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  Abstract 

   Predicting one-dimensional structure properties has played an important role to improve prediction of 
protein three-dimensional structures and functions. The most commonly predicted properties are sec-
ondary structure and accessible surface area (ASA) representing local and nonlocal structural characteris-
tics, respectively. Secondary structure prediction is further complemented by prediction of continuous 
main- chain torsional angles. Here we describe a newly developed method SPIDER2 that utilizes three 
iterations of deep learning neural networks to improve the prediction accuracy of several structural prop-
erties simultaneously. For an independent test set of 1199 proteins SPIDER2 achieves 82 % accuracy for 
secondary structure prediction, 0.76 for the correlation coeffi cient between predicted and actual solvent 
accessible surface area, 19° and 30° for mean absolute errors of backbone  φ  and  ψ  angles, respectively, and 
8° and 32° for mean absolute errors of Cα-based  θ  and  τ  angles, respectively. The method provides state-
of-the- art, all-in-one accurate prediction of local structure and solvent accessible surface area. The method 
is implemented, as a webserver along with a standalone package that are available in our website:   http://
sparks-lab.org    .  

  Key words     Secondary structure prediction  ,   Solvent accessible surface area  ,   Backbone torsion angles  , 
  Deep neural networks  ,   C alpha-based angles  

1       Introduction 

 With the rapid development of DNA sequencing techniques, there 
is a continuously increasing gap between the number of sequences 
available from genomic analysis and the number of structures and 
functions determined or annotated by expensive experimental 
techniques. It is highly desirable to develop theoretical methods to 
predict protein structures and functions from their one- dimensional 
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sequences. However, methods for highly accurate prediction of 
protein three-dimensional structures (except homology modeling) 
are not yet available. This has signifi cantly limited the ability to 
annotate protein functions based on their three-dimensional 
 structures. As a result, predicted one-dimensional structural prop-
erties of proteins have often been utilized for predicting protein 
functions [ 1 – 4 ], their binding sites to other molecules [ 5 – 7 ], and 
other studies [ 8 – 11 ]. They have also been widely employed to 
improve protein structure prediction methods: both ab initio [ 12 – 14 ] 
and template-based techniques [ 15 – 18 ]. Thus any improvement in 
predicted one-dimensional structural properties will benefi t pro-
tein structure and function modeling. 

 The most commonly predicted one-dimensional structural 
property of a protein is three-state secondary structure (helix, 
sheet, and coil). Secondary structure prediction accuracy without 
using homologous sequences in training has gradually been 
improved to above 81 % in recent years [ 19 ,  20 ], due to improved 
machine-learning algorithms, better features, and available larger 
training datasets. 

 An alternative to secondary structures is angle-based represen-
tation of backbone structure. Angle-based description such as tor-
sion angles  φ  and  ψ  offers a continuous representation of local 
conformation [ 12 ], rather than discontinuous and somewhat arbi-
trary defi nition of three secondary-structure states. The advantage 
of angle-based representation leads to methods for predicting tor-
sional angles  φ  and  ψ  [ 12 ,  21 ], and Cα-based angles [an angle 
between Cα  i −1  − Cα  i   − Cα  i +1  ( θ ) and a dihedral angle rotated about 
the Cα  i −1  − Cα  i   bond ( τ )] [ 22 ]. 

 Another important one-dimensional structure property is 
solvent Accessible Surface Area (ASA) that measures exposure 
of amino acid residues of proteins to solvent, which is important 
for understanding and predicting protein structure, function, 
and interactions [ 23 – 26 ]. Earlier multistate prediction [ 23 ,  27 , 
 28 ] has been gradually moved to continuous real value predic-
tion [ 29 – 33 ]. 

 In a recent study, we have developed SPIDER2, an iterative 
deep-learning neutral network, to predict all above-mentioned 
structural properties at the same time [ 34 ]. The iterative and 
cross- learning method achieved 82 % accuracy for secondary 
structure prediction, 0.76 for the correlation coeffi cient between 
predicted and actual solvent accessible surface area, 19° and 30° 
for mean absolute errors of backbone  φ  and  ψ  angles, respec-
tively, and 8° and 32° for mean absolute errors of Cα-based  θ  and 
 τ  angles, respectively, for an independent test dataset of 1199 
proteins. The resulting method provides state-of-the-art, all-in-
one accurate prediction of local structure and solvent accessible 
surface area.  
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2     Algorithm 

 SPIDER2 server version was trained on a dataset of 5789 
nonredundant (25 % cutoff), high resolution (<2.0 Å) structure by 
employing a three consecutive deep neural networks trained itera-
tively. In each iteration, we employed a deep neural network 
(DNN) consisting of three hidden layers with 150 hidden nodes in 
each layer. The weights were initialized by stacked sparse auto- 
encoder [ 35 ] and then refi ned by standard back-propagation 
through fi ne-tuned supervised training [ 36 ,  37 ]. The learning 
rates for backward propagation were 1, 0.5, 0.2, and 0.05, respec-
tively, with 30 epochs at each learning rate. The input layer for the 
DNN in the fi rst iterative learning consists of 459 features 
(27 features per residue for a sliding window of 17 residues cen-
tered at the query residue). These 27 features include seven repre-
sentative physical chemical properties parameters (steric parameter 
(graph shape index), hydrophobicity, volume, polarizability, iso-
electric point, helix probability, and sheet probability properties of 
the amino acids), and 20 substitution probabilities obtained from 
3 iterations searching by PSIBLAST [ 38 ]. All input features are 
normalized to the range of 0 to 1. For residues near the ends of a 
protein, the features of the amino acid residue at the current end 
of the protein were duplicated so that a full window could be used. 
Predicted outputs are 12 values of predicted probabilities for three 
secondary structure states, relative ASA, and sine and cosine of 
four angles  θ ,  τ , ϕ, and  ψ . The input layers for the DNN in the 
second and third iterative learning are 12 predicted values in the 
previous iteration plus 27 above-employed features per residue, 
that is, 663 features [=(12 + 27) × 17].  

3     Web Server 

 The simplest way to use SPIDER2 is to submit a query sequence 
to our server at   http://sparks-lab.org/yueyang/server/SPIDER2    .

    1.    As shown in Fig.  1a , your protein sequence can be entered (or 
copy-pasted) in the FASTA format into the text area. Only one 
protein sequence is allowed each time. The sequence must 
contain 20 standard amino acids only. The fi rst comment line 
in the FASTA format (“>” followed by the protein name) is 
employed to identify the name of the query protein. Without 
this line, the protein name will be set as “unknown” by default. 
The email address and target name in the webpage are optional. 
If you have a DNA/RNA sequence, you need fi rst to convert 
them into a protein sequence ( see   Note    1  ).
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       2.    By clicking the “submit” button, the job will be sent to a 
queue, and the webpage will be directed to a new page, where 
the “Click the link” points to a to-be-available result fi le. This 
webpage will be automatically refreshed every 60 s until the 
job is completed and the result is displayed on the web page.   

   3.    Each prediction is usually completed within 10 min, but may take 
up to a few hours depending on how busy the server is and how 
long the protein chain is. If an email address is provided in sub-
mission, the link to the result webpage will be sent to the mailbox 
as soon as the prediction is fi nished. All prediction results are kept 
in the server for 1 month and automatically deleted afterwards.   

   4.    If the users have their own Position Specifi c Substitution 
Matrix (PSSM) fi le for their query protein sequence, SPIDER2 
prediction can be made by submitting the PSSM fi le to the 
server. Using an external PSSM fi le can skip the most time-
consuming step of generating the evolution profi le by PSI-
BLAST, and the executive time reduce to a few seconds.   

   5.    To save computing resources, please do not submit query 
sequences more than once. The status of your job can be found 
by clicking the link “Check the current Queue to prevent 
DUPLICATE submission” on the server webpage.   

   6.    Figure  1b  shows an example for the output webpage. Aligned 
lines started with “SEQ,” “SS,” and “rASA” represent query 
sequence, predicted secondary structure, and predicted rela-
tive accessible surface area, respectively. For SS, predicted coil, 
helix and sheet residues are represented by “−,” red “E,” and 
green “H,” respectively. For rASA, the relative ASA is repre-
sented by 0–9 with “0” for up to 10 % of its surface exposed 
and “9” for above 90 % exposed. The residues of rASA less 

  Fig. 1    The webserver input ( a ) and output screenshots ( b ) for example sequence“1a1xA.seq” by SPIDER2       
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than 20 % (buried residues) are labeled in blue. Here, rASA is 
normalized by a residue-specifi c reference value (the ASA in 
the fully exposed state of a residue when connected by an ALA 
in each side). This output page does not contain predicted sec-
ondary structure probability, predicted angles, and actual real 
values of ASA. The complete prediction fi le “pro1.spd3” ( see  
Subheading  4 ,  step 6  for explanation of the fi le) together with 
other intermediate fi les such as PSSM can be downloaded fol-
lowing the link in this output webpage.    

4        Standalone Software 

 SPIDER2 is also available as a standalone software package. The pro-
gram was designed to run in a Linux environment with python 2.7 
and numpy version 1.4 or above. The input is a protein sequence in 
FASTA format, and outputs include predicted secondary structure, 
accessible surface area, main-chain torsional angles (phi/psi and 
theta/tau). The program can be installed in following steps.

    1.    Download the software package from our homepage with a 
shortcut link:   http://sparks-lab.org/pmwiki/download/index.
php?Download=yueyang/SPIDER2_local.tgz     after entering 
your name and email address. This information will be used 
only for notifi cation of future updates. You can fi ll in “none” if 
you prefer not to leave your information.   

   2.    Unzip the package by command “tar zxvf SPIDER2_local.tgz” 
which creats the directory “SPIDER2_local” containing a 
“Readme” fi le and three subdirectories “dat,” “ex,” and “misc.” 
The “dat” directory contains three npz fi les of trained parame-
ters for three iterative neural networks, respectively, and the 
“misc” directory contains the program and auxiliary script fi les.   

   3.    If BLAST or BLAST+ package is not installed in your com-
puter, the software can be obtained from NCBI website. 
This program further requires correctly formatted nonre-
dundant protein sequence databases, which can be down-
loaded from NCBI   ftp://ftp.ncbi.nlm.nih.gov/blast/db     (all 
fi les starting with “nr”). Until Oct 2015, the NR database 
contains a total of 40 fi les in 22GB before uncompressing. 
Alternatively, you can utilize a database by removing highly 
homology sequences, e.g., Uniref90 ( see   Note    2  ). This will 
speed up the calculation without making signifi cant changes 
in prediction accuracy. This step can be skipped if you have 
prepared PSSM fi les ( see   Note    3  ).   

   4.    SPIDER2 is called by the command “run_local.sh,” followed 
by all sequence fi les in FASTA format. Here, one input fi le can 
contain a protein sequence only ( see   Note    4  ).   
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   5.    Results will be saved in an output fi le with extension “spd3.” 
An example of output is shown in Fig.  2 . The output fi le con-
tains 11 columns that represent the residue index, residue 
type, predicted secondary structure type, ASA,  φ ,  ψ ,  θ ,  τ , and 
probabilities as coil (C), sheet (E), and helix (H). The pre-
dicted secondary structure is the secondary structure type 
with the highest probability. The  θ  angle at residue index  i  is 
the angle between Cα  i −1  − Cα  i   − Cα  i +1 , and  τ  is the dihedral 
angle formed by Cα  i −2  − Cα  i −1  − Cα  i   − Cα  i +1 . Three torsional 
angles  φ ,  ψ , and  τ  range from −180 to 180°, and angle θ 
mostly ranges between 70 and 180°.

       6.    In addition, the package includes one program “pred_nopssm.
py” that makes prediction without using the PSSM from PSI- 
BLAST. Instead, the profi le is replaced by the BLOSUM62 
substitution matrix. This replacement allows a fast calculation 

  Fig. 2    The partial prediction results by SPIDER2 for the example sequence“1a1xA.seq”       
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at a lower accuracy (For example, secondary structure accuracy 
at 68.9 %, compared to 81.8 % by using PSI-BLAST profi le). 
This may be useful for large-scale calculations in genome level. 
However, it should be noted that all parameters were not opti-
mized for the evolution-profi le free prediction, and the devel-
opment of a specifi c predictor by using sequence only is in 
progress.      

5         Notes 

     1.    The query sequence must be a protein sequence in the FASTA 
format. The gene in the DNA/RNA sequence has to be con-
verted to the sequence of amino acids fi rst. This conversion can 
be made by using http://web.expasy.org/translate or any other 
tools. Nonstandard amino acids (e.g., X) must be removed, 
prior to the use of SPIDER2.   

   2.    The package employs PSI-BLAST to generate PSSM gener-
ated by scanning NR database. Alternatively, you can employ 
the sequence database uniref90 that can be downloaded from 
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uni-
ref90/uniref90.fasta.gz. This database can be converted to 
BLAST-readable format by the command “gunzip -c uniref90.
fasta.gz | ~/aspen/software/ncbi-blast-2.2.30+/bin/make-
blastdb -in - -dbtype prot -parse_seqids -out uniref90 -title 
uniref90.” This operation skips the step of unzipping the large 
database.   

   3.    For users with their own PSSM fi les, they can obtain predic-
tions by utilizing the script “pred_pssm.py” followed by PSSM 
fi le names. This command will skip running PSI-BLAST and 
prediction can be fi nished in a few seconds.   

   4.    If your sequence fi le contains more than one protein sequence, 
you can use the script fi le “splitseq.py” to split your sequence 
fi les to many fi les, and each fi le will be named according to 
protein names in the FASTA fi le.         
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