an input
feature vector of size L×5 for SPOT-RNA-1D. Supplementary
Table S5 shows the performance comparison between one-hot
encoding and one-hot encoding with the LinearPartition base
pair probability as an additional input feature. While the
addition of base pair probability decrease MAEs significantly
for all nine torsion angles (Supplementary Table S5), the
distributions of predicted angles (Supplementary Figure S16)
are very narrow, dominated by the most populated angles. This
indicates that adding predicted secondary structures will overfit
the method. Thus, we have limited SPOT-RNA-1D input
features to one-hot encoding only in the final version of the
tool.
We also attempted to improve delta (δ) angle prediction

because it has the smallest improvement (∼2°) over the
random-baseline prediction. As we noticed that the delta (δ)
could be approximated between 0° and 180° according to its
distribution (Figure 5), we applied the restriction to delta-
angle training and testing. We found that this restriction only
leads to a minor improvement in delta prediction (∼2%).

However, it also leads to a slight reduction in the performance
for other angles. Thus, we decided not to restrict the range in
predicting the delta (δ) angle.
The SPOT-RNA-1D predictor has a few limitations. First,

the mean absolute error (MAE) of SPOT-RNA-1D is relatively
high (>30) for the angles alpha (α), eta (η), and theta (θ) for
the majority of the test sets (see Table 1). This is because
these three angles are more evenly distributed from −180° to
+180° compared to other angles (see Figure 5). Thus, there is
a need to explore some other neural network architectures,
such as the Attention41 mechanism that has shown the
potential to learn from a wide-range distribution space in
proteins’ structural properties.11,42,43 Also, SPOT-RNA-1D
does not perform well for RNAs with more tertiary interactions
and unpaired nucleotides. This problem is intrinsically related
to the challenge for predicting 3D structures from sequences
and the flexible nature of the loop regions. Bigger data sets and
better-designed network architectures may be required for
further improving the performance.
A substantial improvement over random prediction by

SPOT-RNA-1D and its comparison to existing models
predicted for RNA-puzzles indicate that RNA backbone
torsion angles are predictable, despite the fact that there are
so many more RNA backbone angles than two angles [phi (ϕ)
and psi (ψ)] in protein backbones although the MAEs for phi
and psi by SPOT-1D10 are at 17° and 25°, respectively. The
MAEs for RNA backbone angles are not far behind except
alpha (∼40°). However, SPOT-1D has relied on evolutionary
information from multiple sequence alignment. If only single-
sequence is employed for angle prediction, the MAEs for ϕ and
ψ are 24° and 44°, respectively.44 Thus, the overall accuracy is
comparable if only a single sequence is used as input. This
result highlights the importance of using evolution information
for improving angle prediction as we have demonstrated their
importance in solvent accessibility prediction in RNAsnaps16,18

and in secondary structure prediction in SPOT-RNA2.4,45 The
work for using evolution information for RNA backbone angle
prediction is in progress.
It should be noted that directly using predicted angles to

build a 3D model will not yield an accurate structure because
small deviations in angles would lead to systematic errors in
3D. The purpose of predicting torsion angles in RNA is the
same as in proteins: to make predicted angles accurate enough
as a starting point for further future improvement and as useful
restraints for ab initio structure prediction methods along with
predicted base pairs. This is feasible based on the result that
predicted angles can serve as useful indicators of model quality.
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