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The inaccurate estimates of the speech and noise linear prediction coefficients (LPCs) introduce bias in
augmented Kalman filter (AKF) gain, which impacts the quality and intelligibility of enhanced speech.
Although current tuning methods offset the bias in AKF gain, particularly in colored noise conditions, they
do not adequately address nonstationary noise conditions. This paper introduces a new tuning algorithm
of the AKF gain for speech enhancement in real-life noise conditions. Due to this purpose, a speech pres-
ence probability (SPP) method first estimates the noise power spectral density (PSD) from each noisy
speech frame to compute the noise LPC parameters. A whitening filter is constructed with the noise
LPCs to pre-whiten each noisy speech frame prior to computing the speech LPC parameters. The AKF is
then constructed with the estimated speech and noise LPC parameters. To achieve better noise reduction,
the robustness metric is employed to dynamically offset the bias in AKF gain during speech absence of the
noisy speech to that of the sensitivity metric during speech presence. The speech activity is obtained
through adopting the speech and noise production model parameters. It is shown that the reduced-
biased AKF gain achieved by the proposed tuning algorithm addresses speech enhancement in real-life
noise conditions. Objective and subjective scores on the NOIZEUS corpus demonstrate that the proposed
method produces enhanced speech with higher quality and intelligibility than the competing methods in
real-life noise conditions for a wide range of signal-to-noise ratio (SNR) levels.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The main objective of a speech enhancement algorithm (SEA) is
to improve the quality and intelligibility of degraded speech. It can
be achieved through eliminating the embedded noise from the
degraded speech. SEA is useful in many applications, where the
noise corrupted speech is unreliable. For example, mobile commu-
nication systems, hearing aid devices, and speech recognition sys-
tems typically rely upon the accuracy of speech enhancement for
robustness. Various SEAs, such as spectral subtraction (SS) [1–4],
the Wiener Filter (WF) [5–7], minimummean square error (MMSE)
[8–10], the Kalman filter (KF) [11], augmented KF (AKF) [12], com-
putational auditory scene analysis (CASA) [13], and deep neural
network (DNN) [14] have been introduced over the decades. This
paper focuses on AKF-based single-channel speech enhancement
in real-life noise conditions.

KF was first used for speech enhancement by Paliwal and Basu
[11]. In KF, each clean speech frame is represented by an auto-
regressive (AR) model, whose parameters comprise the linear pre-
diction coefficients (LPCs) and prediction error variance. The LPC
parameters and additive noise variances are used to construct
the KF recursive equations. Given a frame of noisy speech samples,
the KF gives a linear MMSE estimate of the clean speech samples
using the recursive equations. Therefore, the KF performance for
speech enhancement largely depends upon the accuracy of LPCs,
prediction error variance, and additive noise variance estimation
in practice.

The KF methods in [11] usually proposed for speech enhance-
ment in stationary noise conditions. However, in practice, most
of the additive noise is non-stationary in nature— containing
time-varying amplitudes. To perform speech enhancement other
than stationary noise condition, such as colored noise conditions,
in [12], Gibson et al. introduced an augmented KF (AKF). In AKF,
both the clean speech and additive noise are represented by two
AR models. Unlike KF [11], the clean speech and noise LPC param-
eters are incorporated in an augmented matrix form to construct
the recursive equations of AKF. Due to incorporating the dynamic
model of additive noise in the recursive equations, it is more
appropriate to apply AKF for speech enhancement in real-life noise
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conditions. For example, in [12], the AKF processes the colored
noise corrupted speech iteratively (usually three-four iterations)
to eliminate the embedded noise, yielding the enhanced speech.
During this, the LPC parameters for the current frame are com-
puted from the corresponding filtered speech frame of the previous
iteration by AKF. Although the AKF demonstrates an improvement
in signal-to-noise ratio (SNR) of the noisy speech, however, it suf-
fers from musical noise and speech distortion. Therefore, the AKF
method in [12] does not adequately address the inaccurate speech
and noise LPC parameter estimation issue in practice.

In [15], Roy et al. proposed a sub-band (SB) iterative KF (SBIT-
KF)-based SEA. In this SEA, the noisy speech is first decomposed
into 16 sub-bands (SBs). Then a partial reconstruction of noisy
speech is made with the high-frequency SBs (HFSBs). An iterative
KF (two iterations) is employed to the partially reconstructed noisy
speech, yielding a partial enhanced speech. As in [12], the speech
LPC parameters for the current frame are computed from the cor-
responding filtered speech frame of the previous iteration by KF.
Also, the noise variance is estimated using a derivative-based
high-pass filter from each frame of the partially reconstructed noisy
speech. Conversely, the low-frequency SBs (LFSBs) keep unpro-
cessed with the assumption that the impact of noise on LFSBs is
negligible. The partial enhanced speech is then added with the
LFSBs to reconstruct the final enhanced speech. However, the LFSBs
can also be affected by noise typically when operating in condi-
tions that have time-varying amplitudes. As demonstrated in
[12], the iterative processing of the partially reconstructed noisy
speech using KF [15] also produced distorted speech.

In [16], Saha et al. proposed a robustness metric and a sensitiv-
ity metric for tuning the bias in KF gain for instrument engineering
applications. Later on, So et al. employed the tuning of KF gain in
speech enhancement context [17]. Specifically, it is shown in [17]
that the enhanced speech (for each sample within a noisy speech
frame) is given by recursively averaging the observed noisy speech
and the predicted speech weighted by a scalar KF gain. However,
the inaccurate estimates of the LPC parameters introduce bias in
KF gain, results in leaking a significant residual noise in the
enhanced speech. In [17], a robustness metric is used to offset the
bias in KF gain for speech enhancement. In [18], So et al. further
showed that the robustness metric strongly suppresses the KF gain
in speech regions, resulting in distorted speech. To cope with this
problem, in [18], a sensitivity metric was used to offset the bias
in KF gain. It was shown that the sensitivity tuning of the KF gain
produced less distorted speech than that of [17]. However, both of
the KF methods [17,18] address speech enhancement, particularly
in stationary white noise condition. In [19], George et al. intro-
duced a robustness metric-based tuning of the AKF (AKF-RMBT)
for speech enhancement in colored noise conditions. Firstly, the
noise LPC parameters are computed from the first noisy speech
frame by assuming that there remains no speech. The computed
noise LPC parameters remain constant during processing all noisy
speech frames for a given noisy speech utterance. A whitening fil-
ter is also constructed with the noise LPCs to pre-whiten each
noisy speech frame prior to computing the speech LPC parameters.
Then construct the AKF with the estimated LPC parameters. As like
[17], it is shown that the robustness metric-based tuning method
offsets the bias in AKF gain for silent frames to some extent; how-
ever, it over-suppresses the components in speech regions, result-
ing in distorted speech. In addition, the speech and noise LPC
parameters estimation process as well as the tuning method in
[19] do not account for conditions that have time-varying ampli-
tudes. In [20], Roy and Paliwal proposed an extension of the work
[19] by employing a sensitivity metric-based tuning of the AKF
(AKF-SMBT). In this SEA, the speech and noise LPC parameters
are computed with a similar process as in [19]. It is demonstrated
2

that the application of sensitivity metric in the proposed tuning
method [20] minimizes the underestimation issue of AKF gain, par-
ticularly in speech regions [19]. It is also shown that the reduced-
biased AKF gain in [20] minimizes the amount of residual noise as
well as distortion in the enhanced speech as compared to [19].
However, this SEA [20] also does not account for conditions that
have time-varying amplitudes.

Motivated by the shortcomings of previously proposed KF and
AKF methods [17–20], in this paper, we introduce a new tuning
algorithm to dynamically offset the bias in AKF gain— which
addresses speech enhancement in conditions that have time-
varying amplitudes. For this purpose, we first estimate the noise
power spectral density (PSD) from each noisy speech frame using
a speech presence probability (SPP) method to compute the noise
LPC parameters. A whitening filter is also constructed with the
noise LPCs to pre-whiten each noisy speech frame prior to comput-
ing the clean speech LPC parameters. The AKF is then constructed
with the estimated clean speech and noise LPC parameters, where
a robustness metric is employed to dynamically offset the bias in
AKF gain when there is speech absent of the noisy speech to that
of the sensitivity metric during speech presence to achieve better
noise reduction. The proposed method aims to mitigate the weak-
nesses of previously proposed tuning methods by providing a
reduced-biased AKF gain— even for noise conditions that have
time-varying amplitudes. The motivation of this is to produce
enhanced speech at a higher quality and intelligibility in real-life
noise conditions.

The structure of this paper is as follows: background knowledge
is presented in Section 2, including the signal model, AKF for
speech enhancement, paradigm shift of the AKF recursive equa-
tions, and the impact of biased AKF gain on speech enhancement
in colored as well as non-stationary noise conditions. Following
this, Section 3 describes the proposed SEA, which includes speech
and noise LPC parameter estimation and proposed AKF gain tuning
method. Section 4 describes the experimental setup in terms of
speech corpus, objective and subjective evaluation measures, and
specifications of the competing SEAs. The experimental results
are then presented in Section 5. Finally, Section 6 gives some con-
cluding remarks.

2. Background

2.1. Signal model

The noisy speech y(n), at discrete-time sample n, is assumed to
be given by:

yðnÞ ¼ sðnÞ þ vðnÞ; ð1Þ

where s(n) is the clean speech and v(n) is uncorrelated additive
noise. Since the AKF operates on a frame-by-frame basis for speech
enhancement, firstly, a 20 ms rectangular window with 0% overlap
is used to convert y(n) into frames [19], denoted by y(n,l):

yðn; lÞ ¼ sðn; lÞ þ vðn; lÞ; ð2Þ
where lǫ{0,1,2,. . .,L � 1} is the frame index, L is the total number of
frames in an utterance, and N is the total number of samples within
each frame, i.e., nǫ{0,1,. . ., N � 1}.

2.2. AKF for speech enhancement

For simplicity, the frame index is omitted in the AKF recursive
equations. Each frame of the clean speech and noise signal in (2)
can be represented with pth and qth order AR models, as in [21],
Chapter 8:
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sðnÞ ¼ �
Xp

i¼1

aisðn� iÞ þwðnÞ; ð3Þ

vðnÞ ¼ �
Xq

k¼1

bjvðn� jÞ þ uðnÞ; ð4Þ

where {ai;i = 1,2,. . .,p} and {bj;j = 1,2,. . .,q} are the LPCs. w(n) and u
(n) are assumed to be white noise with zero mean and variances
rw

2 and ru
2, respectively.

The state-vector s(n) corresponding to clean speech samples s
(n) is represented as:

sðnÞ ¼

sðnÞ
sðn� 1Þ
sðn� 2Þ

..

.

sðn� pþ 1Þ

2
66666664

3
77777775
: ð5Þ

The state transition matrix Us of s(n) is given by:

Us ¼

�a1 �a2 . . . �ap�1 �ap
1 0 . . . 0 0
0 1 . . . 0 0
..
. ..

. . .
. ..

. ..
.

0 0 . . . 1 0

2
6666664

3
7777775
: ð6Þ

Equations (5)-(6) are used to form the state-space model (SSM)
of clean speech as:

sðnÞ ¼ Ussðn� 1Þ þ dswðnÞ;whereds ¼ 1 0 . . . 0½ �>: ð7Þ

where ds ¼ 1 0 . . .0½ �?.
The additive noise state-vector v(n) and the corresponding state

transition matrix Uv are given by:

vðnÞ ¼

vðnÞ
vðn� 1Þ
vðn� 2Þ

..

.

vðn� qþ 1Þ

2
66666664

3
77777775
; ð8Þ

Uv ¼

�b1 �b2 . . . �bq�1 �bq

1 0 . . . 0 0
0 1 . . . 0 0
..
. ..

. . .
. ..

. ..
.

0 0 . . . 1 0

2
6666664

3
7777775
: ð9Þ

Equations (8)-(9) are used to form the SSM of additive noise as:

vðnÞ ¼ Uvvðn� 1Þ þ dvuðnÞ; ð10Þ

where dv ¼ 1 0 . . .0½ �?.
The SSMs of the speech and additive noise can be combined into

augmented matrix form as:

sðnÞ
vðnÞ

� �
¼ Us 0

0 Uv

� �
sðn� 1Þ
vðn� 1Þ

� �
þ ds 0

0 dv

� �
wðnÞ
uðnÞ

� �
: ð11Þ

By replacing X nð Þ sðnÞ
vðnÞ

� �
;U ¼ Us 0

0 Uv

� �
d ¼ ds 0

0 dv

� �
; and z nð Þ ¼

w nð Þ
u nð Þ

� �
can be written as:

xðnÞ ¼ Uxðn� 1Þ þ dzðnÞ: ð12Þ
3

Whereas the noisy observation y(n) in eq. (2) can be repre-
sented in augmented matrix form as:

yðnÞ ¼ c>s c>v
� � sðnÞ

vðnÞ

� �
; ð13Þ

where Cs ¼ 1 0 . . .0½ �T and CV ¼ 1 0 . . .0½ �Tare the p � 1 and
q � 1 vectors, respectively.

By replacing C> ¼ C>
s C>

v

� �T
, eq. (13) becomes:

yðnÞ ¼ c>xðnÞ: ð14Þ
Equations (12) and (14) together form the augmented SSM

(ASSM) of AKF. For each noisy speech frame, the AKF computes
an unbiased linear MMSE estimate, x̂(n|n) at sample n, given the
observed noisy speech, y(n) by using the following recursive equa-
tions [12]:

x̂ðnjn� 1Þ ¼ Ux̂ðn� 1jn� 1Þ; ð15Þ

Wðnjn� 1Þ ¼ UWðn� 1jn� 1ÞU> þ Qdd>
; ð16Þ

KðnÞ ¼ Wðnjn� 1Þcðc>Wðnjn� 1ÞcÞ�1
; ð17Þ

x̂ðnjnÞ ¼ x̂ðnjn� 1Þ þ KðnÞ½yðnÞ � c>x̂ðnjn� 1Þ�; ð18Þ

WðnjnÞ ¼ ½I � KðnÞc>�Wðnjn� 1Þ; ð19Þ
where the process noise covariance matrix Q is given by:

Q ¼ r2
w 0
0 r2

u

" #
: ð20Þ

For a noisy speech frame, the error covariances (W(n|n � 1) and
W(n|n) corresponding to x̂(n|n � 1) and x̂(n|n)) and the Kalman
gain, K(n) are continually updated on a sample-by-sample basis,
while ({ai}, rw

2) and ({bk}, ru
2) remain unchanged. Once all noisy

speech frames for a given utterance being processed, synthesis
over the enhanced frames gives the enhanced speech, ŝ(n).

2.3. Paradigm shift of AKF recursive equations

The paradigm shift of recursive equations (15)-(19) transform
them in scalar form. It exploits the understanding of the AKF oper-
ation in speech enhancement context. For this purpose, at sample
n, we first extract the estimated speech, ŝ(n|n) (the output of the
AKF) as:

g>x̂(n|n), where g ¼ 1 0 0 . . .0½ �?column vector. g>x̂(n|n) is
simplified as [19]:

g>x̂ðnjnÞ ¼ 1 0 0 . . . 0½ �

ŝðnjnÞ
ŝðnjn� 1Þ

..

.

ŝðnjn� pþ 1Þ
v̂ðnjnÞ

v̂ðnjn� 1Þ
..
.

v̂ðnjn� qþ 1Þ

2
66666666666666664

3
77777777777777775

: ð21Þ

The matrix multiplication in eq.(21) gives:

g>x̂ðnjnÞ ¼ ŝðnjnÞ: ð22Þ
By multiplying g> on both side of eq. (18) gives:

g>x̂ðnjnÞ ¼ g>x̂ðnjn� 1Þ þ g>KðnÞ½yðnÞ�
c>x̂ðnjn� 1Þ�: ð23Þ
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According to eq. (22), g>x̂(n|n � 1) is given by:

g>x̂ðnjn� 1Þ ¼ ŝðnjn� 1Þ: ð24Þ
Also c>x̂(n|n � 1) is re-written as:

c>x̂ðnjn� 1Þ ¼ c>s c>v
� �

ŝðnjn� 1Þ
ŝðnjn� 2Þ

..

.

ŝðnjn� pþ 1Þ
v̂ðnjn� 1Þ
v̂ðnjn� 2Þ

..

.

v̂ðnjn� qþ 1Þ

2
66666666666666664

3
77777777777777775

;

¼ 1 0 . . . 0 1 0 . . . 0½ �

ŝðnjn� 1Þ
ŝðnjn� 2Þ

..

.

ŝðnjn� pþ 1Þ
v̂ðnjn� 1Þ
v̂ðnjn� 2Þ

..

.

v̂ðnjn� qþ 1Þ

2
66666666666666664

3
77777777777777775

: ð25Þ

The matrix multiplication in eq. (25) gives:

c>x̂ðnjn� 1Þ ¼ ŝðnjn� 1Þ þ v̂ðnjn� 1Þ: ð26Þ
In eq. (23), g>K(n) gives the first component, K0(n) of Kalman

gain vector, K(n), which is written as:

K0ðnÞ ¼ g>KðnÞ: ð27Þ
Substituting eq. (17) into eq. (27) gives:

K0ðnÞ ¼ g>Wðnjn�1Þc
c>Wðnjn�1Þc : ð28Þ

With eq. (16), c>W(n|n � 1)c is expressed as:

c>Wðnjn� 1Þc ¼ c>UWðn� 1jn� 1ÞU>c

þc>Qdd>c:
ð29Þ

Qdd> in the second term of eq. (29) is written as:

Qdd> ¼ ds 0
0 dv

� �
r2

w 0
0 r2

u

" #
d>
s 0

0 d>
v

" #
;

¼ dsr2
w 0

0 dvr2
u

" #
d>
s 0

0 d>
v

" #
;

¼ r2
wdsd

>
s 0

0 r2
udvd

>
v

" #
;

¼ r2
w 0
0 r2

u

" #
:

ð30Þ

Now, c>Qdd>c is simplified as:

c>Qdd>c ¼ c>s c>v
� � r2

w 0
0 r2

u

" #
cs
cv

� �
;

¼ c>s c>v
� � r2

wcs
r2

ucv

" #
;

¼ r2
wc

>
s cs þ r2

uc
>
v cv;

¼ r2
w þ r2

u:

ð31Þ
4

In eq. (29), c>UW(n � 1|n � 1)U>c is written as:

c>UWðn� 1jn� 1ÞU>c ¼ c>s c>v
� � Us 0

0 Uv

� �

Wsðn� 1jn� 1Þ 0
0 Wvðn� 1jn� 1Þ

� �
U>

s 0
0 U>

v

" #
cs
cv

� �
;

¼ c>s Us c>vUv
� � Wsðn� 1jn� 1Þ 0

0 Wvðn� 1jn� 1Þ

� �

U>
s cs

U>
v cv

" #
; a

¼ c>s UsWsðn� 1jn� 1Þ c>vUvWvðn� 1jn� 1Þ� �
U>

s cs
U>
v cv

" #
;

¼ c>s UsWsðn� 1jn� 1ÞU>
s csþ

c>vUvWvðn� 1jn� 1ÞU>
v cv;

¼ a2ðnÞ þ b2ðnÞ:

ð32Þ

where a2(n) and b2(n) represents the transmission of a posteriori
error variance of the speech and noise from the previous time sam-
ple, given by [19]:

a2ðnÞ ¼ c>s UsWsðn� 1jn� 1ÞU>
s cs; ð33Þ

b2ðnÞ ¼ c>vUvWvðn� 1jn� 1ÞU>
v cv ð34Þ

In equations (33)-(34),Ws(n � 1|n � 1) andWv(n � 1|n � 1) rep-
resent the error covariance matrices of the a priori state estimates,
x̂(n|n � 1) and v̂(n|n � 1), form W as:

W ¼ Ws 0
0 Wv

� �
: ð35Þ

By substituting equations (31)-(32) into eq. (29) gives:

c>Wðnjn� 1Þc ¼ a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u: ð36Þ
Now, g>W(n|n � 1)c in eq. (28) can be expressed as:

g>Wðnjn� 1Þc ¼ g>UWðn� 1jn� 1ÞU>c

þg>Qdd>c:
ð37Þ

Using the expression similar to the derivation of eq. (32), it can
be shown that:

g>UWðn� 1jn� 1ÞU>c ¼ g>UWðn� 1jn� 1ÞU>g;
¼ c>s UsWsðn� 1jn� 1ÞU>

s cs ¼ a2ðnÞ: ð38Þ

Also, using the similar derivation in eq. (31) gives:

g>Qdd>c ¼ g>Qdd>g ¼ r2
w: ð39Þ

Substituting equations (38)-(39) into eq. (37) yields:

g>Wðnjn� 1Þc ¼ g>Wðnjn� 1Þg ¼ c>Wðnjn� 1Þg
¼ a2ðnÞ þ r2

w:
ð40Þ

Substituting equations (40) and (36) into eq. (28) gives:

K0ðnÞ ¼ a2ðnÞ þ r2
w

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

: ð41Þ

Substituting equations (22), (24), (26)-(27) into eq. (23) yields:

ŝðnjnÞ ¼ ŝðnjn� 1Þ þ K0ðnÞyðnÞ � K0ðnÞ½̂sðnjn� 1Þ
þv̂ðnjn� 1Þ�;

¼ ½1� K0ðnÞ�̂sðnjn� 1Þ þ K0ðnÞ½yðnÞ�
v̂ðnjn� 1Þ�:

ð42Þ



Fig. 1. Spectrograms of the: (a) clean speech (utterance sp27), (b) noisy speech
(corrupt (a) with 5 dB factory noise), (c) J2(n) and J1(n) metrics, (d) oracle and non-
oracle K0(n) with adjusted) and), spectrogram of enhanced speech produced by: (e)
AKF-Oracle, (f) AKF-Non-oracle, (g) AKF-RMBT [19], and (h) AKF-SMBT [20]
methods, respectively.
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Equation (42) implies that the estimated speech at sample n, ŝ
(n|n) is given by a sum of the predicted speech, ŝ(n|n � 1) and
the measurement innovation, [y(n) � v“(n|n � 1)] weighted by the
scalar Kalman gain, K0(n). Therefore, the temporal trajectory of
K0(n) is a useful indicator of ŝ(n|n) estimate. In practice, the inaccu-
rate estimates of ({ai}, rw

2) and ({bj}, ru
2) introduce bias in K0(n),

resulting in degraded̂ s(n|n). Therefore, there should have a perfor-
mance metric/index that can quantify the level of biasness in K0(n).
George et al. introduced a robustness metric and a sensitivity met-
ric, which can be used to offset the bias in K0(n) [19]. In AKF-based
SEA [19, Section 3.2], the robustness and sensitivity metrics are
defined by simplifying the mean squared error, g>W(n|n)g of the
AKF output, ŝ(n|n) as:

g>WðnjnÞg ¼ g>½I� KðnÞc>�Wðnjn� 1Þg; ½from ½eq : 19�
¼ g>Wðnjn� 1Þg� g>KðnÞc>Wðnjn� 1Þg;
¼ g>Wðnjn� 1Þg� K0ðnÞc>Wðnjn� 1Þg:

ð43Þ

Substituting equations (40)-(41) into (43) gives:

W0;0ðnjnÞ ¼ a2ðnÞ þ r2
w � ½a2ðnÞ þ r2

w�
2

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

;

W0;0ðnjnÞ � a2ðnÞ ¼ r2
w � ½a2ðnÞ þ r2

w�
2

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

;

W0;0ðnjnÞ � a2ðnÞ
a2ðnÞ þ r2

w
¼ r2

w

a2ðnÞ þ r2
w
�

a2ðnÞ þ r2
w

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

;

W0;0ðnjnÞ � a2ðnÞ
a2ðnÞ þ r2

w
¼ r2

w

a2ðnÞ þ r2
w
þ

b2ðnÞ þ r2
u

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

� 1;

W0;0ðnjnÞ � a2ðnÞ
a2ðnÞ þ r2

w
þ 1 ¼ r2

w

a2ðnÞ þ r2
w
þ

b2ðnÞ þ r2
u

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

;

DWðnjnÞ þ 1 ¼ J2ðnÞ þ J1ðnÞ;

ð44Þ

where J2(n) and J1(n) are the robustness and sensitivity metrics of
the AKF, given as [19]:

J2ðnÞ ¼
r2

w

a2ðnÞ þ r2
w
; ð45Þ

J1ðnÞ ¼
b2ðnÞ þ r2

u

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

: ð46Þ

In AKF-RMBT [19], a J2(n) metric-based tuning of K0(n) has been
proposed for speech enhancement in colored noise conditions. In
AKF-SMBT [20], an extension of AKF-RMBT [19] using a J1(n)
metric-based tuning of K0(n) has been proposed. Section 2.4
demonstrates the shortcomings of AKF-RMBT and AKF-SMBT
[19,20] in terms of biased interpretation of K0(n).

2.4. Impact of biased K0(n) on AKF-based speech enhancement in
colored noise conditions

To analyze the shortcomings of AKF-RMBT and AKFSMBT
[19,20], we conduct an experiment with the utterance sp27 (‘‘Bring
your best compass to the third class”) of the NOIZEUS corpus [22],
Chapter 12 (sampled at 8 kHz) corrupted with colored (factory)
noise (taken from RSG-10 database [23]) at 5 dB SNR level. As like
[19,20], p = 10 and q = 40 have been used in this analysis.

In oracle case, ({ai}, rw
2) and ({bj}, ru

2) are computed from the
clean speech and the additive noise, respectively. During speech
5

pauses of the observed noisy speech; since s(n,l) = 0, it gives {ai}
= 0, ŝ(n|n � 1) = 0, and [a2(n) + rw

2 ] = 0, which turns K0(n) = 0 (ac-
cording to eq. (41)). For example, it is shown that K0(n) = 0
between 0 and 0.2 s or 2.2–2.52 s of Fig. 1 (d)). With K0(n) = 0
and ŝ(n|n � 1) = 0, eq. (42) implies that nothing is passed to the
enhanced speech (i.e., ŝ(n|n) = 0) (e.g., 0–0.2 s or 2.22.52 s in
Fig. 1 (e)). Conversely, during speech presence of the noisy speech,
it is observed that K0(n) approaching 1 (e.g., 0.2–0.6 s of Fig. 1 (d)).
With K0(n) � 1, the first part in eq. (42) approaching 0, while the
predicted noise, v̂(n|n � 1) subtracted from the observed noisy
speech, y(n) in the second part, termed as measurement innova-
tion, [y(n) � v“(n|n � 1)] scaled by K0(n) almost retains the clean
speech. As a result, the enhanced speech produced by AKF-Oracle
(Fig. 1(e)) is almost identical to the clean speech (Fig. 1(a)).

In non-oracle case, ({bj}, ru
2) are computed from the first noisy

speech frame by assuming that there remains no speech. The com-
puted ({bj}, ru

2) remains constant during processing all frames for
a given utterance [19]. That means, the total a priori prediction
error of the noise model, [b2(n) + ru

2] also remains constant for
all noisy speech frames. Conversely, ({ai}, rw

2) computed from
the noisy speech frames becomes biased, i.e., ({a~i}, r~w2), which
results in biased total a priori prediction error of the speech model,
[~a2(n) + r~w2 ]. Since the silent frames of the noisy speech are
completely filled with noise, it gives [~a2(n) + r~w2 ] � [b2(n)
+ ru

2]. According to eq. (41), this condition introduces 0.5 bias in
K~0(n) (e.g., 0–0.2 s or 2.2–2.52 s of Fig. 1 (d)). With 0.5 biased
K~0(n), eq. (42) implies that 50% of the measurement innovation,
i.e., [y(n) � v“(n|n � 1)] leaking into the enhanced speech, ŝ(n|n)
(e.g., 0.2–0.6 s of Fig. 1 (f)). {a~i}, ~rw

2) also produces biased
K~0(n) in speech regions. The biased K~0(n) passes a significant
residual noise to the enhanced speech, ŝ(n|n) as shown in Fig. 1 (f)).

In AKF-RMBT [19], a J2(n) metric is used to offset the bias in
K~0(n) as:

K 0
0ðnÞ ¼ K

�
0ðnÞ½1� J2ðnÞ�: ð47Þ



Fig. 2. Biasing effect demonstration of K0(n), spectrogram of: (a) clean speech
(utterance sp27), (b) noisy speech (corrupt sp27 with 5 dB babble noise), (c) K0(n)
computed in oracle and non-oracle cases, (d)-(e) [a2(n) + rw

2 ] and [b2(n) + ru
2]

computed in oracle and non-oracle cases, (f) J2(n) and J1(n) metrics computed from
the noisy speech in (b), spectrogram of enhanced speech produced by: (g) AKF-
Oracle method, and (h) AKF-Non-oracle method.

S.K. Roy and K.K. Paliwal Applied Acoustics 185 (2022) 108355
To perform the tuning of K~0(n) using eq. (47), it requires J2(n) �
1. However, it is shown in [19, Fig. 4 (d)] that the colored noise
effect in ({a~i}, ~rw

2) changes the behaviour of J2(n) apart from
approaching 1. To cope with this problem, George et al. employed
a whitening filter, Hw(z) to each noisy speech frame, yielding a pre-
whitened speech, yw(n,l). With {̂bj}, Hw(z) is constructed as [19]:

HwðzÞ ¼ 1þ
Xq

j¼1

b̂jz�j: ð48Þ

Now, ({ai},rw
2) are computed from yw(n,l) using the autocorre-

lation method [21], Chapter 8. It can be seen that the improved
({ai},rw

2) enables J2(n) � 1 during speech pauses, resulting 0 as
shown in Fig. 1 (c)-(d). However, the tuning process in eq. (47)
results in a significantly reduced) in speech regions as compared
to the oracle K0(n) (Fig. 1 (d)). Therefore,) causes over-
suppression of the speech components, resulting in distorted
speech as shown in Fig. 1 (g).

To address the problem in AKF-RMBT [19], a J1(n) metric-based
tuning of K~0(n) has been proposed in AKFSMBT [20] as:

K 00
0ðnÞ ¼ K

�
0ðnÞ � J1ðnÞ: ð49Þ

It can be seen that K
�
0ðnÞ and J1(n) approaching 0.5 during

speech pauses (e.g., 0–0.2 s or 2.2–2.52 s of Fig. 1 (c)(d)). While
J1(n) � 0 in speech regions (e.g., 0.2–0.6 s of Fig. 1 (c)). Therefore,

the subtraction of J1(n) from K
�
0ðnÞ (eq. (49)) results in K 00

0ðnÞ � 0
during speech pauses, while K 00

0ðnÞ � 1 in speech regions. It is
shown in Fig. 1 (d) that under-estimation issue in the speech
region is minimized in K 00

0ðnÞ as compared to K 00
0ðnÞ. As a result,

AKF-SMBT [20] produced less distorted speech (Fig. 1 (h)) than that
of [19] (Fig. 1 (g)).

Technically, ({bk},ru
2) must be computed from each noisy

speech frame in non-stationary noise conditions. Thus, ({bk},ru
2)

computed from the first noisy speech frame in AKF-RMBT and
AKF-SMBT [19,20] does not adequately address the non-
stationary noise conditions. In addition, the whitening filter,
Hw(z) (eq. (48)) constructed with the constant {bk} in AKF-RMBT
and AKF-SMBT [19] failed to reduce bias in the estimated ({ai},
rw

2). In light of the observations, AKF-RMBT and AKF-SMBT
[19,20] do not adequately address speech enhancement in non-
stationary noise conditions. In Section 2.5, we further demonstrate
the biasing impact of K0(n) on AKF-based speech enhancement in
non-stationary noise conditions.
2.5. Impact of biased K0(n) on AKF-based speech enhancement in non-
stationary noise conditions

To analyze the impact of biased K0(n) on AKF-based speech
enhancement in non-stationary noise condition, we repeat the
experiment in Fig. 1 except the utterance sp27 is corrupted with
5 dB babble noise (taken from AURORA database [24]). In this
study, a 32 ms rectangular window with 50% overlap [25], Sec
7.2.1 was considered for converting y(n) into frames, y(n,k) (as in
eq. (2)). We have also used p = 16 and q = 40.

As demonstrated in Section 2.4, in oracle case, the silent frames
of y(n,l) gives s(n,l) = 0 such that ai = 0 for i = 1,2,. . .,p, which turnŝ s
(n|n � 1) = 0 as well as [a2(n) + rw

2 ] = 0 (e.g., 0–0.2 s or 2.2–2.52 s
of Fig. 2 (d)). Substituting [a2(n) + rw

2 ] = 0 in eq. (41) gives K0(n)
= 0, which in turnˆs(n|n) = 0 (eq. (42)), i.e., nothing is passed to
the enhanced speech (e.g., 0–0.2 s or 2.2–2.52 s of Fig. 2 (c) and
(g)). Conversely, it gives [a2(n) + rw

2 ] > [b2(n) + ru
2] for speech

dominated frames, resulting in K0(n) � 1 (e.g., 0.2–0.6 s of Fig. 2
(c)). As demonstrated in Section 2.4, K0(n) � 1 almost passes the
clean speech to the output. Therefore, the enhanced speech pro-
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duced by AKF-Oracle (Fig. 2(g)) is almost identical to the clean
speech (Fig. 2(a)).

In non-oracle case, ({ai}, rw
2) and ({bj}, ru

2) are computed from
each noisy speech frame, resulting in biased ({a~i}, ~rw

2) and ({~bj},
~ru

2), which in turn [a2(n) + rw
2 ] � [b2(n) + ru

2] (e.g., 0–0.2 s or
2.2–2.52 s of Fig. 2 (e)). According to eq. (41), this condition intro-
duces around 0.5 bias in K0(n) (e.g., 0–0.2 s or 2.2–2.52 s of Fig. 2
(c)). During speech activity of y(n,l), it is observed that

[a2(n) + rw
2 ] � [b2(n) + ru

2], resulting in an under-estimated
K0(n) as compared to the oracle case (e.g., 0.2–0.6 s of

Fig. 2 (c)). 0.5 biased K0(n) in silent regions leaking 50% of [y
(n) � v“(n|n � 1)] to the enhanced speech (Fig. 2 (h)). In addition,
the under-estimated K0(n) in speech regions produced distorted
speech (Fig. 2 (h)). Also, J2(n) and J1(n) metrics (Fig. 2 (f)) do not
achieve the similar characteristics as found in the colored noise
condition (Fig. 1 (c)), which leaves them inappropriate in tuning
the biased K0(n) (Fig. 2 (c)) using equations. (47) and (49).

In light of the observations in this section, the objective of pro-
posed SEA falls in twofold: firstly, to improve the estimates of ({ai},
rw

2) and ({bj},ru
2) in real-life noise conditions so that J2(n) and

J1(n) achieve the similar characteristics as found in colored noise
conditions (Fig. 1 (c)). Secondly, incorporate both the improved
J2(n) and J1(n) metrics for tuning the biased K0(n) to achieve better
noise reduction by AKF–even for conditions that have time-varying
amplitudes.
3. Proposed speech enhancement algorithm

Fig. 3 shows the block diagram of the proposed SEA. Firstly, y(n)
is converted into frames, y(n,k) with the same setup as used in sec-
tion 2.5. The next step of the proposed

SEA is ({ai},rw
2) and ({bj},ru

2) estimation as described in
Section 3.1.



Fig. 3. Block diagram of the proposed AKF-based SEA.

Fig. 4. Comparing the estimated: (a) [a2(n) + rw
2 ] and [b2(n) + ru

2] and (b) J2(n),
J1(n) metrics from the noisy speech in Fig. 2 (b).

1 The simplification is a result of assuming the a priori probability of the speech
absence and presence, P(H0) and P(H1) as: P(H0) = P(H1).
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3.1. Proposed ({ai},rw
2 ) and ({bj},ru

2) estimation method

The speech and noise LPC parameters, ({ai}, rw
2) and ({bj}, ru

2)
are sensitive to noise. Since the clean speech, s(n,l) and the noise, v
(n,l) are unobserved in practice, it is difficult to accurately estimate
({ai}, rw

2) and ({bj}, ru
2) from noisy speech, y(n,l). It is already

demonstrated that ({ai}, rw
2) and ({bj}, ru

2) estimates in AKF-
RMBT and AKF-SMBT [19,20] do not address the conditions that
have time varying amplitudes.

To cope with this problem, in this paper, we first estimate noise
PSD, P̂v(l,m) from each noisy speech frame using an SPP method
[26] (described in section 3.2). Then employ inverse Fourier trans-
form to P̂v(l,m), yields an ess is the autocorrelation lag. By solving
Rvvb(s) using the timate of the noise autocorrelation matrix, Rvv(s),
where Levinson-Durbin recursion [21], Chapter 8, gives (b {bj}, ru

2)
7

(q = 40). As in [19], to reduce bias in the estimated ({ai}, rw
2) for

each noisy speech frame, we compute them from the correspond-
ing pre-whitened speech, yw(n,l) using the autocorrelation method
[21], Chapter 8. The framewise yw(n,l) is obtained by employing a
whitening filter, Hw(z) to y(n,l). With estimated {bj}; Hw(z) is con-
structed as in eq. (48). Unlike AKF-RMBT and AKF-SMBT [19,20],
since Hw(z) is constructed with {bj} for each noisy speech frame,
the estimates of ({ai}, rw

2) address conditions that have time-
varying amplitudes.

3.2. Noise PSD estimation

In this paper, we incorporate an SPP method [26] to estimate
noise PSD from each noisy speech frame. For this purpose, the
noisy speech, y(n) (eq. (1)) is next analyzed frame-wise using the
short-time Fourier transform (STFT):

YlðmÞ ¼ SlðmÞ þ VlðmÞ; ð50Þ
where Yl(m), Sl(m), and Vl(m) denote the complex-valued STFT coef-
ficients of the noisy speech, clean speech, and noise signal, respec-
tively, for time-frame index l and frequency bin mǫ{0,1,2,. . .,M � 1}
withM being the total number of frequency-bins within each frame.

A Hamming window with 50% overlap is used in STFT analysis
[25], Section 7.2.1. In polar form, Yl(m), Sl(m), and Vl(m) can be
expressed as: Yl(m) = Rl(m)ejul(m), Sl(m) = Al(m)ej/l(m), and Vl(m)
= Dl(m)ejhl(m), where Rl(m), Al(m), and Dl(m) are the magnitude
spectrums of the noisy speech, the clean speech, and the noise sig-
nal, respectively, and ul(m), /l(m), and hl(m) are the corresponding
phase spectrums. We process each frequency bin of the single-
sided noisy speech power spectrum, Rl

2(m) (where mǫ
{0,1,. . .,128} containing the DC and Nyquist frequency compo-
nents) to estimate the noise power spectrum, D̂l

2(m). To initialize
the algorithm, we assume the first frame (l = 0) of R0

2(m) as silent,
which gives an estimate of noise power as: D̂0

2(m) = R0
2(m). The

noise PSD, k0(m) is also initialized as: k0(m) = D̂0
2(m). For l � 1, using

the speech presence uncertainty principle, an MMSE estimate of
D̂l

2(m) at mth frequency bin is given by [26]:

D̂
2

l ðmÞ ¼ PðHm
0 jRlðmÞÞR2

l ðmÞ þ PðHm
1 jRlðmÞÞk̂l�1ðmÞ; ð51Þ

where P Hm
o jRl mð Þ� �

and P Hm
1 jRl mð Þ� �

are the conditional probability
of the speech absence and the speech presence, given Rl(m) at mth

frequency bin.
The simplified)) estimate is given by1 [26]:

PðHm
1 jRlðmÞÞ ¼ ½1þ ð1þ noptÞexpfð�

R2
l ðmÞ

k̂l�1ðmÞÞð
nopt

1þ nopt
Þg�

�1

; ð52Þ

where nopt is the optimal a priori SNR.
The optimal choice for nopt is found as 10log10(nopt) = 15 dB [26],

and P Hm
0 jRl mð Þ� �

is given byP Hm
0 jRl mð Þ� � ¼ 1� P Hm

1 gRl mð Þ� �
. How-

ever, if P Hm
0 jRl mð Þ� �

= 1 occurs at mth frequency bin, it causes stag-
nation, which stops updating D̂l

2(m) (eq. (51)). Unlike monitoring
the status of P Hm

1 jRl mð Þ� �
)) = 1 for a long time as reported in [26],

we simply resolve this issue by setting P Hm
1 jRl mð Þ� � ¼ 0:99once

this condition occurs prior to update D̂l
2(m).

It is observed that Rl
2(m) is completely filled with additive noise

during silent activity, thus giving an estimate of noise power.
Therefore, unlike updating D̂l

2(m) using eq. (51) by existing
method [26], we do it differently depending on the silent/speech
activity of Rl

2(m) (for each frequency binm). Specifically, atmth fre-
quency bin (l � 1), ifP Hm

1 jRl mð Þ� �
< 0:5;R2

l mð Þ yields silent activity,
resulting in D̂l

2(m) = Rl
2(m), otherwise, D̂l

2(m) is estimated using
eq. (51). With estimated D̂l

2(m), kl(m) is updated as:
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k̂lðmÞ ¼ gk̂l�1ðmÞ þ ð1� gÞD̂2

l ðmÞ; ð53Þ

where the smoothing constant, g is set to 0.9.
The 256-point noise PSD is given as: P̂v(l,m) = kl(m), where the

components of P̂v(l,m) at mǫ{1,2,. . .,127} are flipped to that of the
mǫ{129,130,. . .,255} of P̂v(l,m).
Fig. 5. Comparing the detected flags from noisy speech in Fig. 2 (b) to that of the
reference corresponding to Fig. 2 (a).

Fig. 6. K 0
0 nð Þ responses in terms of: (a) a2(n) and a2(n) + b2(n) + rw

2 + ru
2, and (b)

[a2(n) + rw
2 ]2 and [a2(n) + b2(n) + rw

2 + ru
2]2, where the same experimental setup

of Fig. 2 is used.
3.3. Proposed K0(n) tuning method

Firstly, the AKF is constructed with the estimated ({ai},rw
2) and

({bj},ru
2). Then we extract the tuning parameters as shown in

Fig. 4. It can be seen from Fig. 4 (a) that [a2(n) + rw
2 ] and [b2(n)

+ ru
2] achieves very similar characteristics as like AKF-Oracle

method (Fig. 2 (d)). The improvement of these parameters also
causes J2(n) and J1(n) metrics (Fig. 4 (b)) to achieve the similar
characteristics as appear in the colored noise condition (Fig. 1
(c)). Therefore, J2(n) and J1(n) metrics (Fig. 4 (b)) are now eligible
to dynamically offset the bias in K0(n)—even for non-stationary
noise conditions. However, as demonstrated in Section 2.4, J2(n)
metric is useful in tuning K0(n) during speech pauses of the noisy
speech, since it results in under-estimated K0(n) during speech
presence. On the contrary, since J1(n) metric approaches 0 in
speech regions of the noisy speech, according to eq. (49), it mini-
mizes the under-estimation of K0(n). In light of the observations,
for each sample of y(n,l), we incorporate J2(n) metric during speech
pauses and J1(n) metric during speech presence to dynamically off-
set the bias in K0(n).

We observed that the total a priori prediction errors of the
speech and noise AR models; [a2(n) + rw

2 ] and [b2(n) + ru
2] can

be adopted as a speech activity detector for each sample of y(n,l).
For example, during speech pauses, the condition [b2(n) + ru

2] �
[a2(n) + rw

2 ] holds (e.g., 0–0.2 s or 2.2–2.52 s of Fig. 4 (a)). Con-
versely, [a2(n) + rw

2 ] � [b2(n) + ru
2] is found in speech regions

(e.g., 0.2–0.6 s of Fig. 4 (a)). Therefore, at sample n, if [b2(n)
+ ru

2] � [a2(n) + rw
2 ]; y(n,k) is termed as silent and set the deci-

sion parameter (denoted by f) as f(n) = 0; otherwise speech activity
occurs and f(n) = 1. It can be seen from Fig. 5 that the detected flags
(0/1: silent/speech) by proposed method is closely similar to that
of the reference (0/-1: silent/speech). The reference flags are gener-
ated by visually inspecting the corresponding clean speech (Fig. 2
(a)) frames.

At sample n, if f(n) = 0, the adjusted K 0
0 nð Þ in the proposed SEA is

given by:

K 0
0ðnÞ ¼ K0ðnÞ½1� J2ðnÞ�;

¼ ½ a2ðnÞ þ r2
w

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

�½1� r2
w

a2ðnÞ þ r2
w
�;

¼ a2ðnÞ
a2ðnÞ þ b2ðnÞ þ r2

w þ r2
u

:

ð54Þ

To justify the validity of K 0
0 nð Þ, Fig. 6 (a) shows the numerator

and the denominator of eq. (54) computed from the noisy speech
in Fig. 2 (b). It can be seen that a2(n) � 0 during speech pauses
(e.g., 0–0.2 s or 2.2–2.52 s of Fig. 6 (a)). According to eq. (54), it
results K 0

0 nð Þ �0. Since [a2(n) + b2(n) + rw
2 + ru

2] � a2(n) occurs
during speech presence (e.g., 0.2–0.6 s of Fig. 6 (a)), it may result
in under-estimated K 0

0 nð Þ as like colored noise experiment (Fig. 1
(d)). Thus, J2(n) metric-based tuning of K 0

0 nð Þ in speech activity of
y(n,l) is inappropriate.

As discussed earlier, we employ J1(n) metric to offset the bias in
K0(n) during speech activity of y(n,l).

However, our further investigation on J1(n) metric-based tuning
in eq. (49) reveals that the subtraction of J1(n) from biased K0(n)
still produced under-estimated as shown in Fig. 1 (d). To cope with
8

this problem, at sample n, if f(n) = 1, we propose the tuning of
biased K0(n) using J1(n) metric as:
K 0
0ðnÞ ¼ K0ðnÞ½1� J1ðnÞ�;

¼ ½ a2ðnÞ þ r2
w

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

�

½ a2ðnÞ þ r2
w

a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u

�;

¼ ½a2ðnÞ þ r2
w�

2

½a2ðnÞ þ b2ðnÞ þ r2
w þ r2

u�
2 :

ð55Þ

To justify the validity of), the numerator and the denominator of
eq. (55) are shown in Fig. 6 (b). It can be seen that [a2(n) + b2(n)
+ rw

2 + ru
2]2 � [a2(n) + rw

2 ]2 during the speech presence of y(n,l)
(e.g., 0.2–0.6 s of Fig. 6 (b)), which results in) approaching 1.

To evaluate the performance of the proposed tuning method in
non-stationary noise conditions, we conduct an experiment with
the same setup as in Fig. 2. It can be seen from Fig. 7 (a) that the
adjusted K0(n) by the proposed method shows significantly less
bias and closely similar to that of the oracle K0(n). Specifically, it
maintains a smooth transition at the edges and the temporal
changes in speech regions are closely matched to that of the oracle
K0(n). Amongst the benchmark methods, the adjusted K0(n) by
AKF-SMBT [20] shows less bias than that of the AKF-RMBT [19].
However, AKF-SMBT [20] still produces under-estimated K0(n) in
speech regions. We also repeat the Fig. 7 (a) experiment except
the utterance sp27 is corrupted with 5 dB factory noise to evaluate
the performance of the proposed tuning method in colored noise
conditions. Fig. 7 (b) reveals that the biasing effect is reduced sig-
nificantly in the adjusted K0(n) by the proposed method, which is
closely similar to that of the oracle K0(n). As in the previous exper-
iment, AKF-SMBT [20] also produce under-estimated K0(n) in
speech regions. The AKF-RMBT method [20] produced the most
underestimated K0(n) amongst the competing methods. In light
of the comparative study, the reduced-biased K0(n) achieved by



Fig. 7. Comparing K0(n) trajectories corresponding to the AKF-Oracle method,
proposed method , AKF-RMBT method [19], and AKF-SMBT method [20], where the
utterance sp27 is corrupted with 5 dB: (a) babble and (b) factory noises.
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the proposed tuning algorithm will be of benefit to the AKF for
speech enhancement in various noise conditions.
2 The AB listening tests were conducted with approval from the Griffith Univer-
sity’s Human Research Ethics Committee: database protocol number 2018/671.
4. Experimental setup

4.1. Speech corpus

For the objective experiments, 30 phonetically balanced utter-
ances belonging to six speakers (three male and three female)
are taken from the NOIZEUS corpus [22], Chapter 12. The noisy
speech for the test set is generated by mixing the clean speech with
real-world non-stationary (babble and street) and colored (factory
and f16) noises at multiple SNR levels (from �5dB to + 15 dB, in
5 dB increments). The babble noise is taken from AURORA database
[24], the street noise is taken from Nonspeech database [27], and
the factory and f16 noises are taken from RSG-10 database [23].
All the clean speech and noise recordings are single-channel with
a sampling frequency of 8 kHz. The noisy speech dataset provides
30 examples per condition with 20 total conditions.

4.2. Objective evaluation

Objective measures are used to evaluate the quality and intelli-
gibility of the enhanced speech with respect to the corresponding
clean speech. The following objective evaluation metrics have been
used in this paper:

	 Perceptual Evaluation of Speech Quality (PESQ) for objective
quality evaluation [28]. It ranges between �0.5 and 4.5. A
higher PESQ score indicates better speech quality.

	 The short-time objective intelligibility (STOI) measure for objec-
tive intelligibility evaluation [29]. It ranges between 0 and 1 (or
0 to 100%). A higher STOI score indicates better speech
intelligibility.

We also analyzed the spectrograms of enhanced speech pro-
duced by the competing SEAs to visually quantify the level of resid-
ual noise as well as distortion.

4.3. Subjective evaluation

The subjective evaluation was carried out through a series of
blind AB listening tests [4, Section 3.3.4]. To perform the tests,
we generate a set of stimuli by corrupting the utterances sp05
and sp27 from the NOIZEUS corpus [22], Chapter 12. The reference
transcript for utterance sp05 is: ‘‘Wipe the grease off his dirty face”,
and is corrupted with 5 dB factory noise. The reference transcript
for utterance sp27 is: ‘‘Bring your best compass to the third class”,
and is corrupted with 5 dB babble noise. Utterances sp05 and
sp27 were uttered by a male and a female, respectively. In the
9

tests, the enhanced speech produced by eight SEAs as well as the
corresponding clean speech and noisy speech signals were played
as stimuli pairs to the listeners. Specifically, the tests were per-
formed on a total of 180 stimuli pairs (90 for each utterance)
played in a random order to each listener, excluding the compar-
isons between the same method.

The listener gives the following ratings for each stimuli pair:
prefers the first or second stimuli, which is perceptually better,
or a third response indicating no difference is found between them.
For pairwise scoring, 100% award is given to the preferred method,
and 0% to the other. For a similar preference response, each method
is awarded a score of 50%. Participants could re-listen to stimuli if
required. Ten English speaking listeners participate in the blind AB
listening tests2. The average of the preference scores given by the
listeners termed as mean subjective preference score (%), which is
used to compare the performance among the SEAs.

4.4. Specifications of the competing SEAs

The performance of the proposed SEA is compared to the fol-
lowing SEAs (the following notation is used for convenience: (p,
q) : is the order of {ai} and {bk}, (rw

2 , ru
2) are the prediction error

variances of the speech and noise AR models, wf is the analysis
frame duration (ms), and sf is the analysis frame shift (ms)).

i. Noisy: speech corrupted with additive noise.
ii. AKF-Oracle: AKF, where ({ai}, rw

2) and ({bj}, ru
2) are com-

puted from each frame of the clean speech and the additive
noise, p = 16, q = 40, wf = 20 ms, sf = 0 ms, and rectangular
window is used for framing.

iii. AKF-Non-oracle: AKF, where ({ai}, rw
2) and ({bj}, ru

2) are
computed from each frame of the noisy speech, p = 16,
q = 40, wf = 20 ms, sf = 0 ms, and rectangular window is used
for framing.

iv. MMSE-STSA [8]: It usedwf = 25 ms, sf = 10 ms, and Hamming
window is used for analysis and synthesis.

v. AKF-IT [12]: AKF operates with two iterations, where the ini-
tial ({ai}, rw

2) and ({bj}, ru
2) are computed from each frame

of the noisy speech followed by re-estimation of them from
the processed speech frame after first iteration, p = 10,
q = 10, wf = 20 ms, sf = 0 ms, and rectangular window is used
for framing.

vi. SBIT-KF [15]: Subband iterative KF with two iterations,
where the initial ({ai}, rw

2) are computed from each frame
of the noisy speech followed by reestimation of them from
the processed speech frame after first iteration, rv2 is esti-
mated from each noisy speech frame at 1st iteration, p = 8,
wf = 32 ms, sf = 0 ms, and rectangular window is used for
framing.

vii. AKF-RMBT [19]: Robustness metric-based tuning of AKF,
where ({bj}, ru

2) are computed from the first noisy speech
frame being considered as silent, ({ai}, rw

2) are computed
from pre-whitened speech frame, p = 10, q = 40, wf = 20 ms,
sf = 0 ms, and rectangular window is used for framing.

viii. AKF-SMBT [20]: Sensitivity metric-based tuning of AKF,
where ({bj}, ru

2) are computed from the first noisy speech
frame being considered as silent, ({ai}, rw

2) are computed
from pre-whitened speech frame, p = 10, q = 40, wf = 32 ms,
sf = 16 ms, and rectangular window is used for framing.

ix. Proposed: Robustness and sensitivity metrics-based tuning
of the AKF, where ({bj}, ru

2) are computed from each frame
of the estimated noise, ({ai}, rw

2) are computed from each
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frame of the pre-whitened speech, p = 16, q = 40, wf = 32 ms,
sf = 16 ms, rectangular window is used for generating time
domain frames, and Hamming window is used for acoustic
domain analysis and synthesis.

5. Results and discussions

5.1. Objective quality evaluation

Fig. 8 shows the average PESQ score for each SEA. It can be seen
that the AKF-Oracle method attained the highest average PESQ
score for all of the tested conditions. This is due to ({ai}, rw

2) and
Fig. 8. Average PESQ score for each SEA found over all frames for each condition
described in Section 4.1.

10
({bk}, ru
2) being computed from the clean speech and the noise sig-

nal, which is unobserved in practice. Thus, AKF-Oracle provides an
indication of the upper-bound for the AKF in terms of average PESQ
score. Conversely, the average PESQ score for Noisy indicates the
lower bound of the average PESQ score for each of the tested con-
ditions. The proposed SEA consistently produces a higher average
PESQ score than the competing SEAs across the tested conditions.
The average PESQ score for the proposed method is also very sim-
ilar to that of the KF-Oracle method. This is likely due to the
reduced-biased AKF gain achieved by the proposed tuning algo-
rithm (Fig. 7). Amongst the competing methods, AKF-SMBT [20]
Fig. 9. Average STOI score for each SEA found over all frames for each condition
described in Section 4.1.
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relatively produced higher average PESQ scores for each of the
tested conditions (Fig. 8). In light of this study, it is evident to
say that the proposed SEA produces higher quality enhanced
speech than that of the competing SEAs across the tested
conditions.
Fig. 10. Results obtained from comparative statistical analysis of PESQ for each method
noise sources at multiple SNR levels. The circle markers represent the PESQ score means
lines. The red color refers to the methods that have PESQ score means significantly differ
methods that show that their mean PESQ scores are not significantly different from the s
reader is referred to the web version of this article.)

Fig. 11. Results obtained from comparative statistical analysis of STOI for each method
noise sources at multiple SNR levels. The circle markers represent the STOI score means a
lines. The red color refers to the methods that have STOI score means significantly differ
methods that show that their mean STOI scores are not significantly different from the sc
reader is referred to the web version of this article.)
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5.2. Objective intelligibility evaluation

Fig. 9 shows the average STOI score for each SEA. As in Sec-
tion 5.1, the AKF-Oracle method achieves the highest average STOI
score for each tested condition. On the other hand, Noisy shows the
on the NOIZEUS corpus corrupted with: (a) babble, (b) street, (c) factory, and (d) f16
along with their uncertainty intervals, which are represented by the horizontal solid
ent from those of Noisy, which are highlighted in blue. The black color refers to the
cores of Noisy. (For interpretation of the references to color in this figure legend, the

on the NOIZEUS corpus corrupted with: (a) babble, (b) street, (c) factory, and (d) f16
long with their uncertainty intervals, which are represented by the horizontal solid
ent from those of Noisy, which are highlighted in blue. The black color refers to the
ores of Noisy. (For interpretation of the references to color in this figure legend, the
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lowest average STOI score in any tested condition. The proposed
method attained the highest average STOI score for each tested
condition, apart from the AKF-Oracle method. Amongst the com-
peting methods, AKF-SMBT [20] attained the highest average STOI
scores. In light of this study, it is evident to say that the proposed
SEA produces more intelligible enhanced speech than the compet-
ing SEAs across the tested conditions.

5.3. Statistical ANOVA test on PESQ and STOI score

To assess the significant differences between the quality and
intelligibility scores for each method, we performed an analysis
of variance (ANOVA) testing on the PESQ and STOI scores on the
noisy speech dataset in Section 4.1 [30]. Specifically, a multiple
comparison statistical test based on Tukey’s honestly significant
difference procedure with a significance level of 0.05 was con-
ducted on the ANOVA test results to compute the significant differ-
ences among the SEAs [30]. The multiple comparison experimental
results on the PESQ and STOI are presented in Figs. 10-11, where
the circle markers indicate the objective score (PESQ or STOI)
means along with their uncertainty intervals— which are repre-
sented by the horizontal solid lines [30]. The evaluation is per-
formed on the basis of: any two objective scores (PESQ or STOI)
means are significantly different from each other, if and only if
their uncertainty intervals do not overlap [31]. In Figs. 10,11, each
sub-figure highlights the methods where their enhanced speech
signals have a mean objective score (red circle markers) signifi-
cantly different from that of the Noisy (blue circle marker). In
Figs. 10-11, each sub-figure also identifies the methods that per-
formed poorly (black circle markers), with means that are not sig-
nificantly different from the of Noisy.
Table 1
Comparing the normalized processing time between the
proposed and competing SEAs.

Methods Normalized Processing Time

AKF-Oracle 1.00
Proposed 1.09
AKF-SMBT [20] 1.16
AKF-RMBT [19] 1.16
SBIT-KF [15] 3.78
MMSE-STSA [8] 1.12
AKF-IT [12] 3.89
AKF-Non-oracle 1.19

Fig. 12. Spectrograms of: (a) clean speech (utterance sp27), (b) noisy speech ((a) corrup
[12] (PESQ = 1.91), (d) MMSE-STSA [8] (PESQ = 2.06), (e) SBIT-KF [15] (PESQ = 2.17),
(PESQ = 2.49), and (i) AKF-Oracle (PESQ = 2.69).
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It can be seen from Fig. 10 (a)-(b) that the five competing meth-
ods have means significantly different from Noisy for babble and
street noise experiments. On the other hand, four competing meth-
ods have means significantly different from the Noisy for factory
and f16 noise sources (Fig. 10 (c)-(d)). For all noise conditions
(Fig. 10 (a)-(d)), the proposed method has mean significantly dif-
ferent from the competing methods showing improvement against
Noisy, apart from the AKF-Oracle.

Fig. 11 shows the results obtained from the comparative statis-
tical analysis of STOI for each method as in Fig. 10. It can be seen
from Fig. 11 (a)-(d) that the three methods have means signifi-
cantly different from Noisy for babble to that of the four methods
for street, six meth-ods for factory and five methods for f16 noise
sources. For all noise conditions (Fig. 11 (a)-(d)), the proposed
method has a mean significantly different from the competing
methods showing improvement against Noisy, apart from the
AKF-Oracle.

In light of the comparative study on Figs. 10-11, it is evident to
say that the proposed method has shown a significant PESQ and
STOI score improvement, except the AKF-Oracle method for all
noise conditions. Amongst the competing method, the AKF-SMBT
[20] exhibits most PESQ and STOI score improvements followed
by AKFRMBT [19].

5.4. Computational complexity evaluation of each SEA

Computation cost is also an important measure to justify the
efficiency of a SEA. The computational complexity in terms of nor-
malized processing time of Matlab implementation [26] for all
methods is given in Table 1. It can be seen that the proposed
method takes a lower computational time as compared to the com-
peting methods, except the AKF-Oracle method. Amongst the com-
peting methods, MMSE-STSA [8] takes almost similar computation
time with the proposed method (1.12) followed by AKF-SMBT [20]
and AKF-RMBT [19] (1.16), and AKFNon-oracle (1.19). It is also
found that the SBIT-KF [15] (3.78), and AKF-IT [12] (3.89) become
computationally worse than any other methods. It is due to the
iterative processing of noisy speech by SBIT-KF [15] and AKF-IT
[12] methods for speech enhancement.

5.5. Spectrogram analysis of each SEA

Fig. 12 (a) shows the spectrogram of clean speech (female utter-
ance sp27). The clean speech is corrupted by babble noise at 5 dB
ted with 5 dB babble noise) (PESQ = 1.72), enhanced speech produced by: (c) AKF-IT
(f) AKF-RMBT [19] (PESQ = 2.22), (g) AKF-SMBT [20] (PESQ = 2.30), (h) Proposed



Fig. 14. The mean preference score (%) comparison between the proposed and
benchmark SEAs for the utterance sp27 corrupted with 5 dB non-stationary babble
noise.
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SNR level to create the noisy speech (Fig. 12 (b)). This is a particu-
larly tough condition for speech enhancement since the back-
ground noise exhibits characteristics similar to the speech
produced by the target speaker. The enhanced speech produced
by AKFIT [12] is shown in Fig. 12 (c). The enhanced speech suffers
from significant speech distortion. A significant residual back-
ground noise is also present in the enhanced speech. Fig. 12 (d)
shows the enhanced speech produced by MMSE-STSA [8]. This
method produced less distorted speech than AKF-IT (Fig. 12 (c));
however, residual background noise still remains. Less residual
background noise is present in the enhanced speech produced by
SBIT-KF [15] (Fig. 12 (e)) than MMSE-STSA (Fig. 12 (d)), however,
the speech is more distorted. The AKF-RMBT [19] method pro-
duced less distorted speech (Fig. 12 (f)) than that of SBIT-KF
(Fig. 12 (e)). The enhanced speech produced by AKF-SMBT [20]
(Fig. 12 (g)) relatively shows less distortion as well as less residual
background noise than that of AKF-RMBT (Fig. 12 (f)). The
enhanced speech produced by the proposed method is shown in
Fig. 12 (h). It can be seen that there is less residual background
noise in the enhanced speech than AKF-SMBT (Fig. 12

(g)). Finally, the enhanced speech produced by the AKFOracle
method is shown in Fig. 12 (i), which is most similar to the clean
speech in Fig. 12 (a). This is due to AKF-Oracle uses clean speech
and noise (unobserved in practice) for LPC parameter estimation.
5.6. Subjective evaluation by AB listening test

The mean subjective preference score (%) for each SEA is shown
in Figs. 13-14. The colored (factory) noise experiment in Fig. 13
reveals that the enhanced speech produced by the proposed
method is widely preferred by the listeners (74%) over the compet-
ing methods, apart from the clean speech (100%) and the AKF-
Oracle method (84%). AKF-SMBT [20] is found to be the most pre-
ferred method (around 67%) amongst the benchmark methods by
the listeners. For the non-stationary (babble) noise experiment
(Fig. 14), the listeners again preferred the proposed method
(72%) over the competing methods, with only clean speech
(100%) and AKF-Oracle (82%) being more preferred. As in the pre-
vious experiment (Fig. 13), AKFSMBT [20] was the most preferred
(65%) amongst the competing methods, with AKF-RMBT [19]
(around 58%) being the next most preferred. In light of the blind
AB listening tests, it is evident to say that the enhanced speech
of the proposed method exhibits the best-perceived quality
amongst all tested methods for both male and female utterances
corrupted by real-life colored as well as nonstationary noise
sources.
Fig. 13. The mean preference score (%) comparison between the proposed and
benchmark SEAs for the utterance sp05 corrupted with 5 dB colored factory noise.
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6. Conclusion

This paper investigates robustness and sensitivity metricsbased
tuning of the AKF gain for single-channel speech enhancement in
real-life noise conditions. At first, an SPP method estimates the
noise PSD from each noisy speech frame to compute the noise
LPC parameters. A whitening filter is also constructed with the esti-
mated noise LPCs to pre-whiten each noisy speech frame prior to
computing the speech LPC parameters. Then construct the AKF
with the estimated speech and noise LPC parameters. To achieve
better noise reduction, the robustness metric is employed to offset
the bias in AKF gain during speech pauses of the noisy speech to
that of the sensitivity metric during speech presence. The speech
and noise model parameters are adopted as a speech activity
detector. It is shown that the reduced-biased AKF gain achieved
by the proposed tuning algorithm addresses speech enhancement
in real-life noise conditions. Objective and subjective scores on
the NOIZEUS corpus demonstrate that the proposed method out-
performs the competing methods in various noise conditions for
a wide range of SNR levels.

The proposed method performs single-channel speech enhance-
ment in the presence of additive background noise. However, in
practice, clean speech can be corrupted by room impulse responses
in the form of surface reflections (or noisy-reverberant speech) and
background noise. Therefore, our future research direction is on
augmented Kalman filtering for speech enhancement in the pres-
ence of noisyreverberant speech.
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