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Abstract

Motivation: Capturing long-range interactions between structural but not sequence neighbors of

proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term mem-

ory (LSTM) networks have significantly improved the accuracy of speech and image classification

problems by remembering useful past information in long sequential events. Here, we have imple-

mented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic dis-

order prediction.

Results: The new method, named SPOT-Disorder, has steadily improved over a similar method

using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate

training on short and long disordered regions. Independent tests on four other datasets including

the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 anno-

tated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder pre-

diction. Moreover, initial studies indicate that the method is more accurate in predicting functional

sites in disordered regions. These results highlight the usefulness combining LSTM with deep bi-

directional recurrent neural networks in capturing non-local, long-range interactions for bioinfor-

matics applications.

Availability and Implementation: SPOT-disorder is available as a web server and as a standalone

program at: http://sparks-lab.org/server/SPOT-disorder/index.php.

Contact: j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au

Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction

One of the major discoveries in recent years is that protein sequences

not only encode for regions that possess well-defined unique three-

dimensional structures, but also for regions that lack the tendency to

form a structure. These Intrinsically Disordered Proteins (IDPs), or

Regions in proteins (IDRs), have been found to fulfill a wide variety

of crucial biological roles (commonly involving regulatory and sig-

naling functions) (Dyson and Wright, 2005; Rigden, 2009; Uversky

et al., 2005), with a particular prevalence in eukaryotes (Dunker

et al., 2000). The flexibility and multiple structural states of IDPs

offer unique advantages over ordered proteins (Receveur-Bréchot

et al., 2006; Rigden, 2009), thus vindicating the evolutionary devel-

opment and propagation of intrinsic disorder (Rigden, 2009). In

fact, natural protein sequences are more disordered than random se-

quences (Yu et al., 2016). IDPs have been implicated in many

human diseases, including cancer, cardiovascular and neurodegener-

ative diseases and genetic diseases (Raychaudhuri et al., 2009;

Uversky et al., 2005, 2008). Thus, it is important to identify IDPs or

IDRs as a means to better understand the functional mechanisms of

proteins.
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Intrinsic disorder in proteins has been studied by both experi-

mental and theoretical methods. Common experimental methods

for determining protein structure, such as X-ray spectroscopy,

Nuclear Magnetic Resonance (NMR) spectroscopy and Circular

Dichroism (CD) spectroscopy, have been the main tools for charac-

terization of disorder in proteins (Dunker et al., 2001; Dyson and

Wright, 2000; Rigden, 2009). These methods make up for the bulk

of annotated IDPs and IDRs in the disordered protein database

DisProt (Sickmeier et al., 2007), which at its current version (v6.02)

consists of 694 IDPs and 1539 proteins containing IDRs taken from

the Protein DataBank (PDB), an archive of protein structures

(Berman et al., 2000). The largest single collection of disordered

proteins has 25 833 annotated proteins (Potenza et al., 2015).

Meanwhile, the UniProt/TrEMBL protein sequence database

(Bairoch et al., 2005) currently consists of 60 971 489 protein

entries, most of which do not yet have their structures nor dis-

ordered regions determined. Genome-scale computational studies

suggest that 30–50% proteins contain IDRs, and 15% are IDPs

(Rigden, 2009; Tompa et al., 2006). Due to the arduous and costly

process of determining the flexible structural states of IDPs and

IDRs experimentally (Radivojac et al., 2004), the disparity between

experimentally annotated and unannotated proteins grows rapidly.

To bridge this growing gap between sequenced and disorder-

annotated proteins, many computational methods have been estab-

lished to discriminate intrinsically disordered regions from struc-

tured regions at a fraction of the time and cost of the experimental

methods. A majority of these methods employ machine-learning

techniques such as Artificial Neural Networks (ANNs) (Rumelhart

et al., 1985) and Support Vector Machines (SVMs) (Vapnik, 1998).

For example, SVMs have been utilized in MFDp (Mizianty et al.,

2010), POODLE L and S (Hirose et al., 2007; Shimizu et al., 2007),

PrDOS (Ishida and Kinoshita, 2007), Spritz (Vullo et al., 2006) and

with an RBF kernel in the most recently released model, Dispredict

(Iqbal and Hoque, 2014). ANNs have also enjoyed widespread suc-

cess in many accurate predictors, such as DisEMBL (Linding et al.,

2003a), DISOPRED (Jones and Ward, 2003), DISpro (Cheng et al.,

2005), NORSnet (Schlessinger et al., 2007a), the PONDR series

(Romero et al., 2001), PROFbval (Schlessinger et al., 2006), RONN

(Yang et al., 2005), SPINE-D (Zhang et al., 2012) and Espritz

(Walsh et al., 2012), which is the only classifier to utilize a

Bidirectional Recurrent ANN (BRNN) (Baldi et al., 1999; Schuster

and Paliwal, 1997). Other computational methods are based on the

analysis of amino acid propensities, physicochemical properties and

statistical potential, such as FoldIndex (Prilusky et al., 2005),

GlobPlot (Linding et al., 2003b), IUPred (Doszt�anyi et al., 2005)

and UCON (Schlessinger et al., 2007b). Complementary methods

can be combined to form meta-predictors, which employ the outputs

from other classifiers to form their own enhanced predictions.

Examples are CSpritz (Walsh et al., 2011), MD (Schlessinger et al.,

2009), metaPrDOS (Ishida and Kinoshita, 2008), MFDp2 (Mizianty

et al., 2013) and PONDR-FIT (Xue et al., 2010).

Recently, the application of deep neural networks with more

than two hidden layers to proteins has permitted a better learning of

deep and complex relationships between sequences, structures and

functions of proteins, and advanced the accuracy of pairwise contact

prediction (Di Lena et al., 2012; Eickholt and Cheng, 2012), second-

ary structure and solvent accessible surface-area prediction

(Heffernan et al., 2015, 2016; Paliwal et al., 2015; Qi et al., 2012)

and protein disorder prediction (Eickholt and Cheng, 2013; Paliwal

et al., 2015). However, common deep learning techniques, such as

recurrent neural networks and window-based artificial neural net-

works, while effective at propagating local errors within sequence

neighbors, are ineffective at modeling long-range (non-local) inter-

actions between amino acid residues that are structural but not se-

quence neighbors (Hochreiter et al., 2001). Because residue–residue

interactions are dominated by structural neighbors, how to account

for them is the key for improving sequence-based prediction of pro-

tein structural and functional properties.

The long-range dependence between a series of time-resolved

events can be better captured by enforcing the constant error flow so

that useful long-range interactions can be memorized (Hochreiter

and Schmidhuber, 1997). In this Long Short-Term Memory (LSTM)

network, hidden layers are made of memory blocks containing one

or more LSTM cells. Each LSTM cell has the discretion to either for-

get, input to or output the Constant Error Carousel (CEC, i.e. a

fixed weight of 1 in the absence of outside signal). The CEC passes

through every LSTM cell in the entire sequential event, acting as a

memory backbone effectively connecting the whole sequence

(Hochreiter and Schmidhuber, 1997), in either the forwards or

backwards directions. LSTM-based neural networks have success-

fully applied to speech and image-related problems in which long-

range memory is the key for accurate interpretation and prediction

(Graves and Schmidhuber, 2005; Vinyals et al., 2015).

In this paper, we hope to capture nonlocal interactions that are

essential for determining whether a protein will fold (structured) or

will not fold (intrinsically disordered) into a unique three-

dimensional structure, by employing deep bidirectional LSTM cells.

The bidirectional network will allow us to capture both forward

and backward information contained in protein sequences. The new

method, called SPOT-disorder (Sequence-based Prediction Online

Tools for disorder), is found to be highly effective in predicting both

short and long disordered regions without separated training

(Zhang et al., 2012), despite disordered regions of different sizes

having different compositions of amino acids (Radivojac et al.,

2004; Rigden, 2009). Independent tests and applications to the tar-

gets from Critical Assessment of Structure Prediction (CASP9 and

10) (Monastyrskyy et al., 2011, 2014) have confirmed that SPOT-

disorder is comparable to or more accurate than all the methods

compared, regardless of which datasets were employed for

comparison.

2 The machine learning approach

2.1 Neural network
As shown in Figure 1, the proposed method comprises of a three

hidden-layer BRNN (Schuster and Paliwal, 1997), utilizing a recur-

rent feed-forward layer with a Rectified Linear Unit (ReLU) activa-

tion function in the first layer, succeeded by LSTM cell layers in the

second and third layer (Hochreiter and Schmidhuber, 1997). In this

architecture, the recurrent layer consists of 200 nodes and a bias

node in each direction, and the LSTM layers contain 200 one-cell

memory blocks of one cell each in each direction. The size of mem-

ory block (200 nodes) was chosen after proving to be the best com-

promise between memory usage and performance accuracy in

training. We trained another network with an increased 1000 nodes

per layer and found it did not improve on the performance of our

method.

The model was trained utilizing the BackPropagation Through

Time (BPTT) algorithm (Pineda, 1987; Werbos, 1988; Williams and

Zipser, 1989) in the Torch framework (Collobert et al., 2002). This

model has compensated for possible overtraining in the training

phase by the use of the dropout algorithm, with a dropout percent-

age of 50% in each of the hidden layers (Srivastava et al., 2014).

686 J.Hanson et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/33/5/685/2725549
by Griffith University user
on 24 November 2017

Deleted Text: ,
Deleted Text: s
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: s
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ; Qi <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: ,
Deleted Text: st
Deleted Text: l
Deleted Text: -
Deleted Text: ,
Deleted Text: Vinyals <italic>et<?A3B2 show $146#?>al.</italic>, 2015; 
Deleted Text: <xref ref-type=
Deleted Text: M
Deleted Text: L
Deleted Text: A
Deleted Text: N
Deleted Text: s
Deleted Text: s


Torch accounts for dropout during the training phase, meaning that

the weights in each layer do not have to be scaled in testing. The

training parameters also incorporated a decaying learning rate

initialized at 0.001, and a momentum term of 0.99 (Rumelhart

et al., 1985).

The learning rate was determined in initial training, where larger

learning rates of >0.001 did not enable the network to converge.

We employed the step learning rate decay technique to reduce the

learning rate by 1% per epoch (Senior et al., 2013). That is, the

learning rate was initialized at 0.001, and then systematically an-

nealed to �6� 10�4 within 50 epochs. This allowed the model to

learn finer detail as it progressed through training. Finally, the two

outputs of this network are squeezed into a probability distribution

through the use of the softmax function (Bishop, 2006).

2.2 Input features
Similar to our previous method (Zhang et al., 2012), input features

for disorder prediction included evolutionary, predicted structural

properties and physicochemical properties for each amino acid at its

position in the polypeptide chain.

The evolutionary content is established through the use of a

Position-Specific Scoring Matrix (PSSM), generated by three iter-

ations of the PSI-BLAST algorithm (Altschul et al., 1997) against the

NCBI’s Non-Redundant (NR) sequence database for each protein.

The Shannon entropy is also calculated to represent the information

content in these probabilities per residue (Shannon, 1948). The aver-

age Shannon entropy over the entire protein is also utilized as an in-

put feature of the general conservation of the whole protein. This

leads to a total of 22 evolutionary features used for prediction.

We also obtained 17 predicted structural features from the

SPIDER2 predictor (1 ASA, 1 CN, 4 HSE based on Ca and Cb

atoms, respectively and the 11 predicted SS and sine/cosine of the

backbone angle values) (Heffernan et al., 2015, 2016). Finally, seven

commonly-used physicochemical properties, including hydrophobi-

city and polarizability, are used as features as provided by Meiler

et al. (2001).

Thus, using these features resulted in a 46-length feature vector

for each amino acid. These parameters were scaled within the range

of [0,1] before being passed through the model, based on the minima

and maxima of the training data.

2.3 Datasets
Two datasets were used to train and independently test the network.

We employed the same dataset DM4229 from the SPINE-D classi-

fier (Zhang et al., 2012) in which 3000 chains (DM3000) were

selected for training and cross validation and 1229 chains

(DM1229) for independent testing. In addition, we employed two

independent test sets (SL and MxD datasets) that were used to test

SPINE-D and MFDp (Mizianty et al., 2010), respectively, as well as

another independent test set, MobiDB (Potenza et al., 2015; Walsh

et al., 2014). The initial DM4229 dataset comprised of the original

Disprot dataset, obtained prior to the 5th of August, 2003 (Vucetic

et al., 2005). It contains 72 fully disordered proteins from the

Disprot database v5.0 (Sickmeier et al., 2007) and 4125 high-

resolution, non-redundant structures determined by X-ray crystal-

lography after removing sequences with similarity >25% by the

Blastclust algorithm (Altschul et al., 1997).

The SL dataset of 477 proteins (Sirota et al., 2010) was created

by re-annotating Disprot to more accurately reflect disordered and

ordered regions. The MxD dataset was originally obtained by

Mizianty et al. (2010) and further reduced by Iqbal and Hoque

(2014) to 444 proteins after removing proteins with unknown

amino acid residues. Removing the overlap between SL477 and

DM4229 using 25% sequence identity cutoff led to SL329 as an in-

dependent test set. As some methods employ MxD444 as training

set, we also removed the overlap between SL329 and MxD444 and

obtained SL117. Furthermore, we obtained the datasets from

CASP9 and CASP10 (Monastyrskyy et al., 2011, 2014) as additional

test sets.

The MobiDB dataset consists of 25 833 proteins labeled

through several methods of curation: data directly taken from

Disprot labels; indirectly inferred labels from PDB structures; and

predicted labels through a consensus of disorder predictors

(Potenza et al., 2015). We trimmed this dataset down to 12 019

proteins after removing the overlap between MobiDB and the

SL477 and DM4229 datasets at 20% sequence similarity. Also,

proteins with unknown amino acids were discarded, as well as pro-

teins under 30 residues long. This resulted in our final and largest

test set, Mobi11925.

2.4 Performance evaluation
Performance is assessed in this paper through the analysis of bin-

ary labels and raw prediction values. The raw prediction probabil-

ities are obtained at the output of the network through the use of

the softmax function. The discrete labels are generated by the

comparison of these probabilities with a pre-calculated threshold

T. For protein disorder prediction, we assume disorder labels to

represent positive samples and order labels to represent negative

samples. Each output from the classifier can be sorted into one of

four outcomes depending on the label of the sample: True Positive

(TP), True Negative (TN), False Positive (FP) and False Negative

(FN). Sensitivity (Se ¼ TP
TPþFN) and specificity (Sp ¼ TN

TNþFP) are two

metrics which measure the performance of each class in binary

classification. Sensitivity illustrates the classifier’s ability to cor-

rectly allocate samples into the disordered (or positive) class,

whereas specificity does the same for the ordered (or negative)

class. These two measures are often combined into a single metric

to form the balanced accuracy measurement (Acc ¼ SeþSp

2 ).

Another balanced metric is the commonly-used Matthews’

Correlation Coefficient (MCC) (Matthews, 1975). This metric cal-

culates the correlation between the predicted and obtained binary

classifications, and can be calculated from a confusion matrix as

follows:

MCC ¼ TP � TN� FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p : (1)

Fig. 1. The layout of the entire network (focusing on sequence position i).

Here x and y denote input and output, respectively, while CEC denotes the

Constant Error Carousel, FC denotes a fully connected layer and h the imme-

diately recurrent connection in an LSTM.
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Even though this measure combines information from both columns

in the confusion matrix, this metric presents a balanced metric inde-

pendent of class skew.

Another single-valued metric is the Youden index Sw. This metric

is often used in conjunction with the area under the Receiver

Operating Characteristic (ROC) curve (AUC) as it is an indication

of the margin between the random predictor (where Se ¼ 1� Sp)

and the obtained ROC for the chosen threshold (Schisterman et al.,

2005):

Sw ¼
WdTP�WoFPþWoTN�WdFN

WdNd þWoNo
; (2)

where Wo and Wd are the ratio of disordered and ordered residues,

respectively, and Nd and No are the total number of disordered and

ordered residues, respectively. It was shown by Lobanov et al.

(2010) that there is a linear relationship between the weighted score

and the accuracy metrics (Sw ¼ 2 � Acc� 1). Because these two met-

rics are tautological, the accuracy metric will be eschewed in this

paper for the Youden index. For further AUC analysis, the P-value

metric can be calculated, which calculates the significance of the dif-

ference between two AUC values on a common dataset (Hanley and

McNeil, 1982). All of these measurements based on the discrete

labels of the predictor have a maximum value of 1, indicating a per-

fect level of prediction. Therefore, the performance between pre-

dictors can be evaluated and compared using the AUC, MCC or Sw

metrics after being tested on a common dataset.

2.5 Method comparison
To compare against other methods, we downloaded the standalone

version for DisEMBL 1.4 (Download: http://dis.embl.de/html/down

load.html), DISOPRED 3.16 (Download: http://bioinf.cs.ucl.ac.uk/

software_downloads/), Dispredict 1.0 (Download: https://github.

com/tamjidul/DisPredict_v1.0), Espritz 1.1 (Download: http://pro

tein.bio.unipd.it/download/), SPINE-D (Download: http://sparks-

lab.org/index.php/Main/Downloads) and MetaDisorder

(Download: https://github.com/Rostlab/MetaDisorder), which

included the predictors NORSnet, Profbval and UCON. We also

submitted our sequences to the online servers of Dispro (Server

URL: http://scratch.proteomics.ics.uci.edu/), IUP-short and IUP-long

(Server URL: http://iupred.enzim.hu/), MFDp and MFDp2 (Server

URL: http://biomine-ws.ece.ualberta.ca/MFDp2/), PONDR-fit

(Server URL: http://www.disprot.org/pondr-fit.php) and PONDR-

VLXT (Server URL: http://www.pondr.com/cgi-bin/PONDR/pondr.

cgi). These methods will also provide a comparison between

sequence-based and profile-based predictors. Profile-based pre-

dictors (such as Dispredict, DISOPRED, the MetaDisorder ensem-

ble, MFDp 1 & 2, SPINE-D and the proposed method) utilize an

evolutionary profile in their predictions. This generally provides a

more accurate prediction than solely sequence-based methods, but

greatly increases the time taken for prediction from the sequence,

limiting their practicality for large-scale predictions. Note that we

are using the single-sequence model for Espritz due to time con-

straints, which is known to provide inferior results to the multi-

sequence model (Walsh et al., 2012).

3 Results

3.1 Training and testing
SPOT-disorder was trained and cross-validated by the DM3000 set

(ten-fold cross validation) and independently tested by DM1229

and SL329. As shown in Table 1, the performance for the two

randomly divided large datasets (DM3000 and DM1229) is essen-

tially the same, where the obtained Sw’s and AUC’s for both datasets

are virtually equal, indicating the robustness of the training. For the

smaller test set SL329, SPOT-disorder has an even better perform-

ance with MCC¼0.67. SPOT-disorder is more accurate than

SPINE-D, which employed traditional window-based ANNs for the

same cross validations and test sets. The AUC values for DM1229

increased from 0.877 by SPINE-D to 0.894 by SPOT-disorder and

Sw from 0.60 to 0.63.

Table 2 examines the contributions of individual feature groups

to the overall performance of SPOT-disorder in the SL329 test set.

We divided features into four groups: evolutionary

(PSSMþ entropy), physiochemical properties, predicted backbone

structure (secondary structure and backbone angles) and predicted

contacts (solvent exposure and contact numbers). The table shows

that removing contacts predicted by SPIDER2 has the largest im-

pact, followed by secondary structure on all three measures (AUC,

Sw and MCC). The importance of predicted contacts for disorder

prediction confirms the capability of the LSTM technique to pick up

long-range, nonlocal interactions. Interestingly, the evolutionary

features (PSSM and entropy) are not as important as one might

think, likely due to other features such as secondary structures and

contacts being predicted with the PSSM information.

Supplementary Table S1 compares SPOT-disorder against a

number of 12 other predictors in addition to SPINE-D in SL329.

The ROC curves for these methods are shown in Supplementary

Figure S1. In the table, we also present the results from SL290

after excluding 39 chains >1000 residues in length, as some pre-

dictors’ servers do not accept proteins over this length. We note

that the SPINE-D results for SL329 are slightly better than previ-

ously reported by Zhang et al. (2012), likely because the updated,

larger protein sequence library is employed in generating PSSM

by PSIBLAST. Table S1 shows that SPOT-disorder has the best

performance across all performance metrics excluding Dispredict,

Table 1. Performance of SPOT-disorder on the 10-fold cross-valid-

ation subset of DM3000, and test sets DM1229, SL329 and

Mobi11925

Dataset AUC Sw
c MCCd Se

d Sp
d #Oa #D(long)b

DM3000 0.892 0.63 0.60 0.54 0.98 656634 74170 (33778)

DM1229 0.894 0.63 0.57 0.51 0.98 276748 29082 (11496)

SL329 0.905 0.66 0.67 0.67 0.96 51292 39544 (34470)

Mobi11925 0.891 0.63 0.50 0.49 0.98 2907992 191633 (63751)

a#O: the number of ordered residues.
b#D: the number of disordered residues and the number in long disordered

regions in parentheses.
cThe Sw was obtained using the threshold that maximized the Sw score in

DM3000 cross-validation (0.16).
dMCC, Se and Sp were obtained using the threshold which maximized

MCC during DM3000 cross-validation (0.49).

Table 2. Performance of SPOT-disorder on the SL329 dataset with

individual feature groups removed

Omitted feature group AUC Sw MCC

SPOT-Disorder 0.905 0.661 0.660

PSSM & Entropy 0.903 0.662 0.663

Physicochemical Properties 0.902 0.668 0.672

Backbone Structure 0.902 0.647 0.643

Contacts/Solvent Exposure 0.896 0.642 0.638
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which employed the MxD444 dataset as the training set,

which was found to have a high sequence similarity to SL329. In

fact if we excluding chains in SL329 overlapped with MxD444

(SL117), the performance of Dispredict is significantly worse than

SPOT-Disorder (AUC¼0.671, Sw¼0.38, MCC¼0.42 for

Dispredict, compared to AUC¼0.930, Sw¼0.71, MCC¼0.70

for SPOT-Disorder). Importantly, the AUC obtained by

SPOT-disorder is significantly better than all of the other methods

(P-value< 10�5 for all methods) across the datasets in

Supplementary Table S1.

3.2 CASP9 and CASP10 predictions
To further compare our methods, SPOT-disorder is applied to

CASP9 targets and CASP10 targets. Notice that SPINE-D and

SPOT-disorder were trained by the same training sets built prior to

2010 and SPINE-D participated in the blind prediction of CASP9.

Thus both CASP datasets can be considered as independent test sets

for SPOT-disorder. CASP9 has 117 targets with 23656 ordered resi-

dues and 2427 disordered residues, with only 560 disordered resi-

dues in long disordered regions (�30 residues). Similarly, CASP10

has 94 targets with 22 688 ordered residues and 1502 disordered

residues. There are only 260 disordered residues in long disordered

regions (�30 residues). Thus both datasets mainly test the ability of

a computational method for detecting short disordered regions.

The performance of SPOT-disorder in CASP9 and CASP10 is

compared to other methods in Supplementary Tables S2 and S3 and

Figures S3 and S4 for ROC curves, respectively. The performance of

these other methods is obtained from Monastyrskyy et al. (2011,

2014), respectively. As CASP predictions contain predictors which

are trained on different objectives (i.e. maximizing Sw or MCC),

both of the thresholds from Table 1 are used in calculating SPOT-

disorder’s performance. For CASP9, SPOT-disorder has the best per-

formance in AUC, Sw and MCC values. For CASP10, SPOT-

disorder has an insignificantly lower AUC than PrDOS-CNF (0.903

versus 0.907, a one-tailed P-value¼0.28), yet achieves a higher

MCC value (0.55 versus 0.53) and the highest Sw (0.63 versus 0.56

for POODLE and metaprdos2). SPOT-disorder scores marginally

higher than DISOPRED in AUC (0.903 versus 0.897, a one-tailed P-

value¼0.22), but, more significantly, scores higher in MCC (0.55

versus 0.53). The comparison of these results to SPINE-D’s per-

formance in the CASP datasets shows that SPOT-disorder signifi-

cantly outperforms SPINE-D, with one-tailed P-values of 5� 10�5

and 5� 10�3 for CASP9 and CASP10, respectively. The relatively

higher P-value could be caused by the small set in CASP10, which

contains very few long (>30 residues) disordered regions.

3.3 MobiDB
To further confirm the accuracy of SPOT-disorder we applied our

method to MobiDB, our largest database consisting of >10 000

annotated proteins. Table 3 and Figure 2 compared SPOT-disorder

with 11 other methods. Several methods listed in Supplementary

Table S1 (MFDp 1 & 2, and Dispro) are not compared here because

the size of the database prohibits its submission for online predic-

tion. We have listed the result of DISOPRED for convenience al-

though it was directly trained by a significant portion of MobiDB.

SPOT-disorder continues to consistently improve over other meth-

ods compared. In particular, the difference between the ROC curves

given by SPOT-disorder and the next best SPINE-D (not including

DISOPRED) is statistically significant with a one-tailed p-value

of < 10�6. Our values of AUC, Sw and MCC are 0.891, 0.630 and

0.401, respectively, all of which are the highest among all the

methods compared, excluding DISOPRED. We noted that faster

single-sequence-based models are generally less accurate than slower

profile-based methods due to their lack of evolutionary information

on this dataset.

Also of note is that AUC and Sw values are essentially the same

among DM3000, DM1229 and Mobi11925 as shown in Table 1.

Mobil11925 has the lowest MCC value because it has the lowest

ratio of disordered residues (disorder:order¼1:15).

3.4 Length dependence
In our previous method SPINE-D, residues in long disordered (�30

residues) regions are predicted separately from those in short dis-

ordered (<30 residues) regions. It is of interest to know if SPOT-

Disorder would be biased toward disordered regions of certain

length without length-separated training. Supplementary Figure S2

compares the performance of SPOT-disorder with other methods for

the SL290 dataset in disordered regions of different sizes. It is clear

that SPOT-disorder either matches or exceeds the performance of

SPINE-D in each length segment and improves over other methods

in comparison, suggesting a small but systematic overall

Table 3. Performance of various methods on Mobi11925, grouped

by use of evolutionary features

Predictor Mobi11925

AUC S w MCC

Profile SPOT-disordera 0.891 0.630 0.401

DISOPREDb,c 0.887 0.466 0.494

SPINE-D 0.882 0.610 0.397

MDb 0.813 0.405 0.305

NORSb 0.738 0.227 0.234

PROFbvalb 0.734 0.335 0.165

UCONb 0.734 0.312 0.206

Sequence Espritz 0.824 0.164 0.333

PONDR-fit 0.822 0.441 0.341

DisEMBL 0.789 0.343 0.327

IUP-short 0.784 0.368 0.341

IUP-long 0.740 0.289 0.270

PONDR 0.733 0.336 0.192

aSPOT-disorder’s MCC value is slightly different from that reported in

Table 1 as the threshold used here is based on Sw.
bOmits a single protein of length>10000 residues long.
cDISOPRED employed a significant portion of proteins in Mobi11925 as

the training set. The result is listed here for convenience.
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Fig. 2. Receiver Operating Characteristic curves by various methods as

labeled for the Mobi11925 dataset.
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improvement. SPOT-disorder also follows the general curve of most

of the predictors, illustrating regions in the dataset which are more

easily predicted than others, such as regions of length (45,60] and

(120,180].

To remove the uncertainty due to the small sample size, we fur-

ther examined length dependence using the large MobiDB dataset.

As shown in Figure 3, the larger amount of data makes a smoother

dependence of performance on the size of disordered regions.

Interestingly, SPOT-Disorder improves over SPINE-D consistently

for all sizes of disordered regions except the last two bins: (120,

180] and>180. The improvement in shorter disordered regions is

consistent with the fact that these disordered regions tend to associ-

ated with more nonlocal interactions as they are embedded within

structured regions.

4 Discussion

This paper represents the first application of a long short-term mem-

ory network in protein disorder prediction. The new technique has

the best performance or has matched the best performance among

all methods compared for all independent test sets (Table 3;

Supplementary Tables S1–S3). This was achieved despite SPOT-

Disorder being trained on an unbalanced dataset (DM3000), and in-

dependently tested on both a more balanced dataset (SL329), data-

sets dominated by short disordered regions (CASP9 and CASP10)

and the large MobiDB dataset of >10 000 proteins.

One strength of SPOT-disorder is its ability to handle disordered

residues in disordered regions of different lengths. Some previous

methods relied on separate training of short or long disordered re-

gions in a single method (Zhang et al., 2012) or two different meth-

ods such as short and long versions in IUPRED (Doszt�anyi et al.,

2005) and PONDR (Peng et al., 2005, 2006; Romero et al., 2001).

Other methods such as DISpro (Cheng et al., 2005) and Predisorder

(Deng et al., 2009) trained on disordered regions without separating

long and short disordered regions. SPOT-disorder confirmed that it

is possible to provide the best prediction in short and long dis-

ordered regions without specific training. Interestingly, according to

the largest test set (Figure 3), most methods, including this study,

have the best performance for the disordered regions of (30,45]

amino acids long. The performance goes down quickly for the long

disordered regions with more than 180 residues, indicating that pre-

diction of very long disordered regions remains a challenge.

While the main objective of this study is to highlight the import-

ance of long short-term memory for further improving on the cur-

rent disorder predictors, it is of interest to examine its ability to

identify potential functional regions in disordered proteins. Early

studies have shown that a dip in disorder probability is associated

with induced folding (Mohan et al., 2006; Oldfield et al., 2005).

Several machine-learning tools were developed specifically for pre-

diction of binding sites in disorder (Garner et al., 1999), such as

alpha-MoRF (Oldfield et al., 2005), MoRFpred (Disfani et al.,

2012), ANCHOR (Mész�aros et al., 2009) and DISOPRED3 (Jones

and Cozzetto, 2015). We previously showed that semi-disorder

(defined as predicted disorder probability around 0.5) is implicated

in induced folding and protein aggregation (Zhang et al., 2013) and

plays a significant role in temperature adaption of disordered pro-

teins (Wang et al., 2013). As an initial test for SPOT-disorder in

binding site prediction, we employed a test set of 9 proteins with

annotated disordered binding sites, collected by Jones and Cozzetto

(Jones and Cozzetto, 2015). Following our previous work (Zhang

et al., 2013), we defined semi-disorder as a region enclosing a pre-

dicted disorder probability of 0.5. Table 4 shows that using only

two parameters for defining semi-disorder, SPOT-disorder yields

substantially more accurate prediction of binding sites (MCC¼0.31

and Sw ¼ 0.41) than other methods specifically trained for predict-

ing binding sites (MCC<0.13 and Sw<0.12). The optimized semi-

disorder region is found to be between 0.28 and 0.69. This result

highlights the potential of SPOT-disorder in predicting functional

regions of protein disorder and strengthens the existence of a third

state between disordered and structured states to account for

induced folding and aggregation in intrinsically disordered regions

(Zhang et al., 2013).

These successes can be attributed to the ability of LSTMs to rec-

ognize non-local interactions, as the limit of focusing on local inter-

actions has seemingly been reached by the use of traditional neural

networks. Steady further improvement in all of the datasets tested

suggests the usefulness of LSTMs in other bioinformatics areas

where non-local interactions are important.

In this study, to greatly improve the speed of training this net-

work, we trained this network using a Graphics Processing Unit

(GPU) for accelerated training. The use of GPUs in training neural

networks has been shown to decrease the training time by a factor

of �20 (Oh and Jung, 2004). Training the network through 50

epochs took about 1 week on a single Quadro K5200 graphics card.

The testing phase of a neural network involves doing a forward pass

through the network, which is computationally trivial and can easily

be performed on a CPU. For example, a forward pass only takes

0.8 seconds for a protein with 110 residues and 6 seconds for a pro-

tein with 1194 residues. The most time-consuming portion is calcu-

lation of the PSSM by PSI-BLAST. It takes about 10 and 50 minutes/

iteration for those same two proteins, respectively, on a single CPU

of Intel Xeon E5-1650 v2 @3.50GHz. The computing cost of PSSM

is the main reason for slow calculation for profile-based methods.

(3 15] (15 30] (30 45] (45 60] (60 90] (90 120] (120 180] >180
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Size of Disordered Regions

Fr
ac

tio
n 

of
 C

or
re

ct
ly

 P
re

di
ct

ed
 D

is
or

de
re

d 
R

es
id

ue
s

SPINE_D
PONDR
PONDR_fit
IUP_short
IUP_long
NORS
PROFbval
UCON
MD
Espritz
DisEMBL
SPOT−disorder

Fig. 3. The classification accuracy of the predictors per the size of the dis-

ordered regions for the Mobi11925 dataset.

Table 4. Prediction of protein binding sites from several predictors

Predictor Sw MCC Sens Spec

SPOT-disorder (dual) 0.407 0.309 0.52 0.89

SPOT-disorder (single)a 0.239 0.142 0.96 0.28

DISOPRED3b 0.105 0.126 0.15 0.96

MoRFpredb 0.112 0.104 0.19 0.92

MFSPSSMpredb 0.106 0.092 0.21 0.90

ANCHORb �0.175 �0.092 0.29 0.54

aResults obtained by considering disordered regions as binding sites and

using only one threshold.
bResults obtained from Jones and Cozzetto (2015).
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