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Abstract—Speech enhancement using augmented Kalman filter
(AKF) suffers from the poor estimates of the key parameters,
linear prediction coefficients (LPCs) of speech and noise signal in
noisy conditions. The existing AKF particularly enhances speech
in colored noise conditions. In this paper, a deep residual network
(ResNet)-based method utilizes the LPC estimates of the AKF
for speech enhancement. Specifically, we introduce ResNet20
(constructed with 20 layers) for estimating the noise waveform
from the noise corrupted speech on a framewise basis. The noise
LPCs are then computed from the estimated noise. Each noise
corrupted speech frame is pre-whitened by a whitening filter,
which is constructed with the corresponding noise LPCs. The
speech LPCs are computed from the pre-whitened speech. The
improved speech and noise LPCs enable the AKF to minimize
the residual noise as well as distortion in the enhanced speech.
Objective and subjective testing on NOIZEUS corpus reveal that
the proposed method exhibits higher quality and intelligibility
in the enhanced speech than the benchmark methods in various
noise conditions for a wide range of SNR levels.

Index Terms—Speech enhancement, augmented Kalman filter,
residual network, LPC, whitening filter.

I. INTRODUCTION

The main objective of a speech enhancement algorithm

(SEA) is to eliminate the embedded noise from the noise

corrupted speech. The SEAs can be used as a pre-processing

tool for many signal processing systems, including but not

limited to voice communication systems, hearing-aid devices,

voice operated autonomous systems. Various SEAs, such as

spectral subtraction (SS) [1], [2], minimum mean square error

(MMSE) [3], [4], Wiener Filter (WF) [5], [6], Kalman filter

(KF) [7] have been introduced over the decades. However,

it is still a challenging task to develop an efficient SEA for

real-world noise environments.

The SS-based SEAs somehow depend on the accuracy of

noise power spectral density (PSD) estimates [8]. It is observed

that the under estimated noise PSD introduced musical noise

in the enhanced speech. Also, the over estimated noise PSD

produced distorted speech [9, Chapter 5]. The MMSE and WF-

based SEAs suffer from the a priori SNR estimates in practice.

In [3], Ephraim and Malah proposed a decision-directed (DD)

approach to compute the a priori SNR in noisy conditions.

However, this approach recursively updates the a priori SNR

for the current frame by using the speech and noise power

spectrum estimated from the previous noisy speech frame.

Thus, it leads to an inaccurate estimate of the a priori SNR for

the current frame. The biased estimate of the a priori SNR in

the MMSE-based SEA typically introduce musical noise and

spectral distortion in the enhanced speech [9].

The efficiency of KF-based SEA depends on how accurately

the key parameters, such as LPCs are estimated in noisy

conditions. Paliwal and Basu for the first time introduced

KF-based SEA [7]. They compute the LPCs from the clean

speech signal, which is unavailable in practice. It is also

limited to enhance the stationary noise corrupted speech. In

[10], Gibson et al. introduced an augmented KF (AKF) for

enhancing colored noise corrupted speech. In this method,

the LPC estimates for the current noisy speech frame are

computed from the filtered signal of the previous iteration

by AKF. Although the enhanced speech (after 2-3 iterations)

shows SNR improvement, however, suffering from spectral

distortion as well as musical noise. In [11], Roy et al. proposed

a sub-band iterative KF-based SEA. Since it only processes the

high-frequency sub-bands (SBs) among the 16 decomposed

SBs of noisy speech, some noise components may still remain

in the low-frequency SBs. The enhanced speech also suffers

from distortion. In [12], George et al. introduced a robustness

metric-based tuning of the AKF for enhancing colored noise

corrupted speech. The authors showed that the poor estimates

of the speech and noise LPCs introduce bias in the AKF

gain leading to degrade the speech enhancement performance.

They introduced a robustness metric-based tuning of the bias

in the AKG gain, which is particularly applicable in colored

noise conditions. However, the tuning process of the AKF gain

causes distortion in the enhanced speech.

The deep neural network (DNN) has been used widely for

speech enhancement over the decades. It shows a noticiable

improvement over the traditional SEAs, such as SS, MMSE,

WF, and KF [1], [3], [5], [7]. Motivated by the time-frequency

(T-F) masking technique in computational auditory scene

analysis [13], the early DNN-based SEAs focus on the mask

estimation, which is used to reconstruct the clean speech

spectrum. In [14], Wand and Wang introduced a multi-layer

perceptron (MLP)-based ideal binary mask (IBM) estimation

method. An estimate of the clean speech spectrum is given

by multiplying the estimated IBM with the noise corrupted

speech spectrum [15]. In [16], it was shown that the ideal

ratio mask (IRM) exhibits better speech enhancement accuracy

over the IBM. Usually, the masking-based SEAs [14], [15],

[16] keep the phase spectrum unprocessed in the sense that it

is less affected by additive noise. However, in [17], Paliwal



et al. showed that the improvement of the phase spectrum

also improves the perceptual quality of the enhanced speech.

In this circumstance, Williamson et al. introduced a complex

ideal ratio mask (cIRM)-based SEA for further improving the

speech enhancement accuracy [18]. The cIRM is capable to

recover both the amplitude and phase spectrum of the clean

speech. In general, it was observed that the masking-based

SEAs introduce residual noise in the enhanced speech [16].

Also, in speech enhancement context, the traditional MLP and

DNN-based methods [14], [16], are not able to learn the long-

term dependencies inherent in noisy speech.

In [19], Park and Lee introduced a convolutional encoder

decoder (CED)-based SEA. This SEA is designed particularly

for enhancing the babble noise corrupted speech. In [20],

Tan and Wang introduced a convolutional recurrent network

(CRM) by incorporating two long short-term memory (LSTM)

layers between the encoder and decoder layers for speech

enhancement. They argued that the new design can be adopted

with the long-term dependency of the noise corrupted speech.

The CRM [20] has been formed with 2D Convolutional

(Conv2D) layers. As indicated in [19], the speech signal is 1D,

therefore, the 1D convolution (Conv1D) layer is appropriate

to process the noise corrupted speech. Thus, the CED method

[19] reduces the training parameters as well as the training

time significantly than that of CRM method [20]. In [21], an

SEA based on processing the raw-waveform of noise corrupted

speech using fully-convolutional network (FCNN) has been

introduced. The enhanced speech quality does not depend

on the phase spectrum, which has a significant impact on

other acoustic-domain SEAs [15], [16], [19]. In [22], Zheng

et al. introduced a phase-ware SEA using DNN. Here, the

phase information (converted to the instantaneous frequency

deviation (IFD)) is jointly used with different masks, namely

the ideal amplitude mask (IAM) as a training target. The clean

speech spectrum is reconstructed with the estimated mask and

the phase information (extracted from the IFD).

Yu et al. introduced a DNN-based KF for speech enhance-

ment. The authors basically employed the traditional DNN

method for estimating the LPCs from noise corrupted speech

[23]. However, 670 speech recordings including four noise

recordings and four SNR levels resulting only 10720 samples

for training the DNN. Technically, the limited training samples

reduce the performance of this SEA for a wide range of noise

conditions as well as the SNR levels. In addition, the noise co-

variance is estimated from the initial frames of noise corrupted

speech (considered as silent activity), which is irrespective

with the non-stationary noise conditions. Technically, the AKF

is constructed with the dynamic models of speech and noise

signal. Thus, the AKF is more appropriate than KF to enhance

speech in real-world noise conditions.

The direct estimation of speech from noise corrupted speech

using the benchmark deep learning methods may suffer from

residual noise and distortion. Our investigation reveals that the

estimate of noise using deep learning technique would be more

beneficial, as it is a crucial parameter for most of the SEAs

in literature. For example, the AKF-based SEA suffering from

the noise LPC estimates in practice. This paper introduces a

ResNet20-based method to utilize the noise LPC estimates of

the AKF. Specifically, an estimate of the noise waveform is

given by the ResNet20-based method, from where the noise

LPCs are computed on a framewise basis. A whitening filter is

also constructed with the noise LPCs to pre-whiten the noise

corrupted speech on a framewise basis. The speech LPCs are

computed from the pre-whitened speech. The improvement of

the speech and noise LPCs estimates leading to the capability

of enhancing speech using AKF in various noise conditions. It

also enables the AKF to minimize the residual noise as well

as distortion in the enhanced speech. The efficiency of the

proposed SEA is compared against the benchmark methods

using objective and subjective testing on NOIZEUS corpus.

II. AKF FOR COLORED NOISE SUPPRESSION

Assuming the colored noise v(n) to be additive with speech

s(n) and uncorrelated each other, at sample n, the noisy

speech y(n) is given by:

y(n) = s(n) + v(n). (1)

The s(n) and v(n) of (1) can be modeled with pth and qth

order linear predictors as [24]:

s(n) = −

p
∑

i=1

ais(n− i) + w(n) (2)

v(n) = −

q
∑

j=1

bjv(n− j) + u(n) (3)

where {ai; i = 1, 2, . . . , p} and {bj ; j = 1, 2, . . . , q} are the

LPCs, w(n) and u(n) are assumed to be white noise with zero

mean and variance σ2

w and σ2

u, respectively.

Equations (1)-(3) can be used to form the following aug-

mented state-space model (ASSM) of AKF as [12]:

x(n) = Φx(n− 1) + dz(n), (4)

y(n) = cTx(n). (5)

In the above ASSM,

1) x(n) = [s(n) . . . s(n− p+ 1) v(n) . . . v(n− q + 1)]T

is a (p+ q)× 1 state-vector,

2) Φ =

[

Φs 0
0 Φv

]

is a (p + q) × (p + q) state-transition

matrix with:

Φs =














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
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3) d =

[

ds 0
0 dv

]

, where ds =
[

1 0 . . . 0
]⊤

, dv =
[

1 0 . . . 0
]⊤

,

4) z(n) =

[

w(n)
u(n)

]

,

5) cT =
[

cTs cTv
]

, where cs =
[

1 0 . . . 0
]T

and

cv =
[

1 0 . . . 0
]T

are p× 1 and q × 1 vectors,

6) y(n) is the noisy measurement at sample n.

Firstly, y(n) is windowed into non-overlapped and short

(e.g., 20 ms) frames. For a particular frame, the AKF computes

an unbiased and linear MMSE estimate, x̂(n|n) at sample n,

given y(n) by using the following recursive equations [12]:

x̂(n|n− 1) = Φx̂(n− 1|n− 1), (6)

Ψ(n|n− 1) = ΦΨ(n− 1|n− 1)ΦT + dQdT , (7)

K(n) = Ψ(n|n− 1)c(cTΨ(n|n− 1)c)−1, (8)

x̂(n|n) = x̂(n|n− 1) +K(n)[y(n)− cT x̂(n|n− 1)], (9)

Ψ(n|n) = [I −K(n)cT ]Ψ(n|n− 1), (10)

where Q =

[

σ2

w 0
0 σ2

u

]

is the process noise covariance.

For a noisy speech frame, the error covariances Ψ(n|n−1)
and Ψ(n|n) corresponding to x̂(n|n−1) and x̂(n|n), and the

Kalman gain K(n) are continually updated on a samplewise

basis, while ({ai}, σ2

w) and ({bk}, σ2

u) remain constant. At

sample n, g⊤x̂(n|n) gives the estimated speech, ŝ(n|n),

where g =
[

1 0 0 . . . 0
]⊤

is a (p + q) × 1 column

vector. As in [12], ŝ(n|n) is given by:

ŝ(n|n) = [1−K0(n)]ŝ(n|n− 1) +K0(n)[y(n)− v̂(n|n− 1)],
(11)

where K0(n) is the 1st component of K(n), given by [12]:

K0(n) =
α2(n) + σ2

w

α2(n) + σ2
w + β2(n) + σ2

u

, (12)

where α2(n) and β2(n) are the transmission of a posteriori

error variances (of the speech and measurement noise samples)

by the augmented dynamic model from the previous time

sample, n− 1 [12].

Equation (11) reveals that the K0(n) has a significant

impact on the ŝ(n|n) estimates (the output of the AKF). In

practice, the poor estimates of ({ai}, σ2

w) and ({bk}, σ2

u)

introduce bias in K0(n), which affects the estimates of ŝ(n|n).
In the proposed SEA, a ResNet20 is used to utilize the LPC

estimates for the AKF, leading to an improved ŝ(n|n) estimate.

III. PROPOSED SPEECH ENHANCEMENT SYSTEM

Fig. 1 shows the block diagram of the proposed SEA.

Firstly, a 32 ms rectangular window with 50% overlap was

considered for converting y(n) (1) into frames, y(n, l), i.e.,

y(n, l) = s(n, l) + v(n, l), where lǫ{0, 1, 2, . . . , N − 1} is the

frame index with N being the total number of frames in an

utterance, and M is the total number of samples within each

frame, i.e., nǫ{0, 1, 2, . . . ,M − 1}.

Fig. 1. Block diagram of the proposed SEA.

A. Proposed ({bk}, σ2

u) and ({ai}, σ2

w) Estimation Method

The speech LPC parameters, ({ai}, σ2

w) are very sensitive

to noise. Since the clean speech, s(n, l) is unavailable in

practice, it is difficult to estimate these parameters accurately.

Therefore, we focus on additive noise waveform, v̂(n, l)
estimates, from where the noise LPC parameters, ({bk}, σ2

u)
are computed on a framewise basis. However, the estimation

of v̂(n, l) is also a challenging task. In the existing AKF-based

SEA, an estimate of the noise waveform, v̂(n, l) is obtained

from the initial noise corrupted speech frames by considering

that there remains no speech [12]. Then compute ({bk}, σ2

u)

from the v̂(n, l), which remains constant during processing

all the noisy speech frames for a given noise corrupted speech

utterance. This concept may be effective for enhancing the

colored noise corrupted speech. Since, the vast majority of

real-world noises contain time varying amplitudes, it requires

to update ({bk}, σ2

u) for each noise corrupted speech frame

when operating such conditions. Therefore, the ({bk}, σ2

u)

estimation process in [12] becomes irrespective with the noise

conditions having time varying amplitudes.

We introduce a ResNet20-based method (described in sec-

tion III-B) to estimate the waveform of noise, v̂(n, l) on a

framewise basis. The ({bk}, σ2

u) (q = 20) are computed from

v̂(n, l) using autocorrelation method [24]. Then {bk}’s are

used to design the whitening filter, Hw(z) as [24]:

Hw(z) = 1 +

q
∑

k=1

bkz
−k. (13)

Employing Hw(z) to y(n, l), yielding the pre-whitened

speech, yw(n, l). Then ({ai}, σ2

w) (p = 10) are computed

from yw(n, l) using autocorrelation method [24].



Fig. 2. Architecture of the proposed ResNet20 for noise waveform estimation.

B. ResNet20 for Noise Waveform Estimation

Fig. 2 shows the architecture of the proposed ResNet20

for noise waveform estimation. Motivated by the Resnet50

(containing 50 layers) [25], we propose a reduced version,

namely the ResNet20 (containing 20 layers) model. It is due

to the ResNet50 [25] was introduced for image recognition,

where a stuck of 50 2-dimensional convolutional (Conv2D)

layers-based deep learning technique addressed the accuracy of

recognition. However, the deep architecture of a network varies

Fig. 3. One-dimensional CNN structure with (a) standard convolution and (b)
causal convolution.

over applications. We investigate and find that the reduced

ResNet model, i.e., ResNet20 to be effective in estimating

the noise waveform from the noisy speech waveform on a

framewise basis. Instead of Conv2D layer in ResNet50 [25],

the proposed ResNet20 is formed with the 1-dimensional

convolution (Conv1D) layer, since the target is to process the

1D speech signal. It reduces the number of training parameters,

which minimizes the training time accordingly. In addition, we

have used the causal Conv1D layer [26]. Fig. 3 demonstrates

the operating principle of the standard and causal Conv1D

layers. The standard Conv1D layers (Fig. 3 (a)) are comprised

of filters that capture the local correlation of nearby data

points, thus leaking the future information into the current data

during operating. Conversely, in the causal Conv1D layer (Fig.

3 (b)), the output at any time step t only uses the information

from the previous time steps, i.e., 0 to t−1 [26]. It allows the

ResNet20 for real-time noise waveform estimation.

The proposed ResNet20-based method takes the noisy

speech waveform, yl = {y(0, l), y(1, l), . . . , y(M − 1, l)}
as input, yielding an estimate of the noise waveform, v̂l =
{v̂(0, l), v̂(1, l), . . . , v̂(M−1, l)}. Specifically, the yl is passed

through the input layer, which is a fully-connected layer of size

512, followed by the layer normalization (LN) [27] and SELU

activation [28] layer. Reason of using SELU activation is that

it has less impact on vanishing gradients than that of ReLU

[29] and ELU [30]. Also, SELUs itself learn faster and better



than ReLU and ELU even if they are combined with layer

normalization [28]. The input layer is followed by 6 bottleneck

residual blocks (RBs). Each RB contains 3 Conv1D layers.

Each of the Conv1D layer is pre-activated by LN followed

by SELU activation function. The output size of the first and

second Conv1D layer is 64, while the third one is 512. In

addition, the first and third Conv1D layer has the kernel size

of 1, whilst the second Conv1D layer has the kernel size of 3.

Therefore, the first Conv1D layer in each RB compresses the

input to a lower-dimensional embedding. The last RB (6th) is

followed by the output layer, which is a fully-connected layer

(output size 512) with sigmoidal units [31].

The stack of six RBs containing 18 Conv1D layers in the

proposed ResNet20 exhibits a deep architecture. It is observed

that the Conv1D layers in the lower RBs (close to the input

layer), the gradients calculated from the backpropagated error

signals of the Conv1D layers in the higher RBs, become

progressively smaller or vanishing. It is referred to as the

vanishing gradient problem [32]. Due to the vanishing gra-

dients, connection weights at Conv1D layers in the lower RBs

are not modified much, which reduces the learning capability

during training. As long as the ResNet20 goes deeper, its

performance gets saturated or even starts degrading rapidly.

To alleviate this problem, a skip connection mechanism has

been introduced [25]. To improve the flow of information and

gradients throughout the proposed ResNet20, we also utilize

skip connections between the input and out layers of the RBs.

The skip connection is represented by dotted line (Fig. 2). It

can be seen that the skip connection bypass the output of each

RB and added to the output of the next RB. To facilitate the

skip-connection, the output size of the third Conv1D layer in

each RB is set to 512. The skip-connection does not add any

extra parameter or computational complexity. Rather, it acts

as an identity mapping of the ResNet20 model, which ensures

that the Conv1D layers in the higher RBs will perform as good

as the Conv1D layers in the lower RBs.

IV. SPEECH ENHANCEMENT EXPERIMENT

A. Training Set

For training the proposed ResNet20, a total of 30, 000 clean

speech recordings are randomly selected belonging to the

train-clean-100 set of the Librispeech corpus [33] (28, 539),

the CSTR VCTK corpus [34] (42, 015), and the si∗ and sx∗

training sets of the TIMIT corpus [35] (3, 696). Among the

5% of 30, 000, i.e., 1500 speech recordings are randomly

selected for cross-validation of the ResNet20 accuracy during

training. That means, 28, 500 speech recordings are used for

training of the ResNet20. On the other hand, a total of 500
noise recordings are randomly selected from the QUT-NOISE

dataset [36], the Nonspeech dataset [37], the Environmental

Background Noise dataset [38], [39], the noise set from the

MUSAN corpus [40]. In addition, the 5% of 500, i.e., 25
noise recordings are selected for cross-validation purposes,

while the remaining 475 of them are used for training. All

the clean speech and noise recordings are single-channel with

a sampling frequency of 16 kHz.

B. Training Strategy

The following training strategy was employed to train the

proposed ResNet20 for noise waveform estimation:

• The widely used ’mean square error’ is used as the loss

function during training.

• The Adam algorithm [41] with default hyperparameters

is also adopted for the gradient descent optimisation.

• Gradients are clipped between [−1, 1].

• A total of 120 epochs are used to train the ResNet20.

• The number of training examples in an epoch is equal

to the number of clean speech recordings used in the

training set, i.e., 28, 500.

• The noisy speech signals are generated as follows: each

randomly selected clean speech recording (without re-

placement) is corrupted with a randomly selected noise

recording (without replacement) at a randomly selected

SNR level (-10 to +20 dB, in 1 dB increments).

C. Test Set

For objective experiments, 30 clean speech utterances be-

longing to six speakers (3 male and 3 female) are taken from

the NOIZEUS corpus. The speech recordings are sampled at

16 kHz [9, Chapter 12]. We generate a noisy speech data set

by corrupting the speech recordings with (passing car) and

(cafe babble) noise recordings selected from the noise database

used in [38], [39] at multiple SNR levels varying from -5dB

to +15 dB, in 5 dB increments. It is also important to note

that the speech and noise recordings are unseen and not used

in training the proposed ResNet20 method.

D. Evaluation Metrics

The objective quality and intelligibility evaluation are car-

ried out through the perceptual evaluation of speech quality

(PESQ) [42] and quasi-stationary speech transmission index

(QSTI) [43] measures. We also analyze the spectrograms of

the enhanced speech produced by the proposed and benchmark

SEAs to quantify the level of residual noise and distortion.

The subjective evaluation was carried out through blind

AB listening tests [44, Section 3.3.4]. It is conducted on the

utterance sp05 (“Wipe the grease off his dirty face”) corrupted

with 5 dB passing car noise. The enhanced speech produced

by five SEAs as well as the corresponding clean and noisy

speech recordings, a total of 42 stimuli pairs played in a

random order to each listener, excluding the comparisons

between the same method. For each stimuli pair, the listener

prefers the first or second stimuli which is perceptually better,

or a third response indicating no difference is found between

them. A 100% award is given to the preferred method, 0% to

the other, and 50% to each method for the similar preference

response. Participants could re-listen to stimuli if required.

Five English speaking listeners participate in the AB listening

tests. The average of the preference scores given by the

listeners, termed as the mean preference score (%).

The performance of the proposed method is carried out

by comparing it with the benchmark methods, such as raw-

waveform processing using FCNN (RWF-FCN) method [21],
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Fig. 6. The mean preference score (%) for each SEA on sp05 corrupted with 5 dB passing car noise.

phase-aware DNN (IAM+IFD) method [22], deep learning-

based KF (DNN-KF) method [23], AKF-Ideal method (where

({ai}, σ2

w) and ({bk}, σ2

u) are computed from the clean speech

and noise signal) and Noisy (noise corrupted speech).

E. Results and Discussion

Fig. 4 (a)-(b) demonstrates that the proposed SEA consis-

tently shows improved PESQ score over the benchmark SEAs,

except the AKF-Ideal method for all test noise conditions as

well as the SNR levels. The IAM+IFD method [22] relatively

exhibits better PESQ score among the benchmark methods

across the noise experiments. The Noisy speech shows the

worse PESQ score for all conditions.

Fig. 4 (c)-(d) also shows that the proposed method demon-

strates a consistent QSTI score improvement across the noise

experiments as well as the SNR levels, apart from the AKF-

Ideal method. The existing IAM+IFD method [22] is found

to be competitive with the proposed method typically at low

SNR levels. However, at the high SNR levels, all the SEAs,

even the noise corrupted speech relatively shows competitive

QSTI scores for all noise conditions.

It can be seen that the enhanced speech produced by the

proposed SEA (Fig. 5 (f)) exhibits significantly less residual

noise than that of the benchmark SEAs (Fig. 5 (c)-(e)) and is

closely similar to the AKF-Ideal method (Fig. 5 (g)). When

going from RWF-FCN method [21] to IAM+IFD method [22]

(Fig. 5 (c)-(e)), noise-flooring is seen decreasing. The informal

listening tests conducted on the enhanced speech also confirm

that the benchmark SEAs relatively produce annoying sound as

compared to negligible audio artifacts by the proposed method.

The outcome of AB listening tests in terms of mean

preference score (%) is shown in Fig. 6. It can be seen that

the enhanced speech produced by the proposed SEA is widely

preferred by the listeners (around 72%) than the benchmark

methods, apart from the AKF-Ideal method (around 81%) and

clean speech signal (100%). The IAM+IFD method [22] is

found to be the best preferred (60%) amongst the benchmark

methods, followed by the DNN-KF method [23] (48%), and

RWF-FCN method [21] (31%).

V. CONCLUSION

This paper introduced a deep residual network-based aug-

mented Kalman filter for speech enhancement in various noise

conditions. Specifically, the proposed ResNet20-based method

gives an estimate of the instantaneous noise waveform on a

framewise basis. The noise LPCs computed from the estimated

noise. Each noisy speech frame is pre-whitened by a whitening

filter, which is constructed with the corresponding noise LPCs

(used as filter coefficients). The speech LPCs are computed

from the pre-whitened speech. The large training set of the

proposed ResNet20 method enriches the speech and noise

LPC estimates in various noise conditions. As a result, the

AKF constructed with the improved speech and noise LPCs

is capable to minimize the residual noise as well as distortion

in the enhanced speech. Extensive objective and subjective

testing on NOIZEUS corpus reveal that the proposed method

outperforms the benchmark methods in various noise condi-

tions for a wide range of SNR levels.
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