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Abstract

Motivation: Sequence-based prediction of one dimensional structural properties of proteins has

been a long-standing subproblem of protein structure prediction. Recently, prediction accuracy has

been significantly improved due to the rapid expansion of protein sequence and structure libraries

and advances in deep learning techniques, such as residual convolutional networks (ResNets) and

Long-Short-Term Memory Cells in Bidirectional Recurrent Neural Networks (LSTM-BRNNs). Here

we leverage an ensemble of LSTM-BRNN and ResNet models, together with predicted residue-

residue contact maps, to continue the push towards the attainable limit of prediction for 3- and 8-

state secondary structure, backbone angles (h, s, / and w), half-sphere exposure, contact numbers

and solvent accessible surface area (ASA).

Results: The new method, named SPOT-1D, achieves similar, high performance on a large valid-

ation set and test set (�1000 proteins in each set), suggesting robust performance for unseen data.

For the large test set, it achieves 87% and 77% in 3- and 8-state secondary structure prediction and

0.82 and 0.86 in correlation coefficients between predicted and measured ASA and contact

numbers, respectively. Comparison to current state-of-the-art techniques reveals substantial im-

provement in secondary structure and backbone angle prediction. In particular, 44% of 40-residue

fragment structures constructed from predicted backbone Ca-based h and s angles are less than

6 Å root-mean-squared-distance from their native conformations, nearly 20% better than the next

best. The method is expected to be useful for advancing protein structure and function prediction.

Availability and implementation: SPOT-1D and its data is available at: http://sparks-lab.org/.

Contact: jack.hanson@griffithuni.edu.au or yaoqi.zhou@griffith.edu.au
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1 Introduction

Deriving a protein’s structure from its sequence alone remains an

unsolved problem since its inception over 50 years ago (Gibson and

Scheraga, 1967; Yang et al., 2018). The main challenge stems from

the exorbitantly large conformational space of a protein chain and

the lack of an accurate energy function to model the folding process

(Zhou et al., 2011). As a result, it is necessary to address simpler

problems in both the prediction of one-dimensional structural prop-

erties, such as backbone secondary structure and sidechain solvent

accessibility, and two-dimensional structural properties, such as

residue-residue contact maps.

Backbone secondary structure was first described by Pauling

et al. (1951) in their findings of helical and sheet hydrogen bonding

patterns in a protein backbone. This has been refined into either 3

or 8 local conformational states (Kabsch and Sander, 1983). The ac-

curacy of secondary structure prediction has risen from 70% (Rost

and Sander, 1993) to the latest 85% (Fang et al., 2018a), approach-

ing the theoretical upper bounds of effective prediction accuracy of

88–90% (Rost, 2001; Yang et al., 2018).

Recognizing secondary structure as a coarse-grained description

of protein backbone, more recent efforts have been shifted to the

prediction of continuously valued backbone torsion angles.

Backbone angles / and w are measurements of the residue-wise tor-

sion (Ramachandran et al., 1963), whereas angles h and s are spread

over 3 (dihedral about Cai�1-Cai-Caiþ1) and 4 (torsion about the

Cai-Caiþ1 bond) residues, respectively (Korkut and Hendrickson,

2009). These angles all form a complementary basis for local back-

bone structure, and have been predicted as both discrete states

(Kang et al., 1993) and continuous values (Faraggi et al., 2012;

Heffernan et al., 2015, 2017; Lyons et al., 2014; Xue et al., 2008).

In addition to local backbone structural properties, global three-

dimensional structures of proteins can be characterized by the resi-

due solvent accessibility. The distinction between buried and

exposed (i.e. low and high solvent accessibility, respectively) resi-

dues is important as active sites are typically located on the surface

of a protein. The solvent-Accessible Surface Area (ASA) is one such

descriptor which measures the exposure of a residue to solvent

(water) in its folded state. Another such metric is the Contact

Number (CN) of a residue in a protein, which is the count of

spatially close residues within a distance cutoff to a target residue.

The Half-Sphere Exposure (HSE) adds directionality to this meas-

urement by splitting the spherical distance cutoff into two halves

(Hamelryck, 2005). These descriptors have also been predicted into

discrete states and as continuous values (Heffernan et al., 2016; Lee

and Richards, 1971; Rost and Sander, 1994).

Recent predictors of these one-dimensional structural descriptors

have been dominated by the advances in deep learning. For example,

NetSurfP-2.0 used a large Long Short-Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) network in a Bidirectional

Recurrent Neural Network (BRNN) (Schuster and Paliwal, 1997) to

predict for 3- and 8-state secondary structure, ASA and backbone

angles / and w (Klausen et al., 2018). MUFOLD-SS and MUFOLD-

Angle utilized variants of Inception networks (Szegedy et al., 2017)

to predict for 3- and 8-state secondary structure, and backbone

angles / and w, respectively (Fang et al., 2018a,b). Porter5

employed an ensemble of BRNN’s to predict 3- and 8-state second-

ary structure (Torrisi et al., 2018). PSRSM utilizes a large ensemble

of Support Vector Machines (SVM’s) (Vapnik, 1998) trained on

various training objectives using protein length-based partitioning

and random subspacing of their training data (Ma et al., 2018).

Deep conditional neural fields have been employed to predict for

3- and 8-state secondary structure in DeepCNF (Wang et al.,

2016a). RaptorX-Angle predicts real-valued / and w angles by com-

bining k-means clustering and deep residual convolutional neural

networks (ResNets) (Gao et al., 2018; He et al., 2016). Our own

work SPIDER3 utilized an iterative application of an LSTM-BRNN

to predict 3-state secondary structure, ASA, HSE and four backbone

torsion angles h, s, / and w (Heffernan et al., 2017, 2018). Current

improvement in method performance is due to larger databases of

protein sequences and structures and the enhanced ability of current

methods to capture non-local interactions between residues which

are structural but not sequential neighbors (Heffernan et al., 2017).

The latter was made possible by whole-sequence learning (without

using sliding windows) of LSTM-BRNN’s and ultra-deep ResNets.

All of the above new deep learning methods for predicting 1D

structural properties have relied on the separate application of either

vanilla or LSTM BRNN’s, Inception networks, or deep ResNets.

Different types of NN have different capability in capturing local

and/or nonlocal interactions. Indeed, we have shown that using an

ensemble of models based on LSTM-BRNN, ResNet and

Fully-Connected (FC) NN allows a significant improvement in the

prediction of residue-residue contact map (Hanson et al., 2018), and

proline and non-proline cis-isomers (Singh et al., 2018) by the inte-

grated learning of local and nonlocal interactions. Moreover, previ-

ous studies have shown the improvement in secondary structure

prediction resulting from the input of native contact maps (Ceroni

and Frasconi, 2004; Ceroni et al., 2005) and by the inference of a

contact map through beta sheet pairing (Chu et al., 2006).

Thus, given recent advancements in contact map prediction

through coupling correlated mutations and deep learning (Adhikari

et al., 2017; Hanson et al., 2018; Wang et al., 2017), it may be prof-

itable to employ an ensemble of different machine learning models

and utilize predicted contact maps as input for secondary structure

and solvent accessibility prediction. In this paper, the above idea

was utilized to develop a method called SPOT-1D by using 9 LSTM-

BRNN- and ResNet-based models for the prediction of multiple

one-dimensional structure properties (namely 3- and 8-state second-

ary structure, backbone torsion angles h, s, /, w and solvent accessi-

bility descriptors ASA, HSEa-up and -down and CN). We

demonstrate that the new method achieves significant improvement

in backbone structure in terms of secondary structures and torsion

angles and leads to near 20% improvement in three-dimensional

fragment-structure models constructed from predicted angles, in

addition to achieving high performance for the accuracy of predict-

ing contact numbers and ASA.

2 Materials and methods

2.1 Neural network
The model utilized in SPOT-1D follows the methodology employed

in our previous papers for contact map and cis-isomer prediction

(Hanson et al., 2018; Singh et al., 2018). In brief, we utilize an en-

semble of LSTM-BRNN and ResNet hybrid models to identify and

propagate short- and long-term dependencies throughout the se-

quence. The ensemble consists of nine models with varying hyper-

parameters which provides a set of diverse learning paths. A full

overview of the ensemble and the individual models is presented in

Supplementary Section S1.

2.2 Input features
Our input features consisted of two evolutionary profiles from three

iterations of PSI-BLAST (Altschul et al., 1997) with default
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parameters and HHBlits (Remmert et al., 2012) with default param-

eters, respectively, physicochemical properties of each amino acid

and the predicted contact map information from SPOT-Contact

(Hanson et al., 2018). Each protein’s Position Specific Scoring

Matrix (PSSM) was generated by three iterations of PSI-BLAST

(Altschul et al., 1997) against the UniRef90 sequence database

updated in April 2018, generating 20 substitution probabilities per

sequence residue. The HMM profile was generated by HHblits

v3.0.3 with the Uniprot sequence profile database from October

2017 (Mirdita et al., 2017), and provides 20 residue substitution

values along with 10 transition frequency and the number of effect-

ive homologous sequences. Seven physicochemical properties of

each amino acid, such as Van der Waal’s volume and polarizability,

are obtained from Meiler et al. (2001). Thus, we have 57 base fea-

tures as the input to our base-feature model.

The full-feature model contains additional features obtained by

windowing the predicted contact information over the target resi-

due’s preceding and succeeding Wn pairwise contact predictions

obtained from SPOT-Contact (Hanson et al., 2018). When the win-

dow goes outside the contact map (i.e. 0 � i < Wn or

L�Wn � i < L), the value for the undefined positions is set to 0.

As SPOT-Contact only predicts contacts for residues that are greater

than or equal to 3 in sequence position separation (i.e. ji� jj � 3),

the feature size of the contact map is 2�Wn � 4 for each residue.

The windowed partition of the predicted contact map is shown in

Supplementary Figure S1.

Thus, the full-feature model contains an additional 2�Wn � 4

contact-map-based features. All features are standardized to have

zero mean and unit variance at the input of the model according to

the means and standard deviations of the training data. The window

size was tuned as a hyperparameter in each of the models trained

(Supplementary Table S1).

2.3 Outputs
For the classification model, we have eleven predicted outputs, pro-

viding independent prediction for both the 8-state and 3-state sec-

ondary structural elements. The 8-state labels and their one-letter

representation as defined by the Dictionary of Secondary Structure

of Proteins (DSSP) are: 310-helix G, a-helix H, p-helix I, b-bridge B,

b-strand E, high-curvature loop S, b-turn T and coil C (Kabsch and

Sander, 1983). This can be condensed to the 3-state labels of strand

E (8 state B and E), helix H (8 state G, H and I) and coil (everything

else). As shown in (Heffernan et al., 2018), predicting these confor-

mations independently provides superior accuracies than when SS3

is inferred from SS8.

The 12 regression outputs correspond to the ASA, HSEa-up and

-down, CN, sinðhÞ; cosðhÞ; sinðsÞ; cosðsÞ; sinð/Þ; cosð/Þ; sinðwÞ
and cosðwÞ. The ASA is predicted as relative ASA (rASA) so that the

prediction is not biased by larger nor smaller residues, and converted

to absolute ASA at the output. We define the distance cutoff for CN

and the HSEa metrics as 13 Å. h is defined as the angle between

three successive Ca atoms (Cai�1-Cai-Caiþ1) and s is defined as the

torsion angle about the Cai-Cai�1 bond. Both of the sin and cosine

of the backbone angles are predicted to account for angle periodicity

(Lyons et al., 2014). The predicted angle is recovered at the output

of the network by a ¼ tan�1 sinðaÞ
cosðaÞ

h i
. The DSSP software was used to

generate each protein’s SS3, SS8, ASA and / and w angles from their

PDB files. The remaining structural properties were generated with

an in-house program.

2.4 Datasets
The data used in these experiments is the same as our previous

works (Hanson et al., 2018; Singh et al., 2018). In summary, we

culled 12 450 proteins from the PISCES server (Wang and

Dunbrack, 2003) on Feb 2017 with the constraints of high reso-

lution (<2.5Å), an R-free <1 and a sequence identity cutoff of 25%

according to BlastClust (Altschul et al., 1997). 1250 proteins depos-

ited after June 2015 were separated into a test set, leaving 11200

proteins which were randomly divided into a train set (10 200 pro-

teins) and validation set (1000). As in SPOT-Contact we removed

the proteins over 700 residues in the above training, validation and

test sets for efficient calculations. This reduces our training, vali-

dation and independent test sets to 10 029, 983 and 1213 proteins,

respectively. We should emphasize that SPOT-Contact employed

the same validation and test sets but with a smaller training set of

7557 proteins, which is a subset of the 10 029 training proteins after

removing the proteins with >300 residues for efficient training of

SPOT-Contact. The same validation and test sets for SPOT-1D and

SPOT-Contact minimize the possibility of over training with SPOT-

Contact as input for SPOT-1D.

To facilitate a fair comparison to other methods, we further

obtained structures from the PDB released between 01/01/2018 and

07/16/2018 and solved with resolution < 2.5Å and R-free < 0.25 to

form a new independent test set. In order to minimize evaluation

bias associated with partially overlapping training data, we removed

proteins with >25% sequence identity to structures released prior to

2018. The dataset was also filtered to remove redundancy at a 25%

sequence identity cutoff. Finally, 13 proteins were removed with

length > 700 due to the limitations of some external predictors

(MUFOLD and PSRSM), leaving 250 high-quality, non-redundant

targets. For convenience, we denote two independent test sets as

TEST2016 (1213 proteins) and TEST2018 (250 proteins) as they

were deposited between June 2015 and Feb 2017 and between Jan

2018 and July 2018, respectively. For a measure of our predictor on

a harder set, we employ the TEST-HARD set from Hanson et al.

(2018), a subset of TEST2016 after removing proteins with a Blast

E-value of <0.1 against our Train set. In addition, we utilize 20

available Template-Free Modelling (TFM) proteins from CASP12

(Schaarschmidt et al., 2018) for independent testing of the available

methods (CASP12). This set has < 25% sequence similarity to our

training set.

2.5 Performance evaluation
We treat the outputs for the classification model as class probabil-

ities due to the outputs being squeezed into two independent prob-

ability distributions for 3- and 8-state prediction by the softmax

function. Thus, whichever node provides the highest probability in

each distribution is selected as the corresponding label for that class.

Hence, we can analyze the performance of the classification model

by its accuracy in designating the correct class label for both 3-state

(Q3) and 8-state (Q8) prediction. We also analyze the Segment

Overlap Value (SOV) for secondary structure predictions as pro-

posed by Zemla et al. (1999). We utilize the paired t-test to obtain a

significance value P for comparison of protein-wise accuracies.

The regression models are analyzed in two ways. The Pearson

Correlation Coefficient (CC) is used to analyze the regression mod-

el’s performance for HSEa-up and -down, ASA and CN, whereas

the Mean Absolute Error (MAE) is used for measuring the predicted

angle and true angle discrepancies. The angle error is taken as the

explementary of the error if the error is greater than 180� due to the

periodicity of angles.
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2.6 Method comparison
We compare against several secondary structure and solvent accessi-

bility prediction methods recently released in the literature. We

downloaded the standalone versions of MUFOLD-SS and

MUFOLD-Angle (available at http://dslsrv8.cs.missouri.edu/ cf797/

MUFoldAngle/and http://dslsrv8.cs.missouri.edu/ cf797/MUFoldSS,

respectively) (Fang et al., 2018a,b), RaptorX-Angles (available at

https://github.com/lacus2009/RaptorX-Angle) (Gao et al., 2018)

and SPIDER3 and SPIDER3-Single (available: http://sparks-lab.org/

yueyang/download/index.php) (Heffernan et al., 2017, 2018). We

utilized the online server for DeepCNF (Server URL: http://rap

torx2.uchicago.edu/StructurePropertyPred/predict/) (Wang et al.,

2016a), NetSurfP-2.0 (Server URL: http://www.cbs.dtu.dk/services/

NetSurfP-2.0/), PSRSM (Server URL: http://210.44.144.20: 82/pro

tein_PSRSM/default.aspx) (Ma et al., 2018) and Porter5 (Server

URL: http://distilldeep.ucd.ie/porter/) (Torrisi et al., 2018). For

brevity in the results, MUFOLD-SS and MUFOLD-Angle will both

be referred to as MUFOLD, and DeepCNF and RaptorX-Angle will

both be referred to as RaptorX.

3 Results

Table 1 shows the results for the validation (983 proteins) and

TEST2016 sets by the final ensemble model SPOT-1D. Similar per-

formance across both test and validation sets are observed for all ten

predicted variables, indicating the robustness of the model trained

for unseen data. For example, predicted 3-state secondary structures

have an overall accuracy of 87.5% for the validation set, 87.2% for

TEST2016 and 86% for TEST-HARD. The solvent accessibility pre-

diction achieved correlation coefficients of 0.823, 0.816 and 0.791

between predicted and actual ASA values for the validation,

TEST2016 and TEST-HARD sets, respectively. The backbone tor-

sion angle w has mean absolution errors of 22.5, 23.3 and 25.0

degrees for the validation, TEST2016 and TEST-HARD sets,

respectively.

As a comparison, we also listed the performance of our previous

method SPIDER 3 for TEST2016. Large improvement is observed

for all predicted structural properties. These include 2.5% increase

in the accuracy of three-state secondary structure prediction (4.1%

in SOV), 4% improvement in ASA correlation coefficients, and

11% reduction in w mean absolution errors. Improvement in angle

prediction is the largest as the MAE values for all four angles (h, s, /

and w) are reduced by 11–14%. Table 1 also shows the results of

SPOT-1D without input of predicted contact maps (SPOT-1D-base).

Inputting predicted 2D information leads to 0.5% increase in the ac-

curacy of three-state secondary structure prediction, 0.4% relative

improvement in ASA correlation coefficients, and 2% reduction in

w mean absolution errors. Thus, predicted 2D information provides

useful incremental improvement.

SPOT-1D improves over SPIDER3 and SPOT-1D-base for all 20

amino acid residues. Supplementary Figure S2 compares the accur-

acy of 3-state secondary structure prediction of these three methods.

SPOT-1D yields between 1.8 and 3.5% increase over SPIDER3 per

residue. The largest improvement is for Tryptophan residues (W).

Smaller but consistent improvement is observed between SPOT-1D

and SPOT-1D-base. The overall trend of the prediction performance

for each amino acid residue is the same for each method with a high

correlation of 0.97.

The improvement of SPOT-1D over SPIDER3 is the smallest for

fully exposed residues with the relative ASA (rASA) at about 100%.

As shown in Supplementary Figure S3, more than 2% improvement

of SPOT-1D over SPIDER3 is observed for rASA between 0 and

90%. Similarly, inputting predicted contact maps also makes the

largest impact for partially exposed residues (rASA�0.4). Fully

exposed residues are easier to predict as these residues involve most-

ly local interactions and are dominated by coil residues (6.1, 0.6,

93.3% are helix, sheet and coil, respectively). Moreover, the >90%

accuracy achieved by SPIDER3 at rASA�1 is certainly difficult to

improve on. Despite this, SPOT-1D manages to improve on

SPIDER3 at rASA�1 by nearly 1%.

It is of interest to know how much the above-described improve-

ment in prediction performance is due to the use of an ensemble.

Supplementary Table S2 compares the results of the single models

described in Supplementary Table S1 and that of the final consensus.

The use of an ensemble leads to 0.5 and 0.8% improvement in

3-state and 8-state secondary structure prediction, 2% relative im-

provement in correlation coefficient for ASA prediction, and 4%

relative improvement in MAE of w angle prediction. The only excep-

tion is a 1.5 and 0.3% reduction in term of segment overlaps (SOV3

and SOV8), respectively. The ensemble may have slightly disrupted

the segment-level consistency of a single model. Nevertheless, SOV3

was improved more than the three-state accuracy (4.1 versus 2.5%)

from SPIDER3 to SPOT-1D.

To gauge the robustness of our proposed model, we performed

10-fold Cross Validation (CV) on our training set using one of our

ensemble architectures (Model 0 in Supplementary Table S1).

Supplementary Table S3 compares the result of 10-fold CV (along-

side the means and standard deviations over the 10 folds) against

Model 0’s performance on the Validation set and on TEST2016.

Essentially the same performance on the validation set and 10-fold

CV as well as the low standard deviations over the 10-folds was

observed for all predicted properties in the training set, confirming

the robustness of the model trained.

Table 1. Performance of our proposed predictor (SPOT-1D) on the validation set alongside the performance of our previous LSTM-BRNN

method SPIDER3 and SPOT-1D-base (SPOT-1D without contact map) on TEST2016 and TEST-HARD

Dataset Model SS3 SOV3 SS8 SOV8 ASA HSEa-U HSEa-D CN h s / w

Validation SPOT-1D 87.54 80.81 77.60 75.58 0.8228 0.8225 0.7993 0.8631 6.78 24.54 16.27 22.53

TEST2016 SPIDER–3 84.66 75.62 – – 0.7873 0.7744 0.7436 – 7.72 29.24 17.88 26.66

SPOT-1D-base 86.67 79.52 76.03 73.88 0.8127 0.8139 0.7904 0.8532 7.02 26.16 16.52 23.67

SPOT-1D 87.16 79.73 77.10 74.98 0.8158 0.8164 0.7938 0.8571 6.89 25.38 16.27 23.26

TEST-HARD SPIDER–3 83.66 77.06 – – 0.7586 0.7494 0.7072 – 7.82 29.93 18.15 28.05

SPOT-1D-base 85.37 79.16 75.01 72.75 0.7864 0.7975 0.7642 0.8204 7.21 27.53 17.15 25.62

SPOT-1D 85.99 79.80 76.20 74.21 0.7908 0.8020 0.7674 0.8254 7.04 26.56 16.84 25.01

Note: All angle predictions (h, s, /, w) are measured in mean absolute error (MAE), 3-state (SS3, SOV3) and 8-state (SS8, SOV8) secondary structure predic-

tions are measured in % accuracy, and the solvent accessibility metrics are measured in correlation coefficient (CC).
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SPOT-1D is more accurate in part because SPOT-1D is trained

on the larger dataset (10 029 proteins) than SPIDER 3 (4590 pro-

teins). To assess the contribution of the larger training size without

the complication of iterative training in SPIDER 3, we compare the

first iteration of SPIDER-3 (SPIDER-3-Iter1) with an identical archi-

tecture trained with our larger dataset (SPIDER-3-Iter1-2018). The

results of these two methods are also compared to those of our sin-

gular Model 0 from SPOT-1D (SPOT-1D-0) for the TEST2016

dataset in in Supplementary Table S4. The large database size (the

difference between SPIDER3-Iter1-2018 and SPIDER3-Iter1) con-

tributed to about 1.6% improvement in three-state secondary struc-

ture prediction and 2.2 degree reduction in s. Our single model

alone is 1.3% more accurate than SPIDER3-Iter1-2018 and another

1.7 degree reduction in s, indicating that our improvement is more

than due to the enlargement of our training database. Although it-

erative learning could improve SPIDER3-Iter1-2018 by another 1%

(based on the performance difference between SPIDER3-Iter1 and

SPIDER3), it would be still lower than our final SPOT-1D by about

1% for three-state secondary structure prediction. Thus, SPOT-1D

without iterative learning improves the performance over SPIDER 3,

even after accounting for the difference in training databases.

Table 2 compares the performance of several recently developed

methods for 1D structural property prediction for new PDB struc-

tures in TEST2018. These methods include RaptorX (DeepCNF and

RaptorX-angle) for secondary structure and angle prediction,

PSRSM for secondary structure prediction, PORTER-5 for second-

ary structure prediction, MUFOLD for secondary and torsion angle

prediction, and NetSurfP-2.0 for secondary structure, ASA and

angle prediction. The second best performance method is NetSurfP-

2.0 which has a comparable performance in ASA with SPOT-1D,

but 0.8 and 0.4% lower accuracy in 3-state secondary structure pre-

diction and SOV, respectively (1.6 and 2.2% in 8-state prediction),

and more than 1 degree higher in mean absolute errors for both /

and w angle prediction. SPOT-1D’s improvement is significant,

obtaining P-values of <0.0022 against all external predictors for

SS3 prediction, and <3:7� 10�7 in SS8 prediction. Analyzing the

13 proteins of >700 residues originally excluded from TEST2018

leads to a reduction of performance for all methods applicable to

long proteins as shown in Supplementary Table S5. For example,

SPOT-1D performs 0.97% worse for SS3 prediction, 0.41 degrees

higher for / prediction, and 0.019 lower CC for ASA when analyz-

ing only large proteins in our set. However, as this set is only 13 pro-

teins, this is inconclusive as to the definite impact of long proteins

on prediction. For completeness, we also show the class-wise SS pre-

diction performance through a confusion matrix for 3- and 8-state

predictions in Supplementary Tables S6 and S7, respectively.

SPOT-1D is consistently the highest predictor for each element in

SS3 and SS8 prediction, except for sheet prediction which is slightly

lower than NetSurfP-2.0. The improvement over SPIDER3 is the

largest for sheet prediction (6.6% increase).

Statistically significant improvement of SPOT-1D over other

methods is evident when plotting the performance stratified by the

number of effective number of homologous sequences, Neff, calcu-

lated by HHblits (Remmert et al., 2012). Protein sequences with low

Neff have few diverse homologous sequences in the sequence li-

brary. Figure 1 and Supplementary Figures S4 and S5 compares

method performance for 3-state secondary structure, ASA and w

angle prediction, respectively. All methods show a nearly monotonic

decrease in performance for proteins with few sequence neighbors

(low Neff), confirming the importance of evolutionary information

in predicting one-dimensional structural properties (Hanson et al.,

2018; Heffernan et al., 2018; Singh et al., 2018; Wang et al.,

2016a). For example, the accuracy of 3-state secondary-structure

prediction by SPOT-1D drops from 86% at Neff ¼ 10 to 77% for

Neff ¼ 1. The overall performance of 86% by SPOT-1D for second-

ary structure prediction for TEST2018 indicates that the majority of

recently solved structures have many known homologous sequences.

Indeed, the average Neff for TEST2018 is 6.9. With a few excep-

tions noted below, SPOT-1D improves over other methods for every

Neff bin, indicating the statistical significance of the improvement.

One exception is the comparable performance of RaptorX

(DeepCNF), Porter-5 and SPOT-1D in secondary structure predic-

tion for sequences with few homologous sequences (Neff¼1).

Another exception is that the overall comparable accuracy in ASA

prediction by NetSurfP-2.0 and SPOT-1D.

Unlike multi-state secondary structure, one advantage of real-

value prediction of torsion angles is that they can be employed to

construct three-dimensional structural models for comparison with

the corresponding actual native structures. Here, we constructed

33214 fragment structures of 40-residue sequence windows in

TEST2018. Model structures were initialized by placing the first

three atoms in the X-Z plane. The chain was incrementally extended

using the predicted angles. Bond lengths and bond angles were fixed

to residue-independent ideal values for the //w-based model with x

angle fixed to 180 degrees. The Ca-based h/s model assumed a fixed

distance of 3.8Å between Ca positions. Discontinuous fragments

with incomplete solved structures were excluded from the analysis.

The structural difference between the model and its native structure

is measured by root-mean-squared distance (RMSD). A 6 Å RMSD

is considered as significant structural similarity (Reva et al., 1998).

As shown in Figure 2A, the fraction of fragment structures with

RMSD<6Å constructed by using predicted / and w angles is 36%

Table 2. Test performance of several recently developed predictors alongside SPOT-1D on the latest PDB structures (TEST2018)

Predictor SS3 SOV3 PSS3 SS8 SOV8 PSS8 ASA HSEa-U HSEa-D CN h s / w

SPIDER-3-Single 72.57 64.08 <1� 10�10 59.81 57.86 <1� 10�10 0.570 0.603 0.533 0.619 11.07 45.39 23.77 43.05

RaptorX 81.62 66.58 <1� 10�10 70.43 65.66 <1� 10�10 – – – – – – 21.01 35.95

PSRSM 81.94 74.22 <1� 10�10 – – – – – – – – – – –

SPIDER-3 83.84 73.89 <1� 10�10 – – – 0.768 0.764 0.716 – 7.73 29.62 18.38 28.10

PORTER-5 84.10 74.04 <1� 10�10 73.22 70.27 <9:89� 10�9 – – – – – – – –

MUFOLD 84.78 77.56 <2:73� 10�8 73.66 71.34 <2:15� 10�9 – – – – – – 17.78 27.24

NetSurfP-2.0 85.31 78.58 <2:20� 10�3 73.81 71.14 <3:64� 10�7 0.801 – – – – – 17.90 26.63

SPOT-1D-base 85.66 78.77 <1:08� 10�2 74.26 71.45 <1:33� 10�4 0.799 0.812 0.775 0.837 7.03 26.86 17.15 25.41

SPOT-1D 86.18 79.00 – 75.41 73.30 – 0.803 0.814 0.779 0.841 6.91 25.94 16.89 24.87

Note: All classification accuracies are presented in % accuracy, except for the significance metrics P, all angle predictions (h, s, /, w) are measured in mean

absolute error (MAE), and the solvent accessibility metrics are measured in correlation coefficient (CC).
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by SPOT-1D, compared to 24% by NetSurfP-2.0 and SPIDER3. If

fragment structures are constructed by the Ca-angle based h and s
predicted by SPOT-1D, the fraction of fragment structures with

RMSD<6Å further increases to 44%, meaning that close of half of

structures constructed have a reasonable structural similarity to their

native structures, and an 18% improvement over SPIDER3

(Fig. 2B). As illustrative examples, Figure 3 shows accurately con-

structed models in helix bundle (A), mixed helix and sheet (B) and

all-sheet fragments (C) with RMSD at 1.0Å, 4.3Å and 3.0Å, respect-

ively. Accurate description of coil regions reflects the usefulness of

angle prediction over secondary-structure prediction.

To further test our model, Supplementary Table S8 compares the

results of the CASP12 dataset by different models. The performance

for each predictor is considerably lower than that presented in

Table 2, largely because these proteins are specifically hard cases

which do not belong to folds present in any training data obtained

before CASP12. SPOT-1D continues to outperform all tested meth-

ods (except for a comparable ASA to NetSurfP-2.0), although this

performance improvement is not statistically significant largely due

to the small sample size of 20 proteins.

4 Discussion

We have developed a new method for predicting one-dimensional

structural properties of proteins based on an ensemble of different

types of neural networks (LSTM-BRNN, ResNet and FC-NN) with

predicted contact maps input from SPOT-contact. For a large inde-

pendent test set of 1213 proteins (TEST2016), the method achieves

unprecedented accuracy of 87 and 77% for 3-state and 8-state sec-

ondary structure prediction, respectively, and mean absolute errors of

16, 23, 7 and 25 degrees for w, w, h and s, respectively. It also pro-

vides high accuracy for ASA and HSE contact number prediction.

The significant improvement is due to several factors. Using the

3-state secondary structure as an example, predicted contact maps

as a feature contributes 0.5% improvement in accuracy (Table 1).

The employment of an ensemble of different types of neural net-

works contributes another 0.5% improvement (Supplementary

Table S2). The remaining roughly 1% improvement over SPIDER3

comes from the large dataset (Supplementary Table S4). As the

3-state accuracy approaches its theoretical limit of 88–89% (Rost,

2001; Yang et al., 2018), every bit of improvement is useful.

However, closing onto the theoretical limit for secondary struc-

ture prediction is true only for those protein sequences with many

known sequence homologs. As Figure 1 shows, the accuracy for the

secondary structure prediction drops to about 77% for sequences

with few known homologs (Neff¼1). This is problematic because

>90% known protein sequences have few homologous sequences

(Ovchinnikov et al., 2017). Thus, it is necessary to develop the

methods based on information from single sequence only such as

SPIDER3-single (Heffernan et al., 2018). However, SPIDER3-

single, using exactly the same neural network topology and training

set as SPIDER 3, can only improve over SPIDER3 in secondary

structure prediction by about 1% for proteins with Neff¼1. Thus,

single-sequence-based prediction, the ultimate solution to the fold-

ing problem, remains challenging.

Interestingly, the performance of SPOT-1D is comparable to that

of NetSurP-2.0 in ASA prediction (Supplementary Fig. S4). This

occurred despite the significant improvement of SPOT-1D over

NetSurP-2.0 in prediction of secondary structures (Fig. 1), angles

(Supplementary Fig. S5) and construction of fragments from pre-

dicted angles (Fig. 2A). This could be a signal for reaching a possible

theoretical limit for ASA prediction, because a CC of 0.8 or more

between predicted and actual ASA (Tables 1 and 2) has already

Fig. 1. The dependence of the accuracy of 3-state secondary structure predic-

tion on the number of effective homologous sequences for the TEST2018 set

(250 proteins). Note that the Neff of each protein is binned by rounding down

it to the nearest integer

A

B

Fig. 2. The fraction of 40-residue fragments in the TEST2018 set whose mod-

els, constructed based on predicted angles, are below a given root-mean-

squared distance (RMSD) from their corresponding native structures. (A) is

based on //w predicted angles, and (B) is based on h/s angles

Fig. 3. The results of three 40-residue protein fragments: helical hairpin from

residues 20 to 59 of protein 5N5EA (A), mixed helix and two sheets from resi-

dues 59 to 98 of protein 6FI2A, (B) and three-stranded antiparallel beta sheets

from residues 326 to 365 of protein 6FQ3A (C). All fragments were recon-

structed from the predicted h/s angles from SPOT-1D. The native structures

are shown in green, and the reconstructed fragments in red (Color version of

this figure is available at Bioinformatics online.)
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exceeded the 0.77 CC for the ASA between homologs (Rost and

Sander, 1994). More studies by using other techniques are needed to

confirm this bottleneck.

The most encouraging result of this paper is the large improve-

ment of fragment structural accuracy. The 11–14% reduction of

angle errors by SPOT-1D over SPIDER 3 (Table 1) leads to more

than 10% increase in the fraction of sequences with RMSD<6Å

from native conformations. In fact, close to half (44%) of 33 214

40-residue fragments have <6Å RMSD when the fragments are con-

structed by predicted Ca-based angle and torsion angles. Thus, using

SPOT-1D for angle prediction should significantly improve the ac-

curacy of fragment libraries for de novo protein structure prediction

(Wang et al., 2016b). Direct use of predicted angles for sequence-to-

structure alignment has also been proven useful for template-based

structure prediction (Yang et al., 2011).

It is of interest to know what causes some amino acid residues to

be predicted easier than others, as this behavior seems to be consist-

ent among different methods as shown in Supplementary Figure S2,

and it has been shown previously (Heffernan et al., 2017). One nat-

ural explanation is that different amino acids have different natural

abundance in the training dataset and thus affect respective accuracy

by different levels of training cases. Indeed, the correlation between

amino acid abundance and the accuracy of secondary structure for

individual amino acid has a reasonably strong correlation with a CC

of 0.52. To further search for the underlying mechanism, we correl-

ate the accuracy of secondary structure for individual amino acids to

>550 one-dimensional structure properties collected in AAindex

(Kawashima and Kanehisa, 2000). We found that the highest correl-

ation (CC of 0.67) is to the distribution of amino acid residues in

alpha-helices in thermophilic proteins. The propensity of an amino

acid residue for forming helices in high temperature environment

indicates its bias toward near-neighbor interactions. Thus, bias to-

ward local interactions or helical propensity is another factor contri-

buting easiness in secondary structure prediction as helices are the

easiest to predict.

In the interest of profiling our method in terms of processing

time, we have measured the time taken for each component of our

SPOT-1D downloadable version. Supplementary Table S9 shows

the time needed by our local machine for both a regular (PDB ID:

5ugwA) and long protein (PDB ID: 6ggyB) on both CPU and GPU.

As can be seen in this table, the majority of processing time is spent

on the PSSM generation, which is inhibited by the local machines

disk read/write speed. However, if these files are readily available,

they can be directly provided to the program, saving the bulk of

processing time. Long proteins are also shown to take extensive

time, especially for 2D analysis tools (SPOT-Contact, CCMpred,

DCA). The use of CPU and GPU is shown to not make a major dif-

ference in time taken, as the speed increase introduced by GPU ac-

celeration mainly comes during training. Protein 6ggyB is too large

to be run on the GPU for SPOT-Contact. Compared to another

readily available predictor MUFOLD (MUFOLD-SS and MUFOLD-

Angle) for protein 5ugwA, SPOT-1D is only 2 min slower despite

needing extra features. MUFOLD also requires both a PSSM and

HHBlits profile. Finally, it should be noted that processing one file

at a time is inefficient, as multiple sequences can be processed at

once in the SPOT-1D suite, meaning each of the ensemble’s models

only needs to be loaded once.
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