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Abstract

Motivation: The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using
structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analy-
ses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016
families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully
automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was
based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based
algorithm RNAfold and the latest deep-learning method SPOT-RNA.

Results: We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool
but is more dependent on the accuracy of secondary structure predictor with the best performance given by
RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied
alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made
with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor
can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with
high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction.

Availability and implementation: RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/
and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone.
A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/
r/jaswindersingh2/rnacmap.

Contact: zhouyq@szbl.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA structures are the foundations for their diverse functional roles
ranging from catalysis, cell-signalling, to transcriptional regulation
(Geisler and Coller, 2013). Determining RNA structures by trad-
itional experimental techniques, such as X-ray crystallography, nu-
clear magnetic resonance and cryogenic electron microscopy, are
costly and time-consuming. In fact, only 3% or 99 of 3016 RNA
families from Rfam (Kalvari et al., 2018) have experimentally solved
structures and the number of solved RNA-only structures per year
stay the same for the past two decades (50–80/year). By comparison,
the number of non-coding RNAs collected in RNAcentral has
doubled from 8 million in 2015 to 16 million in 2019 (Petrov et al.,
2015; The RNAcentral Consortium, 2018). The fast-increasing

gap between the number of non-coding RNA sequences and the
number of experimentally solved structures makes computational
approaches highly desirable.

Computational RNA structure predictions were evaluated by
RNA-Puzzles (Cruz et al., 2012; Miao et al., 2015, 2017), which
were blind experiments in RNA 3-D structure prediction, similar to
Critical Assessment of Structure Prediction (CASP) for blind protein
structure prediction (Cheng et al., 2019; Kinch et al., 2016;
Schaarschmidt et al., 2018). Results of recent three rounds of RNA-
Puzzles showed that predicting near-native models (RMSD < 10 Å)
remained challenging for most current methods (Cruz et al., 2012;
Miao et al., 2015, 2017). However, there is a significant improve-
ment in ab initio protein structure prediction since CASP12
(Schaarschmidt et al., 2018). Such improvement is largely due to
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employing significantly improved prediction in protein contact
maps as the restraints for 3D structure prediction. Prediction of pro-
tein contact map was improved by increasingly accurate mutational
coupling analysis due to the fast-expanding protein sequence data-
base and more powerful, deep contextual learning for enhancing
coupling signals (Cheng et al., 2019; Hanson et al., 2019; Jones
et al., 2012, 2015; Wang et al., 2017b).

Contact maps inferred from mutational coupling have been dem-
onstrated to improve RNA secondary (Bernhart et al., 2008; Singh
et al., 2021a; Zhang et al., 2020) and tertiary structure prediction
(De Leonardis et al., 2015; Wang et al., 2017a; Weinreb et al.,
2016). However, tools like RNAalifold (Bernhart et al., 2008) rely
on mutual information that is unable to separate direct and indirect
coupling (Morcos et al., 2011), while more accurate evolutionary
coupling (Wang et al., 2017a; Weinreb et al., 2016) relied on family
homologs from the Rfam database, which has 3016 families only as
of January 2019. This limitation prevents a wide application of evo-
lutionary coupling for RNA secondary and tertiary structure
prediction.

An accurate mutational coupling analysis requires a large num-
ber of sequence homologs. RNA homology search is a challenging
problem because most structural RNAs are known to preserve the
secondary structure rather than the primary sequence (Menzel et al.,
2009). The covariance-model-based search enabled by INFERNAL
was shown to outperform both sequence-based and profile HMM-
based methods with very high sensitivity and specificity, as it incor-
porates information from both sequence and secondary structure
(Freyhult et al., 2007). Recent studies on genome-wide search for
pseudoknotted non-coding RNA (Huang et al., 2008; Vasavada
et al., 2015) and comparison of RNA multiple sequence alignment
tools (Pucci et al., 2019) confirmed the state-of-the-art performance
of INFERNAL.

The purpose of this work is to develop a fully automatic pipeline
(RNAcmap) for RNA evolutionary coupling analysis that does not
rely on well-curated Rfam families. RNAcmap first employs
BLAST-N (Altschul et al., 1997) to perform an initial homolog
search from the NCBI nucleotide database. The resulting homolo-
gous sequences and the predicted secondary structure are then
employed for building the covariance model for the second-round
search by INFERNAL (Nawrocki and Eddy, 2013), the same tool
employed in Rfam to facilitate the comparison. Unlike Rfam that
utilizes experimentally validated secondary structures or consensus
prediction, RNAcmap employs a folding-based algorithm RNAfold
(Lorenz et al., 2011) or a recent deep-learning-based method SPOT-
RNA (Singh et al., 2019) for secondary structure prediction to en-
sure that the method is fully automatic. The resulting multiple se-
quence alignment from the second-round search is then employed
for evolutionary coupling analysis to yield base-pairing and dis-
tance-based contact maps. Three methods for evolutionary coupling
analysis were examined (GREMLIN, plmc and mfDCA) (De
Leonardis et al., 2015; Kamisetty et al., 2013; Weinreb et al., 2016).
The pipeline was further tested on two large scale datasets [the
PseudoBaseþþ (Taufer et al., 2008) set and the RNA structure Atlas
(Petrov et al., 2013) representative set] and compared with existing
tools [RNAalifold (Bernhart et al., 2008) and R-scape (Rivas et al.,
2017)].

We showed that the resulting contact maps from RNAcmap
(RNAfold/SPOT-RNA) are comparably accurate to those based on
Rfam-aligned homologous sequences. Similar accurate results can
be achieved for those sequences that are not curated in Rfam and
two independent large datasets. The streamlined pipeline should be
useful for RNA secondary and tertiary structure prediction tasks.

2 Materials and methods

2.1 The RNAcmap pipeline
In the homology search step, homologs with high sequence similar-
ity (MSA-1 in Fig. 1)is first obtained by running BLAST-N (Altschul
et al., 1997) to search the NCBI nucleotide database (parameters: E-
value ¼ 0.001, line-length ¼ 1000, num-alignments ¼ 50 000). The

consensus secondary structure (CSS) for the MSA-1 is obtained from
single-sequence-based predictor either RNAfold or SPOT-RNA.
Using the homolog sequences (MSA-1) and the predicted CSS as an
input, a covariance model (CM) is built by cmbuild from
INFERNAL tool (Nawrocki and Eddy, 2013) and then calibrated
with cmcalibrate program from INFERNAL as shown in Figure 1.
Afterwards, the calibrated covariance model (CM) is employed to
perform the second round of search against the NCBI database by
using cmsearch program from INFERNAL with E-value of 10.0.
This cutoff is chosen in order to include more homologs with low se-
quence identity (Hanumanthappa et al., 2021; Sun et al., 2019).
Finally, the aligned homologous sequences (MSA-2 in Fig. 1) are
used for evolutionary coupling analysis with a chosen tool.

2.2 RNA secondary structure prediction tool
We employed either a folding-based algorithm RNAfold (Lorenz
et al., 2011) or our recently developed deep-learning method SPOT-
RNA (Singh et al., 2019) for secondary structure prediction. SPOT-
RNA improves prediction of secondary structure over existing fold-
ing-based algorithms, not only in canonical but also in non-canonic-
al and non-nested (pseudoknot) base pairs. The improvement is the
largest for non-nested and non-canonical base pairs (Singh et al.,
2019).

2.3 Evolutionary coupling analysis tool
Evolutionary coupling analysis, or covariance analysis, is the process
to infer evolutionary coupling signals from the sequence alignment.
There are two sources of noises in the process: one is the phylogenet-
ic bias and the indirect-coupling effect (Lapedes et al., 1999).
Various covariance scores were developed, which can be separated
into two categories:

• Local covariance score: Local means that only two sites of align-

ment columns are considered when calculating the score. Mutual

BLAST-N
E-value=0.001, line-length=1000, num-

alignments=50,000
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Fig. 1. The architecture of the RNAcmap pipeline. CSS, consensus secondary struc-

ture; CM, covariance model; L, length of the input RNA sequence
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information (MI) is a common method. Recently, R-scape is

developed to identify conserved RNA pairs from the alignment

using local covariance scores. The phylogenetic bias is overcome

by using a null hypothesis to generate synthetic alignments,

accounting for phylogenetic correlation and base composition

bias (Rivas et al., 2017).
• Global covariance scores: Global means that all covariation

scores are calculated under a global probabilistic graph model.

This type of scores is designed to overcome indirect-coupling

bias. Lapedes and colleagues related the problem of decoupling

sequence covariation in alignment with the using model in statis-

tical physics (Lapedes et al., 1999). Later, a variety of methods

were developed to learn the model parameters, including mes-

sage-passing (Weigt et al., 2009), Bayesian network approach

(Burger and van Nimwegen, 2010), mean-field [PSICOV (Jones

et al., 2012), mfDCA (Morcos et al., 2011)] and pseudo-likeli-

hood [plmDCA (Ekeberg et al., 2013), GREMLIN (Kamisetty

et al., 2013), plmc (Weinreb et al., 2016)]. All these methods are

collectively given the name of direct coupling analysis (DCA).
In this work, we considered three DCA method, GREMLIN,

plmc and mfDCA because they were applied to RNA alignments be-
fore or had the option to deal with RNA alignment. GREMLIN
(Kamisetty et al., 2013) is obtained from https://github.com/sokryp
ton/GREMLIN_CPP. The method is based on the pseudo-likelihood
inference of direct coupling analysis with L2 regularization.
GREMLIN is run with the recommended parameter for RNA (-al-
phabet rna-gap_cutoff 1.0-lambda 0.01-eff_cutoff 0.8-max_iter
100). The plmc method was obtained from https://github.com/deb
biemarkslab/plmc. It employed similar pseudo-likelihood to infer
the parameters in the DCA model (Weinreb et al., 2016). We uti-
lized the recommended parameters for RNA (-a -.ACGU -le 20 -lh
0.01 -m 50). The mfDCA method was obtained from http://dca.rice.
edu/portal/dca/download. It employed the inverse covariance matrix
to infer the coupling parameters (De Leonardis et al., 2015; Morcos
et al., 2011). An additional Average Production Correction (APC)
(Dunn et al., 2008) was applied to the original mfDCA to be consist-
ent with other DCA methods. In addition to above three DCA pre-
dictors, we also consdered R-scape (Rivas et al., 2017) and
alignment based folding method RNAalifold (Bernhart et al., 2008)
for comparison. They were downloaded from http://www.eddylab.
org/R-scape/ and https://www.tbi.univie.ac.at/RNA/, respectively.

3 Datasets

3.1 PDB dataset
We downloaded a total of 4528 structures containing 6294 RNA
chains from the Protein Data Bank (PDB). Among them, 4281 RNA
chains were selected with sequence length between 32 and 500. Using
cmfind from INFERNAL and Rfam database (Version 14.1), these
chains were further split into two sets: 3182 RNA chains were mapped
to existing Rfam families and 1099 RNA chains were not mapped to
any Rfam families. The majority of structure-mapped Rfam families
(77%, 2461 of 3182) are tRNA, 5S rRNA and 5.8S rRNA. These two
sets were further reduced by limiting to X-ray-determined structures
with resolution < 3:5 Å and clustered by CD-HIT-EST (Fu et al.,
2012; Li and Godzik, 2006) with sequence identity cut off of 0.8.

For those RNAs mapped to known Rfam families, we required
the minimal aligned length to be 80% of the RNA length and the
aligned length of the Rfam covariance model to be greater than
50%. If one RNA was aligned to two or more Rfam families, the
family with the highest score (or the lowest E-value) was taken as
the correctly aligned family. Finally, for each family, we selected one
RNA. Dataset-1 contained 43 structured, non-redundant RNAs as
shown in Supplementary Table S1.

For those RNAs that were not mapped to Rfam families, we
required the minimal number of base pairs to be 10, which is the
lowest number of base pairs in the Rfam set. Dataset 2 set contained
117 non-redundant RNAs as shown in Supplementary Table S1.

Further, Supplementary Table S2 shows different types of base-
pairs, median and maximum sequence length for dataset-1,2.

3.2 PseudoBase11 dataset
The PseudoBaseþþ database (Taufer et al., 2008) collected over
300 records of pseudoknot RNA secondary structures. We down-
loaded 304 RNA sequences from PseudoBaseþþ. After excluding
the sequences with large gaps or ambiguous bases a total of 274
RNA sequences were obtained. Further to avoid any potential bias,
we removed sequences with more than 80% identity with SPOT-
RNA training data. The final PseudoBaseþþ dataset (dataset-3),
consists of 31 RNAs with the number of effective homologous
sequences Neff =L > 0:2 as shown in Supplementary Table S1.

3.3 RNA structure atlas dataset
The RNA Structure Atlas organized all RNA-containing 3D struc-
tures from PDB into non-redundant classes and selects high-quality
representative structure from each class. We extracted 366 single-
chain RNAs from RNA Structure Atlas (Version 3.126) at 4.0 Å
resolution with sequence lengths ranging from 32 to 500. By map-
ping the sequences to existing Rfam families, it is found that 77
sequences are tRNA (RFAM ID: RF00005), eight times more than
the second largest group (9 sequences, Purin riboswitch, RFAM ID:
RF00167). We excluded tRNA to avoid test bias, resulting in 266
RNAs in this set. Furthermore, these 266 RNAs were filtered against
the SPOT-RNA training data at 80% sequence identity cut-off and
with Neff=L value cut-off of 0.2. The final Atlas dataset (dataset-4),
consists of 133 RNAs as shown in Supplementary Table S1.
Supplementary Table S2 also shows different types of base-pairs,
median and maximum sequence length for dataset-3,4.

4 Data processing

4.1 Secondary structure annotation
The terms for characterizing RNA structures differ greatly in the lit-
erature. Here we followed the definition of the terms as in bpRNA
(Danaee et al., 2018). Briefly, a ‘canonical’ base pair is a base pair
with the type of AU or GC and ‘Wobble’ base pair with type of GU.
A ‘stem’ is defined as a region of more than two uninterrupted base
pairs with no intervening loops or bulges. An ‘isolated canonical
base pair’ is defined as a canonical base pair without stacking inter-
action or not belonging to a stem. A ‘Pseudoknot’ exists when two
non-nested base pairs (i, j) and (a, b) satisfy ði < a < j < bÞ. The
‘Pseudoknot base pairs’ in a pseudoknotted RNA are those base
pairs that require the least to remove in order to yield a pseudoknot-
free secondary structure.

We used X3DNA-DSSR (Lu and Olson, 2003) to annotate the
secondary structure from the PDB structure in dataset 1, 2 and 4.
The secondary structure for dataset-3 was directly downloaded
from PseudoBaseþþ webserver. For secondary structures in dataset
1� 4, we used the bpRNA script to annotate the RNA structural
elements (Danaee et al., 2018).

4.2 Multiple sequence alignment annotation
The performance of the RNAcmap contact prediction is determined by
the quality of the homologous sequence profile. We calculated the
Number of EFFective (Neff) homologous sequences for each multiple
sequence alignment using GREMLIN. Neff is defined as the sum of
weights after down-weighting each sequence by the number of neigh-
bors above a pairwise sequence similarity cutoff of 0.8. The MSA depth
is defined as Neff=L, where L is the sequence length of the RNA.

5 Performance measures

5.1 Base pairs
The performance of a single RNA was evaluated by the sensitivity
(SN ¼ TP=ðTPþ FNÞ), precision (PR ¼ TP=ðTPþ FPÞ) and
Matthews Correlation Coefficient (MCC) using top L=6; L=4; L=2
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and L predicted pairs, where L is the length of RNA sequence and
MCC is given bY

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p

Here, TP, TN, FP and FN are true positives, true negatives, false
positives and false negatives, respectively. Only non-local pairs were
evaluated (ji� jj > 4, i and j are the sequence positional indices of
the nucleotides).

Here, we defined non-hydrogen-bonded tertiary contacts if (i)
the nearest-heavy atom distance between two nucleotides is less
than 8 or 12 Å and (ii) these two nucleotides are not adjacent to the
existing base pairs. This definition follows the work by De
Leonardis et al. (2015). Tertiary contacts were evaluated after
removing base pairs and two nucleotides neighboring to the base
pairs. The overall performance was evaluated by MCC, sensitivity
and precision.

5.2 RNA topology
It is frequently observed that only a few base pairs within a stem
have detectable evolutionary coupling signals. Therefore, it is neces-
sary to evaluate the prediction of stems beside the prediction of
base-pair contacts. This is because that for the RNA modeling prob-
lem in a real-world scenario, capturing all stems of an RNA is more
valuable than capturing all base pairs of a stem. To evaluate the per-
formance on the stem level, we define that a stem is correctly pre-
dicted if one or more base pairs within the stem are correctly
predicted. The overall performance was evaluated by MCC, sensitiv-
ity and precision.

6 Results

6.1 The RNAcmap pipeline
6.1.1 Comparison of covariance methods

We first examined how different covariance scores would impact
the outcome of the contact prediction step. For 43 RNAs in dataset-
1, we generated MSA profiles for the non-redundant PDB set and
applied GREMLIN, mfDCA_apc, plmc and R-scape to calculate
coupling scores for all possible base pairs. In addition to DCA pre-
dictors, we also included alignment based folding method
RNAalifold for comparison. Figure 2 compares base-pair prediction
evaluated by MCC, precision and sensitivity respectively. Results for
top L/6, L/4, top L/2 and top L predictions are presented. As
expected, increasing the number of predictions from top L/6 to L
leads to an increase in sensitivity but a decrease in precision. Except
R-scape, top L/4 predictions reached the highest MCC for all evolu-
tionary coupling methods, suggesting that using top L/4 predictions
have the optimal balance of sensitivity and precision.

As shown in Figure 2A, GREMLIN has a comparable perform-
ance with RNAalifold based on the average MCC at top L/4 with
not much statistical significant performance difference (P-val-
ue¼ 0:03, the paired t-test). This is followed by the comparable per-
formance of plmc and R-scape, then by mfDCA. However, the
performance improvement of GREMLIN is statistical significant

over mfDCA (P-value¼ 1� 10�7), plmc (P-value¼ 1� 10�5) and
R-scape (P-value¼ 1� 10�3) when evaluated based on MCC of top
L/4 using paired t-test. Because of the statistical significant differ-
ence among GREMLIN and other predictors (except RNAalifold),
GREMLIN will be used as the default for all subsequent analysis.
We preferred, GREMLIN over RNAalifold because GREMLIN can
predicts non-canonical and pseudoknots base-pairs as we shall see
later. Moreover, RNAalifold is a folding-based algorithm, not a
method that extracts co-evolutional information.

6.2 Comparison of secondary structure predictors
We compared the effect of using RNAfold and SPOT-RNA in the
homology search step. To make a fair comparison, we excluded
those RNAs in dataset 1 and 2 with sequence similarity greater than
80% to any of RNAs in the SPOT-RNA training set. This sequence-
identity cut off was the lowest cutoff allowed by CD-HIT-EST (Fu
et al., 2012; Li and Godzik, 2006) and employed previously for sep-
arating training and independent test sets (Guruge et al., 2018;
Singh et al., 2019; 2021b; Yang et al., 2017). This leads to a total of
77 RNAs as a combined test set (see Supplementary Table S1, data-
set 1þ2).

Figure 3 compares the performance in MCC for the top L/4 pre-
dictions by RNAcmap (SPOT-RNA) and by RNAcmap (RNAfold),
respectively. The former has 29 RNAs with higher MCC, compared
to 20 RNAs with higher MCC by the latter. The mean MCC is 0.30
for RNAcmap (SPOT-RNA) and 0.28 for RNAcmap (RNAfold).
The performance difference is not statistically significant with P-
value 0.137 obtained through paired t-test for this dataset.

6.3 Comparison between RFAM curated and RNAcmap

(RNAfold) generated multiple sequence alignment
Using RNAs in dataset 1, it is possible to compare MSA generated
by RNAcmap (RNAfold) and MSA supplied by RFAM. Figure 4
compares the base-pair prediction performance using MSA from
RNAcmap (RNAfold) and RFAM, respectively. For a reference, the
first-round MSA-1 based on the BLAST-N search is also shown.
BLAST-N-based alignment provides poor prediction with MCC
close to zero. Manually curated MSA from Rfam improves over
RNAcmap (RNAfold) with 0.01 to 0.1 higher MCC at all prediction
cutoffs. The improvement is observed for both sensitivity and preci-
sion. Rfam-alignment improves over RNAcmap (RNAfold) statistic-
ally significant for top L/6 predictions (P-value¼ 0:0007, paired t-
test on MCC of 43 RNAs), top L/4 predictions (P-value¼ 0:0008)

Fig. 2. Boxplot of MCC (A), Precision (B) and Sensitivity (C) of predicted base pairs

by RNAcmap (RNAfold) based on three evolutionary coupling methods

GREMLIN, mfDCA_apc, plmc, R-scape and RNAalifold, respectively, for 43

RNAs in the Rfam set. The distribution is shown in terms of median, 25th and 75th

percentile with outlier shown by dots
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and top L/2 predictions (P-value¼ 0:004) but not top L predictions
(P-value¼ 0:013). This result confirmed that using top L/4 predic-
tions achieved a balanced performance over precision and sensitivity
for RNA on both RNAcmap and RFAM MSA.

Figure 5 further examines the ability to predict tertiary contacts
(based on a cutoff < 8 Å and < 12 Å, respectively) by comparing the
results of different alignments. Performance for all methods is poor
with < 0.05 in median precision and < 0.02 in median sensitivity
for all top L=6; L=4; L=2 and L predictions. Rfam-based alignment
and RNAcmap (RNAfold) are significantly better than Blast-N
(with P-value < 0.0002 for all cases).

6.4 Beyond Rfam families
Although Rfam-based alignment has a slight edge in performance
than RNAcmap, one advantage of RNAcmap (RNAfold) is that it
can predict contacts for sequences that are not in the Rfam collec-
tion. Using 160 RNAs in the PDB dataset, Figure 6 shows MCC of
base pair prediction as a function of the MSA depth (Neff/L). While

the Rfam-based alignment improves over RNAcmap (RNAfold) for
the Rfam set, the performance of RNAcmap (RNAfold) for 117
RNAs in the non-Rfam set is nearly the same as that for 43 RNAs in
the Rfam set. All showed a trend of improved prediction with
increased MSA depth (Neff/L). Particularly, reasonably accurate pre-
dictions (MCC > 0.5) are made for MSA depth > 1 for 21 of 27
RNAs (78%) using Rfam alignment and 31 of 39 RNAs using
RNAcmap alignment. Two outliers with high Neff/L and low MCC
in Figure 6 are both resulted from poorly predicted secondary struc-
tures (Red : 6ASO-I, Blue: 4QJD-B), which led to incorrect homolo-
gous sequences.

Figure 7 shows the results for 18 RNAs in the combined test set
(dataset-1 and dataset-2) with Neff=L > 1 as we considered that the
evolutionary information is not reliable for Neff=L < 1 as shown in
Figure 6. We evaluated the performance on the base-pair level and
on the stem-level. On the base-pair level, we examined different
types of base pairs including canonical and Wobble base pairs in hel-
ical regions, in non-helical regions (unstacked, isolated single base
pairs), non-canonical base pairs and nested base pairs. SPOT-RNA
and RNAcmap (SPOT-RNA) can correctly predict more canonical
and Wobble base pairs in a helical region as compare to other pre-
dictors. On the other hand, RNAcmap (RNAfold) significantly
improves over RNAfold in predicting non-canonical base pairs and
base pairs in pseudoknots. SPOT-RNA is slightly better in predicting
non-canonical base pairs and much better in predicting base pairs in
pseudoknots than RNAcmap (SPOT-RNA). This is because
RNAfold was not built for predicting pseudoknots or non-canonical
base pairs whereas SPOT-RNA, a deep learning technique, was
trained for predicting any base pairs including pseudoknots
and non-canonical base pairs. Moreover, pseudoknots and non-ca-
nonical base-pairs are not employed by INFERNAL for building co-
variance models. What is more revealing is the evaluation at the
stem level (Fig. 7 last columns). RNAcmap (SPOT-RNA) and
RNAcmap (RNAfold) achieved higher F1-score than SPOT-RNA
(or RNAfold).

6.5 Performance on pseudoknotted RNAs
Pseudoknot structures in RNA are known difficult to model.
Supplementary Figure S1 shows the basepair prediction F1-score as
a function of different types of base-pairs for dataset-3. Only 9 of
266 RNAs has MSA depth greater than 1, however, we noticed that
31 RNAs in this dataset with MSA depth > 0.2 have reasonably ac-
curate predictions (MCC > 0.5).

Supplementary Figure S1 shows the F1-score of prediction on
different base-pairs and at stem levels of these 31 RNAs. In the ca-
nonical and Wobble pair category, RNAcmap (SPOT-RNA) predicts
fewer pairs than SPOT-RNA and RNAalifold but better than the R-
scape. In the pseudoknot category, RNAcmap (SPOT-RNA)
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performs better than the RNAalifold and R-scape but underper-
forms as compare to SPOT-RNA as pseudoknot information from
SPOT-RNA was not utilzed by the INFERNAL tool. We do not
make comparison on non-canonical base-pairs because there were
only 4 non-canonical base-pairs in 31 RNAs which was not statistic-
ally meaningful comparison.

6.6 Performance on RNA atlas datasets
The RNA structure atlas dataset (dataset-4) provides a representa-
tive RNA structure set for testing. We predicted contacts using
RNAcmap (SPOT-RNA) pipeline and compared results with R-
scape and RNAalifold using the same RNAcmap (SPOT-RNA) gen-
erated MSA as input. 133 out of 288 RNAs have MSA depth > 0.2
and used for the comparison.

Supplementary Figure S2 shows F1-score for these 133 RNAs for
different base-pairs and stem levels. The same trend is observed as
RNAcmap predicts less canonical and Wobble pairs than SPOT-
RNA and RNAalifold while capturing more pairs than the R-scape.
In non-canonical and pseudoknot category, RNAcmap (SPOT-
RNA) performs better than RNAalifold but comparable to R-scape.

6.7 Computational efficiency
RNAcmap performs computation demanding database search
(cmsearch and BLAST-N) as well as covariance analysis using DCA
tools. In our test on the RNA atlas datasets, a median of 30 CPU
hours for each sequence is required. Most jobs finished with 17 to
51 CPU hours (25–75 percentile). Therefore, we recommend using
RNAcmap with 20 GB RAM and multicore support.

7 Discussion

In this article, we have established a fully automatic pipeline that
can predict contact maps directly from any given RNA sequences by
homology search and evolutionary coupling analysis. The perform-
ance of RNAcmap is comparable to that from manually curated
Rfam alignments. More importantly, the performance is robust for
those sequences not belonging to Rfam families, pseudoknot RNAs
and non-redundant RNA sets. Thus, RNAcmap is expected to be
useful to generate structural restraints for RNA secondary and ter-
tiary structure prediction, as demonstrated previously (De Leonardis
et al., 2015; Wang et al., 2017a; Weinreb et al., 2016; Zhang et al.,
2020).

It is found that the performance of RNAcmap is less dependent
on the tools for evolutionary coupling analysis. The difference be-
tween GREMLIN, mfDCA_apc and plmc is small (Fig. 2). This re-
sult is consistent with an independent study (Pucci et al., 2019).
However, the performance of RNAcmap is more strongly dependent
on the secondary structure predictor (Fig. 3). SPOT-RNA, that has
more accurate secondary structure prediction, improves over RNA-
fold in generating alignments that yielded improved contact predic-
tion. In particular, more stem regions were captured by using
RNAcmap (SPOT-RNA) (Fig. 7), indicating more accurate topo-
logical connections in base pairing patterns. A simple meta predictor
RNAcmap (SPOT-RNA/RNAfold) was established by using the sec-
ondary structure predictor that will yield a higher number of

effective homologous sequences (Neff). This meta predictor further
improves over RNAcmap (RNAfold). It is not entirely surprising as
RNAfold (a folding-based algorithm) and SPOT-RNA (a deep-learn-
ing-based method) are likely complementary to each other. It should
be noted that because the covariance model by INFERNAL cannot
use the pseudoknot and non-canonical base pair information from
input secondary structure, therefore, improvement for non-canonic-
al base-pairs and pseudoknots are independent of the input second-
ary structure predictor employed.

Contact map results for RNAs are different from those of pro-
teins. For homologous sequence alignment, our results showed that
sequence-only similarity search (BLAST-N) missed many homolo-
gous sequences with low sequence identity, resulting in poor predic-
tion in the downstream covariance analysis. Using a predicted
secondary structure in the RNAcmap greatly expanded the coverage
of homologous sequences, resulting in a much more accurate predic-
tion. This is different in the case of protein homologous search,
where sequence-only similarity is sufficient to capture most homolo-
gous sequences (Remmert et al., 2011). Moreover, the contact maps
for RNAs are dominated by the hydrogen-bonded base pairs. The
accuracy for predicting distance-based tertiary contacts is only mar-
ginally better than random (Fig. 5). This result is consistent with
previous studies (De Leonardis et al., 2015; Pucci et al., 2019).

We also experimented with INFERNAL E-value cut-off for
MSA-2 generation to see if different E-value cut-offs yields better
results. As shown in Supplementary Figure S3, with increase in E-
value performance of RNAcmap consistently improved on 27 RNAs
from dataset-2 with Neff > 1 for lowest E-value (1� 10�4).
However, the improvement by increasing the E-value cutoff is at the
cost of significant increase in the computing time.

Not all base pairs are of equal importance when inferring the
RNA structure. As showing in the comparison between RNAcmap
and secondary structure predictors (SPOT-RNA, RNAfold),
RNAalifold and R-scape, RNAcmap-predicted base pairs are more
enriched with isolated, pseudoknotted and non-canonical base pairs,
which bring richer information for the overall topology of the RNA.
Even for helical stem regions, RNAcmap predicts more stems than
other methods, although the average number of predicted canonical
and Wobble base pairs within a stem is less than that of secondary-
structure predictors. This is because evolutionary coupling can only
capture the strongest signals that show a marked difference in struc-
tural and functional stabilities between deleterious single and rescu-
ing double mutations. In other words, the results from evolutionary
coupling analysis offer a topology frame that can be further
improved by a post-processing method. Indeed, Zhe et al. showed
that a simple Monte-Carlo simulated annealing can recover nearly
all base pairs of two ribozymes using pairing probabilities from mu-
tational coupling analysis as a part of the energy function for folding
secondary structure (Zhang et al., 2020).
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