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Abstract— In this paper we propose a new fusion tech-
nique, termed Joint Cohort Normalization Fusion, where the in-
formation fusion is done prior to the likelihood ratio test
in a speaker verification system. The performance of the
technique is compared against two popular types of fusion:
feature vector concatenation and expert opinion fusion, for
fusion of Mel Frequency Cepstral Coefficients (MFCC),
MFCC with Cepstral Mean Subtraction (CMS) and Maxi-
mum Auto-Correlation Values (MACV) features. In exper-
iments on the NTIMIT database, the proposed technique is
shown, in most cases, to outperform the popular methods.

I. Introduction

Identity verification systems are now a part of our every
day life. As an example, Automatic Teller Machines (ATMs)
employ a simple identity verification where the user is asked
to enter their Personal Identification Number (PIN), known
only to the user, after inserting their ATM card. If the
PIN matches the one prescribed to the card, the user is
allowed access to their bank account. Similar verification
systems are widely employed to restrict access to rooms and
buildings.
The verification system such as the one used in the ATM

only verifies the validity of the combination of a certain pos-
session (in this case, the ATM card) and certain knowledge
(the PIN). The ATM card can be lost or stolen, and the PIN
can be compromised (eg. somebody looks over your shoul-
der while you’re entering the PIN). Hence new verification
methods have emerged, where the PIN has either been re-
placed by, or used in addition to, biometrics such as the
person’s speech, face image or fingerprints. The use of bio-
metrics is attractive since they cannot be lost or forgotten
and vary significantly between people.
The performance of a verification system is measured in

terms of False Acceptance rate (FA%) and False Rejection
rate (FR%), defined as:

FA =
IA

IT
× 100% FR =

CR

CT

× 100%

where IA is the number of impostors classified as true
claimants, IT is the total number of impostor classification
tests, CR is the number of true claimants classified as im-
postors, and CT is the total number of true claimant classi-
fication tests.
To quantify the performance into a single number, two

measures can be used: Equal Error Rate (EER), where the
system is configured to operate with FA = FR and Total
Error (TE), defined as TE = FA + FR.
Verification systems based on speech have proven to be

quite effective [1]. However their performance is still not
perfect. They usually rely on only one type of feature extrac-
tion, namely Mel Frequency Cepstral Coefficients (MFCC)
or MFCC with Cepstral Mean Subtraction (CMS).
In [2] information from both MFCC and MFCC-CMS fea-

tures was used to reduce the error rates in a speaker iden-

tification system (from here on, MFCC-CMS features shall
be referred to as CMS features).
Recently new type of features, named Maximum Auto-

Correlation Values (MACV), have been proposed to aug-
ment the cepstral coefficient feature vector [3]. The MACV
feature set contains both voicing and reliable pitch informa-
tion. In a speaker identification scenario, this feature set
was shown to reduce error rates on a variety of databases.
Two popular fusion methods, namely feature vector con-

catenation and expert opinion fusion, have been studied in
[4] for fusion of MFCC, CMS and MACV features. In this
paper we propose a new fusion technique, which we have
termed as Joint Cohort Normalization Fusion and compare
its performance against the established fusion methods.
The rest of the paper is organized as follows. In Sec-

tion II, we briefly describe the MFCC, CMS and MACV
features. In Section III, we describe a Gaussian Mixture
Model (GMM) modality expert, which shall be used as the
basis for fusion experiments. In Section IV, we describe the
concatenation and opinion fusion techniques as well as the
proposed method. The performance of all fusion techniques
is compared in Section V.

II. Speech Feature Extraction

A. MFCC Features

The human ear processes the speech signal using a bank
of non-uniformly spaced filters. Features extracted using
such a filter-bank have been shown to be quite effective for
speaker verification [1].
For a given speech frame (usually 20 ms in length), the

spectrum is obtained using the Fast Fourier Transform
(FFT). The square of the magnitude of the spectrum is
taken and the result is then multiplied by a pre-emphasis
filter to emphasize the high-frequency portion. 17 Mel-scale
triangular filter bank energies [6] are then calculated and
are expressed in logarithmic scale [7].
The upper and lower passband frequencies of each filter

are the center frequencies of the adjacent filters. The fre-
quency range of the filters was chosen to cover the telephone
bandwidth. The central frequencies of the 17 filters are (in
Hz): 300, 400, 500, 600, 700, 800, 900, 1000, 1149, 1320,
1516, 1741, 2000, 2297, 2639, 3031 and 3482. Since the fil-
ter bank coefficients are highly correlated, a discrete cosine
transform is used to de-correlate them:

ci =
1

NF

NF∑

j=1

fj cos{
πi

NF

(j − 0.5)} i = 0, 1, ..., NF − 1 (1)

where NF is the number of filters and fj are the log filter
bank energies. The MFCC feature vector is made up of
{ci, i = 1, 2, ..., NF − 1}, ie. c0 is omitted. c0 represents the
average value of the spectrum and hence is susceptible to
varying background noise.
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Fig. 1. MACV feature extractor (after [3])

B. CMS Features

Given a sequence of MFCC feature vectors from a speech
utterance, {~ci, i = 1, 2, ..., NV }, we define their mean as ~cµ.
The mean is assumed to represent the cepstrum of the chan-
nel [9]. Thus the sequence of CMS feature vectors is ob-
tained using:

~di = ~ci − ~cµ, i = 1, 2, ..., NV (2)

CMS features have been shown [5] to be significantly more
immune to the effects of channel distortion. However, it has
also been shown that the cepstral mean also contains the
average speech cepstrum, which contains speaker informa-
tion [8], [9]. Thus removal of the ~cµ from MFCC features
is a double-edged sword: on one hand it makes the verifica-
tion system more robust against channel mismatches, while
on the other it reduces the accuracy of the system in clean
conditions.

C. MACV Features

Given a speech frame {s(n), n = 0, 1, ..., NS − 1}, the
MACV features are computed as follows:

1. Compute the autocorrelation function:

R(k) =
1

NS

NS−1−k∑

n=0

s(n)s(n+ k), k = 0, ..., NS − 1 (3)

2. Normalize {R(k)} by its value at k = 0, i.e., R̂(k) =
R(k)
R(0)

3. Divide the higher portion of {R̂(k)} into M equal parts
4. Find the maximum value of {R̂(k)} for each of the M divisions
5. The M Maximum Autocorrelation Values (MACV) form a
M-dimensional feature vector

A conceptual block diagram of this process is shown in
Fig. 1.

The lower portion of {R̂(k)} is not used as it contains
information about the system component of speech (vocal
tract). This is already used in speaker recognition systems
in the form of cepstral coefficients.

III. GMM Based Modality Expert

The distribution of feature vectors for each person is mod-
eled by a Gaussian Mixture Model (GMM). Given a set of
training vectors, an NM -mixture GMM is trained using a k-
means clustering algorithm followed by 10 iterations of the
Expectation Maximization (EM) algorithm [10].
Given a claim for person C’s identity and a set of feature

vectors X = {~xi, i = 1, 2, ..., NV } supporting the claim, log
likelihood of the claimant being the true claimant is calcu-
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Fig. 2. Concatenation fusion based verification system

lated using:

log p(X|λC) =
1

NV

NV∑

i=1

log{p(~xi|λC)} (4)

where p(~x|λ) =

NM∑

i=1

mi N (~x, ~µm,Σm) (5)

and λ = {mi, ~µi,Σi, i = 1, 2, ..., NM} (6)

Here λC is the model for person C. NM is the number of
mixtures, mi is the weight for mixture i, and N (~x, ~µ,Σ) is a
multi-variate Gaussian function with mean ~µ and diagonal
covariance matrix Σ.
Given a set of B background person models [1] (also

known as cohorts) {λb, b = 1, 2, ..., B} for person C, the log
likelihood of the claimant being an impostor is found using:

log p(X|λ
C
) = log{

1

B

B∑

b=1

p(X|λb)} (7)

In practice it was observed that only one of the background
speaker models usually dominates the above sum. To find
out whether the claimant is a true claimant or an impostor,
the following likelihood ratio is calculated:

r =
p(X|λC)

p(X|λ
C
)

(8)

In the log domain this becomes:

R = log p(X|λC)− log p(X|λ
C
) (9)

In a single modality system the decision is reached as fol-
lows: given a threshold t, the claim is accepted when R ≥ t;
the claim is rejected when R < t. However, to use the
above verification system as part of a larger system, the
final thresholding is omitted. Instead an opinion, o, on the
claim is generated using o = R. We shall refer to a ver-
ification system without the final thresholding stage as a
modality expert.

IV. Fusion Techniques

A. Feature Vector Concatenation Fusion

In this fusion approach, two or more feature vectors are
concatenated to form a single feature vector. The advan-
tage of this approach lies in its simplicity and allows for
the modeling of redundancies (for increased robustness) be-
tween different features. A block diagram of an example
verification system employing concatenation fusion is shown
in Fig. 2.

B. Expert Opinion Fusion

In opinion fusion, each feature type is processed indepen-
dently by a modality expert. The opinions from ν modality
experts then form a ν-dimensional opinion vector which is
used by a decision stage. Since there are only two possible
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Fig. 3. Opinion fusion based verification system

outcomes (accept or reject), the decision stage can be a bi-
nary classifier [11]. The classifier is trained with example
opinions of known impostors and true claimants. It then
classifies a given opinion vector as belonging to either the
impostor or true claimant class.
An intuitive advantage of the opinion fusion approach is

that the opinions can be weighted. The weight for each
modality expert can be selected according to its use for dis-
crimination purposes and robustness.
The opinion value from each modality expert is first nor-

malized to the [0, 1] interval using an approach similar to
[12]:

Oi =
1

1 + exp{−αi(oi − ti)}
(10)

where, for modality expert i, oi is the opinion, ti is the
threshold to obtain the desired operating point for that
modality and αi indicates the interval of opinions. The nor-
malized opinions are then fused using:

z =
ν∑

i

wiOi (11)

where ν is the number of modalities, wi is the weight for
modality i, with the constraint

∑ν
i wi = 1. If z < 0.5, the

claim is classified as an impostor; if z ≥ 0.5 the claim is ac-
cepted. The normalization of opinions to the [0, 1] interval
is required to ensure opinions from all modalities are equally
represented. This prevents any modality from dominating
the fused opinion prior to weighting. An example verifi-
cation system based on opinion fusion is shown in Fig. 3.

C. Joint Cohort Normalization Fusion

In the system described in Section IV-B, the informa-
tion integration is done after the ratio test for each feature
type. In the proposed fusion approach, which we shall term
Joint Cohort Normalization Fusion, information integration
is done prior to the ratio test.
Given a set of feature vectors of each type,

Y = {Xi, i = 1, ..., ν} and a set of corresponding models for
the claimed identity, λD = {λCi

, i = 1, ..., ν}, the log likeli-
hood of the claimant being the true claimant is calculated
using [c.f. Eqn. (4)]:

logP (Y |λD) =
ν∑

i

wiF [logP (Xi|λCi
)] (12)

where ν is the number of feature vector types and wi are
the weights (with constraint

∑ν
i wi = 1) for feature vectors

of type i, while

F (x) =
100

1 + exp{−a(x− b)}
(13)
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Fig. 4. Proposed Joint Cohort Normalization Fusion

normalizes logP (Xi|λCi
) to be in the [0, 100] interval. Here

b is the mid point of the interval of log pi(Xi|λCi
), while a is

the slope, selected so the above sigmoid covers the interval
of log pi(Xi|λCi

).
The log likelihood of the claimant being an impostor is

calculated using [c.f. Eqn. (7)]:

log p(Y |λ
D
) = log

1

B

B∑

b=1

exp

ν∑

i=1

wiF [log p(Xi|λbi
)]} (14)

where, for person C, λbi
is the b-th background speaker

model for the i-th feature type. The normalization to the
[0, 100] interval is required for the same reasons as explained
in Section IV-B. We use the [0, 100] interval instead of [0, 1]
to ensure one of the background speakers dominates the
sum. Finally, the opinion, o, is found using:

o = logP (Y |λD)− log p(Y |λ
D
) (15)

The opinion is then thresholded to achieve the final
accept/reject decision. A verification system utilizing the
proposed fusion approach is shown in Fig. 4.

V. Fusion Experiments

The speech pre-processing and experimental setup used
for experiments are similar to the work presented by
Reynolds in [1]. In order to reduce modeling and detecting
the environment rather than the speaker, a Speech Activity
Detector (SAD) is used [7]. The detector tracks the noise
floor of the signal and adapts to changing noise conditions.
The portions of the signal which were marked as speech are
then analyzed using a 20 ms Hamming window with a 10ms
frame advance. Hence for each second of speech we extract
100 frames.
For MFCC, MACV and CMS features, the client models

are 16 mixture GMMs with diagonal covariance matrices.
For each speaker, 10 randomly selected background speakers
were used.
For concatenated features, the number of mixtures is the

sum of the number of mixtures used for each feature indi-
vidually. Hence for the MFCC+MACV concatenated fea-
ture, 32 mixtures are used. This is necessary to keep the
number of free parameters as similar as possible between
experiments using different fusion approaches. For MACV
features, we have foundM = 8 to be optimal in preliminary
experiments.
The experiments were performed on the NTIMIT

database [13], which contains a phonetically balanced speech
corpus transmitted over telephone lines. As in [1] only the
test section of the database was used. For each of the 168
speakers, the 10 utterances were divided into 3 parts: train,
validation and test. The first 5 utterances (sorted alpha-
numerically by filename) were assigned to the train part.
The next 3 utterances were assigned to the validation part
with the remaining 2 to the test part.



TABLE I

Performance of individual features.

feature FA FR TE
MFCC 9.61 10.42 20.03
MACV 16.03 18.15 34.18
CMS 11.38 13.10 24.48

TABLE II

Performance of various fusion approaches. All results are

quoted in TE. The asterix denotes the lowest TE for a

particular feature combination.

fused features concatenation opinion proposed
MFCC+MACV 19.67 18.84 * 16.92
MFCC+CMS * 18.64 20.12 20.00
CMS+MACV 22.82 22.91 * 20.10

MFCC+MACV+CMS 22.25 19.57 * 17.03

The speaker models were generated from clean speech in
the train part, while the validation part was used for ob-
taining thresholds, weights and opinions of known impos-
tors and true claimants. For expert opinion fusion, a two
step process was required for finding the thresholds and the
weights. First the thresholds were found for EER perfor-
mance, followed by weight selection by optimizing TE. For
the proposed fusion, the weights and the threshold were op-
timized for EER performance. For concatenation fusion, the
threshold was also optimized for EER performance.
The test part was used for final performance evaluation.

For each speaker, his/her 2 test utterances were used sep-
arately as true claims, resulting in 336 true claimant tests.
Impostor claims were simulated by using utterances from
speakers other than the claimed speaker and his/her back-
ground speakers, resulting in 52752 impostor access tests.
To obtain baseline results, the individual performance of

each feature was found. In this case, the verification system
was made up of one modality expert and a thresholding
stage. The results are presented in Table I.
The performance of all fusion approaches was found

in four configurations: MFCC+MACV, MFCC+CMS,
CMS+MACV and MFCC+MACV+CMS. The results are
presented in Table II.

A. Discussion

The baseline results show that the most discriminating
feature is MFCC, followed by CMS. The MACV feature
obtains the worst performance, indicating that the pitch and
voicing information is not sufficient by itself to distinguish
speakers.
Table III shows TE reduction (in %) compared to best

baseline feature in each combination. Example: compared
to the MFCC feature alone, the TE for MFCC+MACV is
3.11 points lower, or reduced by 15.53%. The proposed fu-
sion approach obtained the best performance and highest
TE reduction for all bar one combination. The best perfor-
mance was obtained by the MFCC+MACV combination,
closely followed by the MFCC+MACV+CMS combination.
Concatenation fusion obtained the best performance for

the combination of MFCC and CMS features. Compared
to MFCC alone, the performance is slightly better, indicat-
ing the speaker information loss by CMS features has been
diminished by MFCCs. Since the CMS features are quite
similar to MFCC features, there is little complementary in-
formation. Hence the performance improvement could be
due to discriminating information common to both CMS

TABLE III

TE reduction compared to best baseline feature in each

combination

fused features concatenation opinion proposed
MFCC+MACV 1.80% 5.94% 15.53%
MFCC+CMS 6.94% (worse) 0.15%
CMS+MACV 6.78% 6.41% 17.89%

MFCC+MACV+CMS (worse) 2.30% 14.98%

and MFCC being inadvertently emphasized during model-
ing.
Ideally a fusion approach should at best provide bet-

ter performance than any of the underlying features and
never worse than any of them. The experimental results
show that the proposed fusion approach satisfies this guide-
line, while the other approaches do not. The concate-
nation fusion approach breaches this guideline for the
MFCC+MACV+CMS combination, and the opinion fusion
approach for the MFCC+CMS combination.

VI. Conclusion

We have proposed a new fusion technique, termed
Joint Cohort Normalization Fusion, for fusion of multiple
speech features in a speaker verification system. In the pro-
posed technique, the information fusion is done prior to the
likelihood ratio test. The performance of the technique was
compared against two popular types of fusion, feature vec-
tor concatenation and expert opinion fusion, for fusion of
MFCC, CMS and MACV features. In experiments on the
NTIMIT database, the proposed technique, in most cases,
outperforms the popular methods.
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