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Abstract

Motivation: Accurate prediction of a protein contact map depends greatly on capturing as much

contextual information as possible from surrounding residues for a target residue pair. Recently,

ultra-deep residual convolutional networks were found to be state-of-the-art in the latest Critical

Assessment of Structure Prediction techniques (CASP12) for protein contact map prediction by

attempting to provide a protein-wide context at each residue pair. Recurrent neural networks have

seen great success in recent protein residue classification problems due to their ability to propa-

gate information through long protein sequences, especially Long Short-Term Memory (LSTM)

cells. Here, we propose a novel protein contact map prediction method by stacking residual convo-

lutional networks with two-dimensional residual bidirectional recurrent LSTM networks, and using

both one-dimensional sequence-based and two-dimensional evolutionary coupling-based

information.

Results: We show that the proposed method achieves a robust performance over validation and in-

dependent test sets with the Area Under the receiver operating characteristic Curve (AUC) > 0.95 in

all tests. When compared to several state-of-the-art methods for independent testing of 228 pro-

teins, the method yields an AUC value of 0.958, whereas the next-best method obtains an AUC of

0.909. More importantly, the improvement is over contacts at all sequence-position separations.

Specifically, a 8.95%, 5.65% and 2.84% increase in precision were observed for the top L=10 predic-

tions over the next best for short, medium and long-range contacts, respectively. This confirms the

usefulness of ResNets to congregate the short-range relations and 2D-BRLSTM to propagate the

long-range dependencies throughout the entire protein contact map ‘image’.

Availability and implementation: SPOT-Contact server url: http://sparks-lab.org/jack/server/SPOT-

Contact/.
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1 Introduction

Proteins are one of the most biologically important macromolecules

with a wide variety of functions. Because the functions of most pro-

teins rely on their uniquely-folded three-dimensional structures, deter-

mining protein structures is of great importance to understand

functional mechanisms. Due to the high cost and low efficiency of ex-

perimental techniques, ab initio prediction of protein structures by

computational methods have been actively pursued in the past

50years, but are still yet to be solved. To simplify the problem, break-

ing the structure-prediction problem into more feasible sub-problems

has been the forefront of bioinformatics studies for decades.

One such sub-problem is the prediction of residue-residue con-

tacts. By analyzing whether or not a residue pair in a protein se-

quence is in contact (i.e. close in 3D space), we are able to form a

protein contact map, which provides key structural restraints to-

wards the modeling of a protein’s three-dimensional structure. The

current methods for predicting protein contact maps can be sorted

into two distinct groups: Evolutionary Coupling Analysis (ECA) and

machine learning techniques.

ECA methods utilize Multiple Sequence Alignments (MSAs;

Göbel et al., 1994) to identify correlation in changing (co-evolving)

residue pairs, using the belief that residues in close proximity mutate

in sync with the evolutionary functional and structural requirements

of a protein. These methods have benefited from the explosion of

available protein sequences in the past decade, as these methods per-

form particularly well when a target protein sequence has a high num-

ber of homologues in a protein database (Ovchinnikov et al., 2017).

Popular ECA methods include: CCMPred (Seemayer et al., 2014),

FreeContact (Kaján et al., 2014), GREMLIN (Kamisetty et al., 2013),

PlmDCA (Ekeberg et al., 2013) and PSICOV (Jones et al., 2012).

While these methods are useful for predicting long-range contacts in

proteins with a high number of sequence homologues, their accuracy

is poor if the number of homologues is low (Wang and Xu, 2013).

The other, increasingly accurate methods are based on machine

learning techniques. These methods have seen success due to their

ability to learn underlying relationships present in sequence-based fea-

tures given a set of labelled data. They have been found especially ef-

fective when predicting on proteins with few homologues. Early

machine learning papers utilized Support Vector Machines (SVM;

Vapnik, 1998) due to their ability to model complex relationships des-

pite a lack of processing power and extensive data, such as SVMCon

(Cheng and Baldi, 2007), SVMSEQ (Wu and Zhang, 2008) and the

recently-released R2C (Yang et al., 2016). Other papers have found

success in exploiting the ever-increasing amount of available training

data by the application of Deep artificial Neural Networks (DNN’s;

Rumelhart et al., 1985) in various forms, such as two-dimensional

(2D) Recursive NNs (Rec-NN’s; Baldi and Pollastri, 2003) and Deep

Belief Network’s (Hinton et al., 2006). Such predictors include

Betacon (Cheng and Baldi, 2005), CMAPPro (Di Lena et al., 2012),

DeepConPred (Xiong et al., 2017) and NNCon (Tegge et al., 2009).

Complementary methods can be combined in the form of metapre-

dictors, where a single network combines the outputs of several other

classifiers. Examples of this architecture are MetaPSICOV (Jones et al.,

2015) and NeBCON (He et al., 2017). MetaPSICOV received the best

prediction results in a recent review by Wuyun et al. (2016).

The recently-released RaptorX-Contact (Wang et al., 2017) and

DNCON2 (Adhikari et al., 2017) predictors are the first approaches

to attempt the incorporation of the entire protein ‘image’ as context

for prediction. The architecture utilized in these models are

Convolutional NN’s (CNN; LeCun et al., 1989), with RaptorX-

Contact utilizing a Residual CNN, or ResNet (He et al., 2016a).

ResNets achieve identity mappings between several layers by

employing shortcut connection between the output of a previous

layer and the current output. This allows these models to have ultra-

deep architectures due to their ease of propagating the error gradient

through many layers, and have been shown to benefit from having

over 100 convolutional layers. RaptorX-Contact is currently the

state-of-the-art predictor for the latest Critical Assessment of

Structure in Proteins (CASP) round, demonstrating that access to the

entire protein as context is greatly beneficial to learning contact

maps (Schaarschmidt et al., 2018; Wang et al., 2018). It also is one

of the techniques to benefit from combining sequence-derived fea-

tures with the information from evolution coupling (Betancourt and

Thirumalai, 1999; Miyazawa and Jernigan, 1985). DNCON2, on

the other hand, can be split into two sections. The first uses a set of

intermediate CNNs to predict contact maps at several distances

(from 6–10 Å). It then combines these separate predictions in a sec-

ondary CNN to provide the final contact map at 8 Å.

The neural network architecture utilized in this paper was

inspired by RaptorX-Contact and the Multi-Dimensional Recurrent

Neural Network (MD-RNN) in Graves et al. (2007), in which

stacked 2D RNNs were proven able to progress information

throughout entire 2D images. The advantages here were that the

model was able to generalize along all input spatio-temporal dimen-

sions, making the model robust to distortions in any mixture of the

input dimensions, with the architecture performing particularly well

on warped data in comparison to CNNs. The MD-RNN was simpli-

fied in ReNets (not to be confused with ResNets), where the x and y

dimensions’ forward and backward RNNs were separated between

consecutive layers (Visin et al., 2015). Min et al. (2017) described

the MD-RNN as an emerging architecture in bioinformatics in a re-

cent review.

In combination with RNNs, Long Short-Term Memory (LSTM)

cells (Hochreiter and Schmidhuber, 1997) are commonly used to

model long-range context which is vital to modeling complex rela-

tionships between non-local datapoints. Bidirectional LSTM net-

works (Schuster and Paliwal, 1997) have already seen success in

bioinformatics applications, where their effective propagation of

deep residue structural interdependencies have provided state-of-

the-art results in protein secondary structure prediction (Heffernan

et al., 2017) and protein disorder prediction (Hanson et al., 2017),

the latter of which demonstrating that LSTM cells are able to accur-

ately predict sparse data, an aspect shared between protein disorder

and contact map prediction.

In this paper, we aim to capture these deep, underlying relation-

ships between non-local residue pairs in both spatial dimensions for

protein contact map prediction by the use of an ultra-deep hybrid

network, consisting of a ResNet coupled with 2D Bidirectional-

ResLSTMs (2D-BRLSTM). Using this technique, the proposed

method, called SPOT-Contact (Sequence-based Prediction Online

Tools for Contact map prediction), is able to capture contextual in-

formation from the whole protein ‘image’ at each layer. SPOT-

contact has been found to be highly accurate for predicting contacts

at all sequence-position separations, significantly outperforming all

methods compared.

2 The machine learning approach

2.1 Ensemble of two-dimensional bidirectional

recurrent neural networks and ResNets
Our approach to the problem is built up of an ensemble of models,

all based on slight variations of the network architecture shown in
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Figure 1. The base model can be broken down into four separate

segments: input preparation, ResNet, 2D-BRLSTM and Fully-

Connected (FC).

The data preparation segment involves the transformation of our

sequence-based one-dimensional features into a two-dimensional

representation. This is achieved through the outer concatenation

function, as described in Wang et al. (2017). However, rather than

concatenating the features of residues i; j and iþj
2 at position (i, j),

we omit the concatenation of the midpoint residue. The product of

the concatenation stage is then depth concatenated (i.e. concaten-

ated along the feature axis) with the two-dimensional features.

The ResNets used in our model utilize the pre-activation order of

operations as proposed in He et al. (2016b). As such, an initial con-

volutional layer was placed before the first residual block. The re-

sidual block architecture is shown in the ResNet Block section of

Figure 1. The output of the entire ResNet was also activated and

normalized prior to the 2D-BRLSTM section. The size of the convo-

lutions alternated between a kernel size of 3 x 3 and 5 x 5, both

with 60 filters and had a Exponential Linear Unit (ELU) activation

(Clevert et al., 2015). ELU activations have been seen to be more ef-

fective than the standard ReLU activation function in learning for

ResNets (Shah et al., 2016).

The 2D-RNNs used in this model differ to Graves et al. (2007)

by the fact that each of the four directions’ RNNs in each layer is

completely independent of all of the other directions’ due to limita-

tions in the coding environment, as is similar to Visin et al. (2015).

Although each directions’ outputs are calculated separately, they are

concatenated at the output of each layer to provide information

from the entire 2D image plane to the next layer. However, He et al.

(2016a) discussed that the identity mapping function is less effective

at error propagation when the residual connection is connected over

only a single layer’s activation. Therefore, we add a bottleneck layer

before the LSTM layers to increase the depth of the residual connec-

tion. This also has the added benefit of reducing the parameter count

of the model. The bottleneck and LSTM layers form our BRLSTM

blocks (Kim et al., 2017) as shown in Figure 1. This bottleneck

connection is established by a 1�1 convolution with an ELU

activation.

The default 2D-BRLSTM layer’s LSTM cells consist of 200 one-

cell memory blocks, culminating in 800 inputs at the succeeding

layer. The FC layers consist of 400 nodes plus a bias node with an

ELU activation, except at the output layer which has a single output

neuron and a sigmoid activation to convert the output into a likeli-

hood of a residue pair being in contact. The network layout from

Figure 1 is only changed when omitting the bottleneck layer, and

when the 2D-BRLSTM is placed first in the network (see the model

variants listed in Supplementary Table S1). All of the parameters dis-

cussed above were chosen after thorough experimentation, during

which this architecture was found to obtain consistently high

accuracies through short, medium and long distance contacts on a

validation set, yet fitting into the strict computational memory con-

straints of a 2D-BRLSTM.

Each model was trained with the ADAM optimization algorithm

(Kingma and Ba, 2014), which has been shown to converge more

quickly than the traditionally-used Stochastic Gradient Descent with

the additional benefit of having standard hyperparameters which re-

quire little to no tuning. Regularization was applied to the network

through the use of layer normalization (Lei Ba et al., 2016) at each

normalization block in Figure 1, and a 50% dropout rate at the out-

put of the FC layer during training (Srivastava et al., 2014).

Using an ensemble predictor allowed us to minimize the effects

of generalizations on the data. Because the tuned weights of a neural

network learn slightly different representations of the data (due to

various weight initializations and training data feeding), these lead

to various errors at the output which are dependent on the general-

izations made. Assuming that the correct outputs should be more

common between the individual predictors, the collective decision

between all of the predictors should be less likely to contain the

errors pertaining to an individual predictor’s generalization (Hansen

and Salamon, 1990). All six models (base network, base without

bottleneck, base without FC, 2D-BRLSTM prior to ResNet in the

base model and the 2D-BRLSTM only model) used in SPOT-

Contact are shown along with their network parameters in

Supplementary Table S1. The results of SPOT-Contact are provided

by the mean of all six networks’ outputs. An ensemble of models

was also utilized in RaptorX-Contact.

Training of the model was executed in the framework of

Google’s Tensorflow library (v1.4; Abadi et al., 2016), enabling us

to accelerate the training of the model by training the model on an

Nvidia GTX TITAN X Graphics Processing Unit (GPU). Oh and

Jung (2004) showed that the use of a GPU in neural network train-

ing can speed up the total training time by up to a factor �20. Total

training time was mostly influenced by the depth of the 2D-

BRLSTM layers, with each network taking roughly 50 h for 15

epochs over our whole training set. The size of the 2D-BRLSTM

layers dictated the memory consumption during training. Thus, the

model hyperparameters, such as LSTM cell size, were chosen as a

compromise between the training time, memory usage and perform-

ance of the model. Deeper and larger architectures were tested by

spreading the model over multiple GPU’s, but this was not found to

improve performance significantly.

2.2 Input features
The inputs to our model included both one-dimensional (i.e. along

the primary sequence) and two-dimensional features (i.e. pairwise,

or per residue pair). One-dimensional features consisted of the

Position-Specific Scoring Matrix (PSSM) profile, the HMM profile

from HHblits (Remmert et al., 2012) and several predicted struc-

tural probabilities from SPIDER3 (Heffernan et al., 2017). The

PSSM profile was generated by three iterations of PSI-BLAST

(Altschul et al., 1997) against the UniRef90 sequence database

updated in April 2018. The HMM profile was generated by hhblits

Fig. 1. The network layout of the SPOT-Contact. The ResNet (Residual

Convolutional Neural Network) and 2D-BRLSTM (2-Dimensional Bidirectional

Residual LSTM Network) functions are provided in boxes ‘A’ and ‘B’, respect-

ively. NRC, NRL, and NFC are the depth of the CNN filters in the ResNet block,

four times the depth of the LSTM layers in the 2D-BRLSTM block and the

depth of the FC layer, respectively, and L is the length of the input protein.

Depth concatenation means concatenation along the last dimension

Predicting contact maps with residual LSTM’s and ResNets 4041
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v3.0.3 with default parameters by searching the UniClust30 profile

HMM database updated in October 2017 (Mirdita et al., 2016).

The predicted values obtained from SPIDER3 were: 1 relative

solvent-Accessible Surface Area, 2 Half-Sphere Exposures based

on the Ca atom, the 8 sine/cosines of the backbone torsion

angles (theta, tau, phi and psi) and the three probabilities of the

predicted secondary structure. Finally, we also employed a set of

seven physicochemical properties provided by Meiler et al. (2001).

This gives a total of 71 1D features for the initial section of the

network.

The 2D features consist of the output from CMMPred (Seemayer

et al., 2014), and 2 outputs (mutual and direct-coupling informa-

tion) from DCA (Morcos et al., 2011), resulting in three pairwise

features for concatenation with the output of the first section of the

network. The data was standardized to have zero mean and unit

variance (according to the training data) before being input into the

network.

2.3 Datasets
We downloaded 30% non-redundant sequences with resolution

<2.5 Å and R-factor < 1.0 from the cullpdb website, which con-

tained 14 541 chains on February 2017. After removing obsolete

sequences, sequences containing less than 30 residues and proteins

greater than 25% sequence similarity according to BlastClust

(Altschul et al., 1997), we kept 12 450 chains. In order for a good

comparison with other methods, we have kept all 1250 chains

deposited after June 2015 as our independent test set (Test) and the

remaining 11 200 as training set. We produced a difficult (‘hard’)

subset of Test (Test-Hard), by removing any proteins in Test that

have a PSI-Blast E-value of 0.1 or less to any proteins in the training

set (i.e. further removing any proteins with potential homologous

relations to the training set). This ‘hard’ dataset contains 280

chains.

Due to limitations of the coding environment imposed by the

large memory usage by the 2D-BRLSTM model, training and testing

input proteins are limited to proteins of length � 300 and � 700 res-

idues, respectively. While this restriction excludes many proteins, it

still incorporates upwards of 90% of single domain sequences for

testing with our model (Islam et al., 1995). This restriction left us

with 7557 training proteins, and a validation, Test and Test-Hard

sets of 983, 1213 and 277 proteins, respectively. We also obtained

22 template-free modeling (TFM) CASP12 targets as an additional

test set. Their sequence similarity to our training set is also <25%

according to BlastClust. All of these datasets can be obtained from

www.sparks-lab.org.

To gauge the performance increase by training on new sequence

profiles, we also trained an exact replica of SPOT-Contact using the

UniRef and UniProt datasets from March 2017 and February 2016,

respectively. This model, named SPOT-Contact-2016 will serve as a

baseline to compare the other predictors to, to illustrate that the per-

formance improvement reported here is not solely caused by a sim-

ple update of sequence libraries.

2.4 Performance evaluation
Protein residues in these experiments are considered to be in contact

when the inter-residue distance between the two Cb atoms is

� 8.0 Å, following the standard CASP definition (Ezkurdia et al.,

2009). For a protein of length L, we first separate it into short

(12 > ji� jj � 6), medium (24 > ji� jj � 12) and long (ji� jj � 24)

sequence-position-separated residues. From these groups, we take

the top L/k highest-ranked predictions (where k 2 f10; 5; 2;1g)
from the predicted contact map and calculate the precision, recall

and F1 scores of these values, where:

Prec ¼ 1

N

XN

n¼0

True Positivesn

True Positivesn þ False Positivesn
; (1)

Recall ¼ 1

N

XN

n¼0

True Positivesn

True Positivesn þ False Negativesn

; (2)

and

F1 ¼ 2 � Prec � Recall

Prec þ Recall
; (3)

where N is the number of proteins in the test set.

These three metrics are chosen for consistency with the metrics

used in the CASP12 rankings. However, these CASP metrics pro-

vide an evaluation on the positive predictions of a predictor, but

do not provide any information on the predictions not in the top

L/k predictions, especially those negative predictions. Thus, they

are biased towards predictors which weight positive predictions.

It should be noted that SPOT-Contact was not trained with a scal-

ing factor for the positive samples. To analyze all the predictions

from our model, we utilize the Area Under the receiver operating

characteristic Curve (AUC) metric as an overall performance

evaluator. This metric provides the probability that the predictor

will rank a random positive sample higher than a random negative

sample (Fawcett, 2006). We can compare the AUC scores of other

predictors with respect to SPOT-Contact using a P-value, which

indicates the statistical significance of the difference between the

two predictors’ results (Hanley and McNeil, 1982). The smaller

the P-value is, the more significant the difference between the two

predictors. The AUC values for short-, medium- and long-range

contacts were also obtained separately to examine the improve-

ments in more detail.

The latest CASP publication (Schaarschmidt et al., 2018) noted

that the area under the Precision-Recall (PR) curve provides a bal-

anced metric. Thus we also analyze the AUC of the PR curve, to ana-

lyze the positive predictions of the predictor.

2.5 Method comparison
In order to gauge the performance of SPOT-Contact on our independ-

ent test sets, we chose several other readily-available, recently-

developed contact-map predictors. The standalone versions of

MetaPSICOV (Download: http://bioinfadmin.cs.ucl.ac.uk/downloads/

MetaPSICOV/), Gremlin (Download: http://gremlin.bakerlab.org),

SVMCon (Download: http://scratch.proteomics.ics.uci.edu), SVMSeq

(Download: http://zhanglab.ccmb.med.umich.edu/SVMSEQ), Deep

ConPred and DeepRCon (obtained from Xiong et al., 2017) and

PlmDCA (Download: https://github.com/pagnani/PlmDCA) were

used in these experiments. The standalone version of MetaPSICOV

also provided the results of EVFold, PSICOV and CCMPred. We also

submitted jobs to the online servers of DNCON2 (server URL: http://

sysbio.rnet.missouri.edu/dncon2/), RaptorX-Contact (Server URL:

http://raptorx.uchicago.edu/ContactMap/), R2C (Server URL: http://

www.csbio.sjtu.edu.cn/bioinf/R2C/), NeBcon (Server: https://zhan

glab.ccmb.med.umich.edu) and CMapPro (Server URL: http://scratch.

proteomics.ics.uci.edu/). Other predictors were considered, but were

ultimately far too time-consuming to do large-scale predictions or

were unavailable (Li et al., 2016).
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3 Results

The results of SPOT-Contact on each of the validation and independ-

ent testing datasets are shown in Supplementary Table S2 for AUC

and the mean precision of the results when separated into both se-

quence separation cutoffs (short, medium and long), and top-ranking

prediction cutoffs (L=10, L=5, L=2 and L). The F1 results are pro-

vided in Supplementary Table S3. Here, we did not perform multi-

fold cross-validation in training because of the time-consuming nature

of every training run. Nevertheless, the comparable performance in

AUC (0.976 versus 0.973) for the validation and the independent Test

set indicate the robustness of the ensemble predictor. Similar preci-

sions are observed regardless of whether it is a short, medium, or

long-range contact (88%, 88% and 92% for top L=10 predictions for

short, medium and long-range contacts in the test set, respectively).

The predictions of SPOT-Contact on the harder subset (Test-Hard)

obtained somewhat lower AUC, precisions and F1 scores. This was

expected, as more proteins in this subset have fewer homologous

sequences and thus are harder to predict. The average number of ef-

fective homologous sequences from HHblits is 7.93 for the Test set

but only 6.19 for the Test-Hard set.

3.1 Ensemble model analysis
To illustrate the contribution of each individual predictor, the individ-

ual and cumulative precision values for the Test-Hard are shown in

Supplementary Tables S4 and S5, respectively. Because it is not pos-

sible to directly compare the ResNets used in RaptorX-Contact, we

trained a pure ResNet model to compare to other ensemble compo-

nent models. As the results in Supplementary Table S4 show, while

the ResNet model is somewhat effective at short-range prediction, it

lacks the long-range modeling capabilities to predict the long-range

contacts as effectively as the pure 2D-BRLSTM model. However,

ResNets and 2D-BRLSTMs can be enhanced by combining the two in

hybrid models, showing the benefits of using the ResNets to congre-

gate the short-term relationships and then using the 2D-BRLSTM to

propagate this information throughout the protein image.

Supplementary Table S5 shows how much of a boost to performance

each network adds to the original base network, culminating in an in-

crease in the long-range predictions’ precisions by 5.31, 4.79, 5.24 and

4.54% for Test-Hard at the cutoffs of top L=10, L=5, L=2, L prediction,

respectively. While further gains could be obtained from adding more

models, the cumulative performance gains become incrementally smaller

as the number of networks in the ensemble increases, indicating that it

would not be worthwhile to increase the number of networks further.

3.2 Feature importance
It is of interest to see the effect of the individual feature groups on the

prediction accuracy. Much research has been conducted regarding the

effectiveness of evolutionary profiles, sequence structure and physico-

chemical properties on protein structure prediction (Hanson et al.,

2017), but such insight does not exist for the 2D features in protein

contact map prediction. Thus, we have trained our baseline model

without our 2D feature groups (the evolutionary coupling features

and CCMpred output) sequentially to see the effect of the 2D features

on our predictions. As is shown in Supplementary Table S6, 2D fea-

tures from CCMpred and DCA led to significant improvement over

the model based on 1D feature only. The improvement is significant

in all short, medium and long-range contact pairs. For example, the

improvement for top L/10 prediction is 3.7%, 6.5% and 10.3% for

short, medium and long-range contacts, respectively. Similar level of

improvement in F1 measure is also observed in Supplementary Table

S7. The overall improvement in AUC is 3.3% from 0.908 to 0.941.

3.3 Comparison to the 17 other methods
The performance of the 17 other predictors on a subset of

Test-Hard can be found in Supplementary Table S8 through

Supplementary Table S11. The corresponding Receiver-Operating

Characteristic (ROC) and PR curves are shown in Figures 2 and 3.

Mean precisions given by different methods for short, medium and

long-range contacts are also shown in Figure 4. Predictors such as

CMapPro and PSICOV have maximum length or a minimum num-

ber of sequence homologues requirements, which trimmed the size

of our dataset from 277 to 228. SPOT-contact significantly outper-

forms all compared models over all performance evaluations on this

dataset. For example, as shown in Supplementary Table S10, the

largest AUC is 0.958 given by SPOT-contact, followed by SPOT-

Contact-2016 (0.950), RaptorX-Contact (0.909) and DNCON2

(0.886). The AUC values for all other methods are less than 0.84. A

two-tailed P-value of < 10–6 is obtained when comparing SPOT-

contact’s AUC value against all external predictors. This improve-

ment is not dependent on the length cutoff, as Supplementary Table

S10 shows that the increase of AUC for SPOT-Contact is present

over all residue-separation cutoffs. For example, the AUC values for

short-, medium- and long-range contacts are 0.935, 0.949 and

0.888 by RaptorX-Contact, respectively, compared to 0.960, 0.965

and 0.951 by SPOT-Contact, respectively.

We also compare the PR curves of each predictor, and calculate

the AUC of these curves in Supplementary Table S11. SPOT-

Contact obtains the highest AUC, even when segmented by residue
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Fig. 2. Receiver Operating Curves for 19 predictors on the Test-Hard subset
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Fig. 3. PR curve for 19 predictors on the Test-Hard subset
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separation. SPOT-Contact increases on RaptorX-Contact’s overall

PR AUC by 0.1 from 0.554 to 0.658, 0.076 from 0.584 to 0.660

and 0.07 from 0.457 to 0.527 for the short-, medium- and long-

range contacts, respectively.

Most significantly, SPOT-contact increases the already-

outstanding long-range contact precision scores of RaptorX-contact

(e.g. from 51.1 to 55.6 in top L long-range prediction), further

increasing the gap between modern machine learning techniques

and ECA methods. This is independent of sequence profile database

selection, as SPOT-Contact-2016 also improved on RaptorX-

Contact in each analyzed metric.

In particular, SPOT-contact is the only method to achieve more

than 80% precision for short, medium and long-distance contacts

for top L/10 predictions. This happened without specific training for

precision. It can be noticed that the ECA-based predictors perform

poorly on this dataset, due many proteins in this dataset not having

a large number of sequence neighbors in the existing sequence li-

brary. SPOT-contact receives slightly higher evaluation metrics on

this subset of 228 proteins in Test-Hard than the results in

Supplementary Table S2 because the maximum length and min-

imum number of sequence homologue restrictions placed by other

predictors makes this subset easier to predict than the full 277-

protein Test-Hard dataset. This is confirmed by a similar decrease in

the evaluation metrics from RaptorX-Contact; for instance the

mean precision of the top L long-range residue pairs decreases from

51.09% in the subset to 49.31% in the full set.

To confirm the dependence of method-performance on the num-

ber of homologous sequences, we present the mean precision values

of the top L/5-ranked predictions as a function of the maximum

cumulative Neff values (the number of effective homologous sequen-

ces, ranging from 1 to 20) from HHblits, in Supplementary

Figure S1. All methods had their lowest performance for lower Neff

sequences. SPOT-Contact improves over RaptorX-Contact at all

Neff values, with the largest improvement for low-medium range

Neff sequences. We further analyze the results in accordance with

the number of contacts a residue has from the reduced Test-Hard.

We bin each residue in our database depending on the number of

contacts it has, and calculate the mean precision of the top L/5 long-

range precisions. As shown in Supplementary Figure S2, residues

with fewer contacts (surface contacts) are much harder to discrimin-

ate from their non-contacts, with each additional contact bringing

an almost linear increase in performance to all predictors. SPOT-

Contact and RaptorX-Contact show a distinct advantage over all

other methods, with our method maintaining an increase in per-

formance over RaptorX-Contact for all contact numbers.

We further examined the dependence of prediction precision on

protein secondary structure. Supplementary Table S12 compares the

performance of the four top-performing methods (metaPSICOV,

RaptorX-Contact, SPOT-Contact-2016 and SPOT-Contact) for resi-

dues with different secondary structure elements on the full set of

Test-Hard. The contacts between sheet residues have the highest

precision for all three methods. Using the updated sequence profiles,

SPOT-Contact increases on SPOT-Contact-2016 over all secondary

structure pairs for all length cutoffs. SPOT-Contact also increases

upon the performance of RaptorX-Contact, which attained similar

performance for some residue pairs with SPOT-Contact-2016.

3.4 CASP results
For completeness, we compared SPOT-Contact the other predictors

in Supplementary Table S13 for the available TFM CASP targets (22

proteins only). At the time of testing, several servers were not avail-

able and others are unable to predict the full 22-protein set. Only

the remaining servers were provided in Supplementary Table S13.

SPOT-Contact achieves the highest AUC of both the ROC and PR

curves (0.906 compared to the next highest 0.862, and 0.443 com-

pared to 0.369, respectively), and also achieves the highest mean

precision values across all length cutoffs and distance separations.

For example, the L/5 cutoff scores for RaptorX-Contact (the

CASP12 winner) and SPOT-Contact are 59.76% and 64.06%,

56.14% and 64.41% and 58.99% and 63.95% for the short-, me-

dium- and long-range contacts, respectively.

4 Conclusion

In this paper, we have developed a new predictor called SPOT-

Contact for protein contact maps. This method is built on the

previous success of residual CNN in contact map prediction by

RaptorX-Contact and the capability of capturing long-range inter-

actions by LSTM-RNN networks by inputting whole sequences. In

addition, the ensemble of six predictors with different combina-

tions of networks removes prediction noise and makes prediction

more generalizable. Using 228 recently-solved structures as an in-

dependent test set, SPOT-Contact is consistently more accurate in

contact prediction across contacts at different sequence separa-

tions (Fig. 4), across proteins with different number of effective

homologous sequences (Supplementary Fig. S1) and across residues

with different number of contacts (Supplementary Fig. S2). The

improvement in AUC is 5% over the next best technique RaptorX-

Contact, and is statistically significant (P<10–6). The result high-

lights the usefulness of coupling ResNets with two-dimensional

LSTM networks.
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