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Abstract

Motivation: RNA solvent accessibility, similar to protein solvent accessibility, reflects the structural regions that are
accessible to solvents or other functional biomolecules, and plays an important role for structural and functional
characterization. Unlike protein solvent accessibility, only a few tools are available for predicting RNA solvent acces-
sibility despite the fact that millions of RNA transcripts have unknown structures and functions. Also, these tools
have limited accuracy. Here, we have developed RNAsnap2 that uses a dilated convolutional neural network with a
new feature, based on predicted base-pairing probabilities from LinearPartition.

Results: Using the same training set from the recent predictor RNAsol, RNAsnap2 provides an 11% improvement in
median Pearson Correlation Coefficient (PCC) and 9% improvement in mean absolute errors for the same test set of
45 RNA chains. A larger improvement (22% in median PCC) is observed for 31 newly deposited RNA chains that are
non-redundant and independent from the training and the test sets. A single-sequence version of RNAsnap2 (i.e.
without using sequence profiles generated from homology search by Infernal) has achieved comparable perform-
ance to the profile-based RNAsol. In addition, RNAsnap2 has achieved comparable performance for protein-bound
and protein-free RNAs. Both RNAsnap2 and RNAsnap2 (SingleSeq) are expected to be useful for searching struc-
tural signatures and locating functional regions of non-coding RNAs.

Availability and implementation: Standalone-versions of RNAsnap2 and RNAsnap2 (SingleSeq) are available at
https://github.com/jaswindersingh2/RNAsnap2. Direct prediction can also be made at https://sparks-lab.org/server/
rnasnap2. The datasets used in this research can also be downloaded from the GITHUB and the webserver men-
tioned above.

Contact: jaswinder.singh3@griffithuni.edu.au or yaoqi.zhou@griffith.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Solvent accessibility of RNA measures the fraction of the solvent ac-
cessible surface area (ASA) of each nucleotide in an RNA chain. It is
a 1D structural property important for characterizing RNA interac-
tions with other molecules such as proteins (Mukherjee and
Bahadur, 2018), identifying structural signature in RNA thermal
adaptation (Jegousse et al., 2017), and analyzing the structural dif-
ference between denatured, in vitro and in vivo RNAs (Mortimer
et al., 2014; Rouskin et al., 2014). Precise solvent accessibility can
be calculated using RNA 3D structures if available. However, only a

few thousand RNA structures have been solved and deposited in
protein databank so far (Rose et al., 2017), because the physico-
chemical properties of RNA structures make them more challenging
than proteins to be solved by traditional techniques such as X-ray
diffraction (Mu~noz-Flores et al., 2014) and nuclear magnetic reson-
ance (Scott and Hennig, 2008). Direct probing of RNA solvent ac-
cessibility can also be done by hydroxyl radical footprinting
(Hulscher et al., 2016; Kielpinski and Vinther, 2014; Latham and
Cech, 1989). However, these experiments remain laborious and
costly. It is simply not practical to probe millions of known non-
coding RNAs experimentally (RNAcentral, 2016). Thus, it is highly

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 5169

Bioinformatics, 36(21), 2020, 5169–5176

doi: 10.1093/bioinformatics/btaa652

Advance Access Publication Date: 27 October 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/21/5169/5873586 by C
onsolidation Plus (G

R
G

C
A) user on 02 M

ay 2021

http://orcid.org/0000-0002-0478-5533
http://orcid.org/0000-0002-9958-5699
https://github.com/jaswindersingh2/RNAsnap2
https://sparks-lab.org/server/rnasnap2
https://sparks-lab.org/server/rnasnap2
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa652#supplementary-data
https://academic.oup.com/


desirable to develop complementary computational approaches for
predicting RNA solvent accessibility.

Unlike RNA solvent accessibility prediction, predicting protein
solvent accessibility has a long 30-year history (Zhou and Faraggi,
2010) and evolved from discrete-state prediction (Holbrook et al.,
1990; Rost and Sander, 1994) to real-value prediction (Ahmad
et al., 2003; Dor and Zhou, 2007). A recent method (Hanson et al.,
2020) can achieve >0.8 for the Pearson correlation coefficient
(PCC) between predicted and actual solvent accessibility for the test
set. This is largely because proteins have large sequence and struc-
tural datasets for evolutionary feature extraction and deep context-
ual learning (Hanson et al., 2019). By comparison, the first method
for predicting RNA solvent accessibility (RNAsnap) has only been
developed recently by our research group (Yang et al., 2017). The
method used support-vector machines (Cortes and Vapnik, 1995)
with 89 non-redundant protein-bound RNAs for training and
achieved a reasonable performance for protein-bound RNAs but not
for protein-free RNAs. RNAsol (Sun et al., 2019) improved over
RNAsnap by using a relatively larger training set, improved evolu-
tionary profiles, predicted minimum free energy (MFE) secondary
structure from RNAfold (Lorenz et al., 2011) and unidirectional re-
current neural networks with long-short-term-memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997). In particular, it can achieve
similar performance for protein-bound and protein-free RNAs with
an average PCC at about 0.45.

In this work, we established a dilated convolutional neural net-
work for predicting RNA solvent accessibility. Our work was
inspired by the fact that a dilated convolutional neural network can
learn long-range interactions better than convolutional neural net-
works and LSTM (Senior et al., 2020) and was demonstrated useful
for RNA secondary structure prediction (Singh et al., 2019). In add-
ition, we used predicted base-pair probabilities from
LinearPartition-V (Zhang et al., 2020) based on thermodynamic
parameters (Mathews et al., 1999; Xia et al., 1998) as a new input
feature. We show that the new method (RNAsnap2) can achieve
>0.5 for the average PCC value with the same training and test sets
used by RNAsol and consistent performance improvement for inde-
pendent, newly solved RNA structures. Moreover, a single-sequence
version of RNAsnap2 can achieve a performance comparable to the
profile-based RNAsol.

2 Materials and methods

2.1 Datasets
We directly used the RNAsol benchmark datasets for training, vali-
dating and testing of our neural network (Sun et al., 2019). The
RNAsol training set consisted of 120 (119 effectively as 1 RNA
appeared twice) high-resolution RNAs, which were randomly sepa-
rated into 95 training (TR95) and 24 validation (VL24) RNAs. The
RNAsol test set (TS45) contains 45 RNAs. All RNAs in these three
datasets (TR95, VL24 and TS45) have >32 sequence length (L) and
<4 Å X-ray resolution. They are non-redundant from each other
according to CD-HIT-EST (Fu et al., 2012) with the identity cut-off
of 0.8 followed by BLASTclust (Altschul et al., 1990) with 30%
identity cut-off. Most RNA sequences (about 80–90%) in each data-
set are protein-complexes, as shown in Supplementary Table S1.
This simply reflects the fact that there are more non-redundant pro-
tein–RNA complexes in the PDB (Protein Data Bank) (Rose et al.,
2017) as compared to protein-free RNAs. Combining all three data-
sets, 98 out of 164 RNAs can be completely annotated to its second-
ary structure [using DSSR (Lu et al., 2015)] from PDB 3D structure
while the remaining RNAs can be partially annotated to its second-
ary structure as the 3D structure for some nucleotides are missing.
Supplementary Table S1 also shows the maximum, minimum and
average sequence lengths in TR95, VL24 and TS45 dataset. The dis-
tribution of the number of Adenine (A), Uracil (U), Guanine (G) and
Cytosine (C) nucleotides varies between 24% and 27%, 18% and
23%, 29% and 33% and 21% and 25%, respectively, for these
three datasets (see Supplementary Table S1).

In addition to TS45, we prepared an additional test set by down-
loading (on January 29, 2020) 366 RNA sequences (672 chains)
which were submitted to the PDB after March 2017, the previous
date for obtaining TR95, VL24 and TS45. These 672 chains were
filtered using CD-HIT-EST and BLASTclust with 0.8 and 30% iden-
tity cut-off, respectively, so that the new set is non-redundant from
the train (TR95), validation (VL24) and test (TS45) sets and be-
tween each other. The final high-resolution set (<4 Å X-ray reso-
lution) has 31 RNA sequences, denoted as TS31. Each sequence in
TS31 is a protein-free RNA and 22 can be completely annotated to
its secondary structure, as shown in Supplementary Table S1. Also,
TS31 consists of relatively shorter RNA sequences but the distribu-
tion of nucleotides is similar to that of TS45 (see Supplementary
Table S1).

To obtain the true ASA labels for TS31, we used the same ap-
proach as RNAsol. First, the 3D structure of the individual chain
was extracted using Biopython (Cock et al., 2009) from the 3D
structure of multiple chains and protein complexed RNAs. Then,
the POPS package (Cavallo, 2003) with a probe diameter of 1.4 Å
was used to obtain the true labels of ASAs for every RNA chain in
TS31. The ASA values were further normalized by the highest ASA
value of the corresponding nucleotide (i.e. A, G¼400 Å2 and U,
C¼350 Å2) and converted to relative accessible surface areas
(RSAs). The ASAs values for TR95, VL24 and TS45 are directly
obtained from the RNAsol webserver.

The true ASA labels for all the protein-complex RNAs were
obtained from individual 3D chain structures instead of protein–
RNA complex structures. Therefore, these ASA labels do not ac-
count for the interactions with proteins in protein–RNA complexes.
To observe how the performance of all the predictors will be
affected if the ASA is calculated in the presence of proteins, we also
obtained the new protein-present ASA values from the protein–
RNA complex structures using the POPS package. However, our
methods were trained on ASA values in the absence of proteins.

2.2 Feature extraction
Both RNAsnap (Yang et al., 2017) and RNAsol (Sun et al., 2019)
have shown that using evolution-derived sequence profiles as input
results in better accuracy in predicting solvent accessibility when
compared with using the single sequence as input to the model.
RNAsol further demonstrated that the sequence profile obtained
from the sequence-profile alignment performs better than that from
the sequence–sequence alignment in predicting RSA. Here, we used
the same sequence profile as RNAsol. More specifically, a homology
search for a query RNA sequence was first made using BLASTN
(Altschul et al., 1990) with E-value <0.001 and a maximum of
50 000 homologous sequences from the NCBI’s nucleotide database.
The resulting homologous sequences were aligned for building a co-
variance model (CM) by cmbuild from Infernal (Nawrocki and
Eddy, 2013). The CM was then utilized as input to the Infernal tool
for the second round of homology search and yield a new sequence
profile based on multiple sequence alignment of new homologous
sequences.

In addition, we utilized an additional feature of the RNA second-
ary structure base-pair probability from LinearPartition (Zhang
et al., 2020). LinearPartition is a heuristic algorithm that evaluates
RNA base-pair probabilities in linear time. In addition to its compu-
tational efficiency, it is more accurate on longer sequences (base-
pairs 500þ nts apart) when compared to existing algorithms like
RNAfold (Lorenz et al., 2011) and CONTRAfold (Do et al., 2006).
Supplementary Table S2 directly compares the secondary structure
performance of LinearPartition and RNAfold [both MFE and max-
imum expected accuracy (MEA)] on test sets TS45, TS45* (a subset
of TS45, see Supplementary Table S1) and TS31 for canonical base-
pairs. LinearPartition achieves better accuracy on TS45 and TS45*
and comparable performance on the TS31 which consists of relative-
ly short sequences (see Supplementary Table S1). The preference of
the LinearPartition over RNAfold (MFE) is further validated by pre-
cision–recall curves obtained from the base-pair probabilities of
both predictors. As shown in Supplementary Figure S1, the preci-
sion–recall curve for LinearPartition is defined for almost all
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threshold values while the RNAfold (MFE) precision–recall curve
becomes undefined at higher threshold values. This indicates that
the highest possible precision for RNAfold (MFE) is much lower
than LinearPartition. From the above analysis (Supplementary Table
S2 and Fig. S1), we preferred using LinearPartition over RNAfold
(MFE and MEA) for the ASA prediction problem on our datasets.

Furthermore, to avoid possible overfitting, we used the version
of LinearPartition-V based on thermodynamic parameters as in
Vienna RNAfold (Lorenz et al., 2011), rather than the default ver-
sion based on the parameters from machine learning. These 2-D fea-
tures were converted into 1-D features by simple summation of all
the probabilities for a given position. Besides the features above, the
traditional one-hot encoding of the RNA sequence (a 4D vector
with 1 for the nucleotide type at the sequence position and 0 for
other dimensions) was also used. The input features were standar-
dized to have zero mean and unity variance (according to training
set TR95) before being input to the model. Unlike RNAsol and
RNAsnap, we did not use windowing features as our model can it-
self learn contextual relationships with neighboring nucleotides.
This reduced the number of input features per nucleotide for
RNAsnap2 by a factor of 10 relative to that for RNAsol.

2.3 Dilated convolutional neural network
The neural network architecture of RNAsnap2 is shown in Figure 1.
It consists of an initial 1D convolutional layer with a kernel size (k)
of 3 and 64 filters. The initial convolutional layer (Conv1D) is fol-
lowed by three residual blocks. Each residual block (marked by
dashed red lines in Fig. 1) consists of two 1D dilated convolutional
layers (Yu and Koltun, 2015) having alternating kernel size (k) of 5
and 7, respectively. Each layer in the residual block has 64 filters.
The dilation factor/rate (DF) for each layer is determined by 2i,
where i is the position of the convolutional layer. The input to each
layer in the residual block is preactivated using the exponential lin-
ear unit (Elu) activation function (Clevert et al., 2015).
Preactivation results in improved accuracy, as depicted by He et al.
(2016). The output of each convolutional layer is normalized with
batch instance normalization (BIN) (Nam and Kim, 2018). The final
residual block is followed by the single-node output layer with a sig-
moidal activation function. To avoid overfitting, a dropout rate (d)
of 40% was used before each convolutional layer (except for the ini-
tial convolutional). The order of operations before each layer (ex-
cept for the initial convolution) was normalization (BIN), activation
(Elu) and finally dropout (d).

The neural network was implemented in Google’s TensorFlow
framework (v1.14) (Abadi et al., 2016) and trained using the
RMSProp (Tieleman and Hinton, 2012) optimization algorithm
with a learning rate of 0.001 and a mini-batch of the size of 8. The
mean square error between the predicted RSA and the actual RSA
was used as a loss function. The model hyperparameters such as the

kernel size (k), the number of filters, the number of residual units,
the activation function, the normalization technique, the dropout
rate (d), the choice of the optimizer and the learning rate were opti-
mized based on the model’s performance on the validation set
(VL24).

2.4 Performance evaluation
The performance of our method was evaluated using the same meas-
ures used previously (Sun et al., 2019; Yang et al., 2017). These in-
clude the PCC between predicted and actual RSA values and mean
absolute error (MAE) between predicted and actual ASA. These val-
ues are evaluated for each RNA chain and then the average value
over all chains is reported. In addition, we used one-tailed paired t-
test to obtain the P-value (Lovric, 2011) to verify the statistical sig-
nificance of improvement made by RNAsnap2 over other predictors.
The smaller the P value is, the more significant the difference is be-
tween the two predictors. The P-values were calculated by our own
code implemented in Python which is publicly available at https://
github.com/jaswindersingh2/RNAsnap2.

2.5 Method comparison
We compared RNAsnap2 with the only two available RNA solvent
accessibility predictors. We downloaded standalone-version of
RNAsol (available at https://yanglab.nankai.edu.cn/RNAsol/) and
RNAsnap (available at https://sparks-lab.org/downloads/) to obtain
the results for TS45 and TS31. We used default parameters for both
predictors to get results on test sets.

3 Results

Table 1 compares the performance of RNAsnap2 using different fea-
ture combinations for VL24, TS45 and TS31 datasets. The single se-
quence alone (one-hot encoding) can yield a reasonable performance
as average PCC values between 0.45 and 0.49 for the three datasets.
The addition of a single-sequence-based prediction of secondary
structure (LinearPartition) further improves the average PCC value
between 0.48 and 0.51. Incorporating sequence profiles generated
from Infernal provides additional improvement by increasing the
average PCC values between 0.51 and 0.55. As a comparison, if
replacing LinearPartition base-pair probabilities by RNAfold (MFE)
secondary structure as in RNAsol, we found a poorer performance
across all three datasets (PCC values between 0.47 and 0.51), con-
firming the importance of base-pair probability estimates in the
overall performance of RNAsnap2. We noted that the consistent
performance across validation and two test sets indicate the robust-
ness of the method performance for those unseen RNA chains. For
convenience, we will denote the profile-based model as RNAsnap2,
whereas RNAsnap2 (SingleSeq) denotes the model with one-hot
encoding and LinearPartition.

Figure 2 compares the performance of RNAsnap, RNAsol and
RNAsnap2 as well as the single-sequence-based RNAsnap2
(SingleSeq) according to median PCC values, 25th and 75th percen-
tiles. In addition to the results for TS45 and TS31 sets, we also make
a TS45* set after removing 19 sequences from TS45 which were in
RNAsnap training set. Statistically, RNAsnap2 significantly
improves over RNAsol with P-values at 7:1� 10�3 for TS45 and
3:7� 10�4 for TS31, respectively. This reflected the fact that
RNAsnap2 not only has a higher median PCC value but also has a
narrower distribution of PCC values than RNAsol. The improve-
ment of RNAsnap2 over RNAsol is 11% for TS45 and 22% for
TS31, respectively, in median values and 15 and 54%, respectively
in 25th percentiles. In particular, RNAsnap2 (SingleSeq) has a com-
parable performance to RNAsol for TS45 and a better performance
for TS31 despite that RNAsnap2 (SingleSeq) does not employ evolu-
tionary information. This highlights the power of the new network
architecture for extracting non-local structural information. In
Figure 2, we noticed that the performance of RNAsnap2 (SingleSeq)
increases significantly from TS45* to TS31 test set. A similar im-
provement was also observed in RNAsol. We found that this

Fig. 1. The network architecture of RNAsnap2. The residual block is shown within

dashed red line. k, d, DF and BIN are the size of filter, dropout rate, dilation factor

and batch instance normalization, respectively, and L is the length of the input

RNA. Scalar 10 and 64 represent the number of features per nucleotide and the

number filters in each convolutional layer, respectively. (Color version of this figure

is available at Bioinformatics online.)
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improvement is mainly caused by the improvement in single-
sequence-based secondary structure used in RNAsol [RNAfold
(MFE)] and RNAsnap2 (LinearPartition). A more accurate predic-
tion of secondary structure for TS31 is because 29 out of 31 RNAs
have a sequence length shorter than 150 and single-sequence-based
secondary structure predictors are more accurate on small RNAs
(see Supplementary Table S2).

A more direct comparison between RNAsnap2 and RNAsol is
made in Figure 3A for each RNA chain. RNAsnap2 has 56 RNA
chains with higher PCC values but only 18 RNA chains with lower
PCC values than RNAsol. For some RNAs, RNAsol even yields
negative PCC values but not RNAsnap2. Interestingly, there is a
high correlation between predicted PCC values by RNAsnap2 and
those by RNAsol. The correlation coefficient is 0.82. This indicates
the level of difficulty of solvent accessibility prediction for an RNA
chain is similar for RNAsnap2 and RNAsol. An even higher correl-
ation coefficient of 0.91 was observed between RNAsnap2 and
RNAsnap2 (SingleSeq). Similar trends are observed for performance
comparison between RNAsnap2 and RNAsol using MAE as the per-
formance measure (Fig. 3B). RNAsnap2 yields lower MAE values
for 68 RNAs but higher MAE values only for 8 RNA chains, when
compared to RNAsol. A high correlation coefficient of 0.90 between
the RNAsnap2 and RNAsol is observed.

To understand the difficulty in the prediction of each chain,
Figure 4A shows PCC values as a function of the number of effective
homologous sequences per nucleotide (Neff=L) in a logarithmic plot
for both test sets (TS45 and TS31). For those sequences with
Neff=L > 0:3, PCC > 0.35. However, for those sequences with
Neff=L < 0:3, RNAsnap2 performs poorly for 7 sequences. ThisT
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Fig. 2. Distribution of PCC score for individual RNA chains on test sets TS45,

TS45� and TS31. On each box, the central mark indicates the median, and the bot-

tom and top edges of the box indicate the 25th and 75th percentiles, respectively.

The outliers are plotted individually using the ‘þ’ symbol

Fig. 3. (A) Performance comparison between RNAsnap2 and RNAsol for the PCC

values of individual RNA chains on TS45 (in red) and TS31 (in blue). (B)

Performance comparison between RNAsnap2 and RNAsol for the MAE values of

individual RNA chains on TS45 (in red) and TS31 (in blue). (Color version of this

figure is available at Bioinformatics online.)
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suggests that lacking sufficient evolution information is only respon-
sible for inaccurate prediction for a few cases. The majority has a
reasonable predicted PCC value independent of Neff=L.

Another possibility is that longer RNAs are more difficult to pre-
dict. Figure 4B shows the PCC as a function of the length of the se-
quence for RNAsnap2 and RNAsol. The performance of both the
predictors slightly decreases with the increase in the length of the se-
quence. Still, the PCC value is >0.30 for the longer sequences for
both predictors. Moreover, the small number of long RNA chains
makes it difficult to draw any conclusions. It is likely, this perform-
ance drop for long RNA sequences is due to the lack of training
data on the longer sequences. There are only 9 sequences out of 95
with length >300 nucleotides in training data TR95. We also exam-
ined the performance of RNAsnap2 according to the fraction of
buried nucleotides (Supplementary Fig. S2) and no significant cor-
relation was observed.

Furthermore, the performance of the predictors was analyzed at
the secondary-structure-motif level. Supplementary Table S3 shows
PCC values of nucleotides in the stem, hairpin-loop, bulge, internal-
loop, multi-loop and exterior loop regions on 57 RNAs in TS45*
and TS31. TS45 was deliberately excluded from this comparison as
the RNAsnap training set has some overlapping with TS45.
Secondary structure motifs are obtained from known RNA struc-
ture, using bpRNA (Danaee et al., 2018). RNAsnap2 achieved bet-
ter PCC scores among all the predictors for all secondary structure
motifs. The predicted RSA is the least accurate in multiloop regions.
This is mainly because predicted secondary structures are the least
accurate for the same region (Singh et al., 2019). We also analyzed
the performance of all predictors on nucleotides involved in the ter-
tiary interactions like pseudoknot base-pairs and base multiplets
(see Supplementary Table S3). As expected, the low performance
was observed for all the predictors for RSA prediction of these
nucleotides. However, we did not find any significant correlation
between the performance of RNAsnap2 and the number or fraction
of the bases in multiloops, pseudoknots and multiplets because the
fractions of bases are small in those regions. We also did not observe
a significant correlation between the accuracy of predicted second-
ary structures and the RNAsnap2 performance.

One interesting question is that if there is a performance differ-
ence between protein-bound RNAs and protein-free RNAs. This
performance difference was observed in the previous work
RNAsnap but not as much in RNAsol. The large performance dif-
ference in RNAsnap is likely due to a lack of protein-free RNAs in
the training set of RNAsnap. Here, TR95 contains 18 protein-free
RNAs and 77 protein-bound RNAs. Table 2 compares the perform-
ance of four methods by splitting TS45 into protein complex struc-
tures and protein-free structures. All RNAs in TS31 are protein-free
structures. Table 2 shows that the performance of RNAsnap2 is
more consistent than the RNAsol and RNAsnap regardless if RNAs
are complexed with proteins or not. PCC values given by
RNAsnap2 are greater than 0.48 for all sets. Nevertheless, the

Fig. 4. (A) The PCC values for individual RNA chains in the test sets (TS45 and

TS31) by RNAsnap2 as a function of the number of effective homologous sequences

per nucleotides (Neff/L). (B) The PCC values for individual RNA chain by

RNAsnap2 and RNAsol as a function of sequence length L. The color green indi-

cates the improvement over RNAsol by RNAsnap2, whereas the color magenta

indicates the lack of improvement over RNAsol. (Color version of this figure is

available at Bioinformatics online.)
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performance on protein-bound RNAs remains slightly higher than
the protein-free RNAs. A more accurate prediction of RSA for pro-
tein–RNA complexes is likely due to the following reasons. First,
our training set contains more RNAs that are complexed with pro-
teins (77/95) as compare to protein-free RNAs (18/95). This simply
reflects the fact that there are more non-redundant RNAs com-
plexed with proteins in the protein databank. The second reason is
that RNAs complexed with proteins have more homologous sequen-
ces than protein-free RNAs. The average Neff/L for 37 protein-
complexed RNAs is 4.08, much higher than 0.44 for the 39 protein-
free RNAs in TS45þTS31.

We further analyzed the protein-complex RNAs from TS45
using the ASA labels obtained in the presence of protein.
Supplementary Table S4 shows the performance comparison among
all the predictors for the ASA labels in the presence and absence of
proteins. There is a large drop in performance when the protein-
present ASA labels were used. This is somewhat expected because
all the predictors are trained on RNA chains in the absence of
proteins.

Figure 5 illustrates three examples of predicted versus actual
RSA values in TS31. These three RNAs are recently solved struc-
tures (after 2018) with high X-ray resolution (�3.0 Å) and low
Neff=L (<0.4). Figure 5A shows an excellent prediction by
RNAsnap2 for Salmonella typhimurium YrlA RNA (chain A in PDB
ID 6cu1, released on October 31, 2018) (Wang et al., 2018) with a
high PCC value of 0.83. By comparison, RNAsol and RNAsnap pre-
dicted RSA with PCC values of 0.72 and 0.38, respectively. This is a
noncoding Y RNA. Figure 5B shows a case of median performance
for an adenovirus virus-associated RNA (chain C in PDB ID 6ol3,
released on March 7, 2019) (Hood et al., 2019). It is important to
know that this RNA was part of the RNA-puzzle dataset used for
blind prediction of RNA 3D structures (Miao et al., 2017).
RNAsnap2 predicted RSA for this RNA with PCC value of 0.55
while RNAsol and RNAsnap were only able to achieve PCC values
of 0.33 and 0.20, respectively. Interestingly for this RNA,
RNAsnap2 (SingleSeq) predicted RSA with the highest PCC value of
0.63. This shows that sometimes the evolutionary profile adds

noises instead of information to the input feature. Figure 5C shows
a case of poor prediction for the Glutamine II Riboswitch (chain A
in PDB ID 6qn3, released on June 12, 2019) (Huang et al., 2019).
RNAsnap2 predicted RSA with PCC values of 0.44, whereas PCC
values are 0.32 for RNAsol and 0.38 for RNAsnap, respectively.
During the process of crystallization of Glutamine II Riboswitch,
this RNA goes through the process of dimerization. This results in
the exchange of strands at the 50 end of P2 and linking strand at the
C19: G41 [refer to Fig. 1C in the original paper (Huang et al., 2019)
for notations]. If we use true RSA labels obtained by considering
this strand swapping, we would have a significant increase in PCC
value to 0.54 by RNAsnap2, compared to 0.41 by both RNAsol and
RNAsnap. We also note that RNAsnap2 does not perform poorly
for riboswitches in general. For instance, SAM-III riboswitch (PDB
ID 6C27, chain A) and glyQ T-box riboswitch (PDB ID 6PMO,
chain B) have PCC values of 0.74 and 0.75, respectively.

4 Discussion

We present a new method called RNAsnap2 for predicting RNA
solvent accessibility. We have demonstrated that RNAsnap2 signifi-
cantly improves over existing methods in the accuracy of solvent-
accessibility prediction based on the correlation to and the mean ab-
solute difference from measured solvent accessibility. RNAsnap2
differs from the second-best RNAsol in using predicted base-pair
probability from LinearPartition, rather than predicted secondary
structure from RNAfold (MFE) and dilated convolutional neural
network, instead of unidirectional LSTM Recurrent Neural
Network. Unlike RNAsol, RNAsnap2 can predict solvent accessibil-
ity with or without sequence profiles. The single-sequence-based
RNAsnap2 version is comparable to or more accurate than RNAsol
(Table 2).

RNAsnap2 with the same features [one-hot encoding, RNAfold
(MFE) and sequence profile] as RNAsol improves over RNAsol. The
PCC values are 0.51 (P-value 1:2� 10�01) for TS45 and 0.47 (P-
value 7:2� 10�04) for TS31 (Table 1), compared to 0.49 and 0.42
(Table 2), respectively. This indicates the usefulness of the new neur-
al network architecture. RNAsol used a unidirectional RNN with
LSTM cells. Unidirectional RNNs only consider the feature maps of
current and previous nucleotides when evaluating the RSA of the
current nucleotide. The solvent accessibility of a nucleotide can be
affected by neighboring nucleotides from both sides. Therefore, to
consider the effect of neighboring nucleotides from both sides,
RNAsol included the features of the five preceding and five succeed-
ing nucleotides along with the features from current nucleotide as in-
put. In contrast, RNAsnap2 more efficiently considers the effect of
neighboring nucleotides using a dilated convolutional architecture
with a wide receptive field. The receptive field is the total number of
surrounding nucleotide feature maps under consideration for calcu-
lating the RSA of a given nucleotide. The receptive field for the
RNAsnap2 neural network (Fig. 1) is 339, which means that when
predicting the RSA of a given nucleotide, RNAsnap2 considers a fea-
ture map of 169 nucleotides on both sides. In addition to consider-
ing a feature map from both sides, a dilated convolutional
architecture is better at learning long-range dependencies than an
LSTM network (Bai et al., 2018).

Another reason for significant improvement in performance by
RNAsnap2 can be attributed to the use of LinearPartition with a 6–
8% improvement over the use of RNAfold (MFE) (Table 1).
LinearPartition provides more accurate base-pair probability (espe-
cially on longer sequences) as compared to existing predictors such
as RNAfold (MFE) (Lorenz et al., 2011), CONTRAfold (Do et al.,
2006) and CentroidFold (Sato et al., 2009). Another reason to
choose LinearPartition is because of the linear scaling of its compu-
tational time as a function of the length of the sequence. In contrast,
the computational time of other predictors discussed above grows
exponentially as a function of sequence length. Therefore,
LinearPartition reduces the computational complexity in addition to
improvement in performance accuracy.

The above improvement is not due to overtraining. This reflects
from the fact that a more consistent performance given by

Fig. 5. Predicted (red) versus actual (blue) relative solvent accessible surface area

(RSA) of the three RNAs in (A), (B) and (C) as labeled. In (C), Chain A (Solid blue)

and Chain B (Dashed blue) of Glutamine II riboswitch form a homodimeric do-

main-swapped structure with a slightly different conformation for each chain.

(Color version of this figure is available at Bioinformatics online.)
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RNAsnap2 across validation and two test sets (Table 1) and be-
tween protein-bound and protein-free structures (Table 2), com-
pared to RNAsol. Moreover, RNAsnap2 uses only 1/13 of the
trainable parameters used by RNAsol. RNAsnap2 has 151 233
parameters, compared to 1 905 793 parameters used by RNAsol for
training on the same training data. Using fewer trainable parameters
reduces the risk of model over-fitting on small training data (Ying,
2019).

It is interesting to know why some RNAs are more difficult to
predict than others. This level of difficulty seems to be independent
of the number of homologous sequences (Fig. 4A) and sequence
length (Fig. 4B). The performance analysis of nucleotides existing in
different structural motifs shows that all the predictors are least ac-
curate in the multiloop regions (see Supplementary Table S3). It is
also difficult to predict accurate RSA for the nucleotides involved in
the tertiary interactions like pseudoknots and multiplets (see
Supplementary Table S3). However, we did not find a correlation
between the performance of RNAsnap2 and the number of nucleoti-
des involved in multi-loops, pseudoknots and multiplets. We also
did not find a correlation to the accuracy of predicted RNA second-
ary structure. Thus, more studies are needed to identify the reason
why some RNAs are more difficult to predict than others.

RNAsnap2 used LinearPartition that relies on single-sequence
only. The next possible improvement is to replace LinearPartition
by secondary structure predictors that use homologous sequence in-
formation, such as TurboFold-II (Tan et al., 2017), LocARNA (Will
et al., 2007), RNAalifold (Lorenz et al., 2011) and CentroidAlifold
(Hamada et al., 2011). However, using these predictors will come
with a significantly higher computational cost. The work in this area
is still in progress.

Predicting RNA solvent accessibility may require genome-scale
studies (Yang et al., 2017). Thus, a computationally efficient pro-
gram will be important. Excluding computing times for feature gen-
erations, RNAsnap2 is about 17% faster than RNAsol for an RNA
chain of 1000 nucleotides [8.9 versus 10.5 s on a single thread of
Intel Xeon(R) CPU E5-2630 with a clock frequency of 2.3 GHz].
Both are linearly scaled with sequence length with the rate of in-
crease two times smaller by RNAsnap2 than by RNAsol. However,
the most time-consuming part of both RNAsnap2 and RNAsol is
the generation of sequence profiles, which depends on the number
of homologous sequences found and the length of the query RNA se-
quence. For time-sensitive calculations, RNAsnap2 (SingleSeq) can
provide a fast calculation with reasonable performance (PCC¼0.5
for TS45 and 0.48 for TS31). Both RNAsnap2 and RNAsnap2
(SingleSeq) are available as a downloadable package at https://
github.com/jaswindersingh2/RNAsnap2 and as a server at https://
sparks-lab.org/server/rnasnap2.
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