
Frequency Dependent Time-Scale Modification

Timothy Roberts

Signal Processing Laboratory

Griffith University

Brisbane, Australia

timothy.roberts@griffithuni.edu.au

Kuldip K. Paliwal

Signal Processing Laboratory

Griffith University

Brisbane, Australia

k.paliwal@griffith.edu.au

Abstract—Current Time-Scale Modification algorithms scale
all frequencies by the same amount. This paper presents an
efficient method and implementation for time scaling of arbi-

trary frequency regions, called Frequency Dependent Time-Scale
Modification. This is achieved by creating a composite frequency
spectrum frame before using traditional frequency domain time-
scaling methods. Testing was undertaken with results presented
from varied processing of 3 files. Links to and description of a
MATLAB implementation are provided.

Availability: A MATLAB software implementation can be

found on Github at github.com/zygurt/TSM.

Index Terms—audio, effect, frequency, FX, phase vocoder,
time-frequency, time-scale modification, TSM

I. INTRODUCTION

Time-Scale Modification (TSM) is a well-researched area,

with the main processing methods making use of either the

frequency domain [1]–[4] or time domain [5], [6]. These

methods manipulate the speed of playback by adjusting the

relationship between the analysis and synthesis shifts. Each

method attempts to maintain phase coherency in different

ways. For example, the phase vocoder and variants, update

the phase spectrum for each frame based on the known

phase progression for the original time base, and the re-

quired progression for the new time base [3], ensuring phase

coherence for each bin. The phase vocoder also allows for

various musical effects such as mutating between two sounds,

robotization, and whisperization [7].

An area that has yet to be explored however, is the applica-

tion of TSM to different frequency ranges of the input signal.

Frequency domain methods are prime candidates for this

application, with signal frames transformed to the frequency

domain as part of the algorithm. Additionally, the same ratio

between analysis and synthesis shifts is used for all bins,

providing a platform for augmentation. Time-scaling could

be applied to each signal after a filterbank, however this is

computationally complex and will be discussed further later

in the paper.

The proposed method is presented in Section II, testing

methodology in Section III, results are presented in Section

IV, the supplied implementation is presented in Section V,

and spectrograms of example processed files are presented in

Section VI.

II. METHOD

The proposed method is a modification of the Analysis-

Modification-Synthesis (AMS) framework used by frequency

domain TSM methods.

A. Analysis

During Analysis, a composite frequency domain frame is

constructed using multiple time-domain frames and Fourier

transforms. This composite frame is constructed by first

extracting r time domain frames from the signal, where

0 ≤ r ≤ R and R is the total number of frequency regions

being used. Shown in (1) where m is the frame number, Sr
a

is the analysis shift for the current region and N is the frame

length. Due to using a vector of analysis shifts, the time scaling

parameter α becomes αr and is calculated as per (2). Regions,

rather than bins, are used to give a scalable algorithm and will

be discussed later. The end of the signal should be adaptively

zero-padded to allow for all regions to be processed.

xr(n) = x(n) ,mSr
a ≤ n ≤ m+N − 1 (1)

αr =
Sr
s

Sr
a

(2)

These region frames, for the current analysis time instance

tma , are windowed using h(n) and transformed to the frequency

domain, as seen in (3). This results in an array of frequency

domain frames X̂r(t
m
a , k).

X̂r(t
m
a , k) =

N−1∑

n=0

h(n)xr(n)e
−j2πkn

N (3)

The composite frame is constructed by concatinating the

bin values for each region, as in (4). Each region has an upper

(ru) and a lower (rl) bound.

X(tma , k) =




X̂0(t
m
a , k)

X̂1(t
m
a , k)

X̂2(t
m
a , k)
...

X̂R−1(t
m
a , k)




, rl ≤ k ≤ ru (4)

Finally, the magnitude and phase responses for the current

time instance are calculated before modification using (5) and

(6).

|X(tma , k)| =
√
[ℜ(X(tma , k))]2 + [ℑ(X(tma , k))]2 (5)

∠X(tma , k) = tan−1ℑ(X(tma , k))

ℜ(X(tma , k))
(6)

B. Modification

As frequency domain methods maintain horizontal phase

coherence within each bin [3], each bin can be arbitrarily

time scaled, given a time-scale ratio per bin, and by extension

region. This change requires minor changes to the phase

vocoder and is shown below. During modification the instan-

taneous frequency, ω̂k(t
u
a) is calculated by first calculating the

heterodyned phase increment, using (7), where Ωk = 2πk
N

. The

phase increment Φu
k is reduced to ±π by taking its principle

determinate, (8). Finally, the instantaneous frequency of the

closest sinusoid to the centre frequency of the bin is calculated

using (9).

∆Φm
k = ∠X(tma , k)− ∠X(tm−1

a , k)− Sr
aΩk (7)

∆pΦ
m
k = ∆Φm

k − 2π(round(
∆Φm

k

2π
)) (8)

ω̂k(t
m
a) = Ωk +

1

Sr
a

∆pΦ
m
k (9)

After calculating the instantaneous frequency, the synthesis

phase can be calculated using the phase propagation formula

in (10), where Sr
s is the synthesis shift for each region.

∠Y (tms , k) = ∠Y (tm−1
s ,Ωk) + Sr

s ω̂k(t
m
a) (10)

C. Synthesis

During synthesis, the modified frame is reconstructed, ac-

cording to (11), by using the original magnitude and the syn-

thesised phase spectra. Finally, the frame is transformed back

to the time domain, with a single inverse Fourier transform

before the overlap-add process is used to combine the resulting

frame and the output signal.

Y (tms ,Ωk) = |X(tma , k)|e∠Y (tms ,k) (11)

D. Optimisation

When considering implementation of the proposed method,

optimisation can be made through the use of a constant

synthesis shift size, regions and a comparison of direct DFT

implementation and the use of an FFT. These optimisations

are discussed here, with testing discussed later.

By using an appropriate window that sums to unity during

overlap adding, the resulting signal does not require window

normalisation. In this case, the Sr
s vector may be reduced

to a single value Ss and applied to all bins. The use of

regions allows for a reduction in processing time when using

an FFT for the frequency transformation, as multiple bins

can be used from each FFT, reducing the total number of

FFTs required for each time instance. This process also allows

for the computational complexity to be scaled. By using N
2

regions, very smooth transitions can be generated, however

processing is much slower than real-time. Conversely, by using

a small number of regions, real-time suitable applications

become possible.

The computational complexity of a standard direct imple-

mentation of the DFT is O(N2), while the computational

complexity of an FFT reduces this to O(N logN). Within

the proposed method however, up to N frames are calculated

at each time instance resulting in O(N3) and O(N2 logN)
complexity for DFT and FFT respectively. In the case of

a single bin per region, the complexity for the DFT is

reduced to O(N2) as only a single value needs calculating

from each transform. The frequency transform can be further

optimised by calculating 0 ≤ k ≤ N
2 , removing half of the

calculations from both the DFT and FFT methods. Finally,

further optimisation can be found through pre-computing the

exponential factors within the DFT.

III. TESTING

Testing of the proposed method was conducted in a number

of stages, with comparisons between methods quantitatively

assessed. As the proposed method is analogous to applying

TSM to R length filterbank filtered signals, this was explored.

The direct DFT method was compared to both FFTW [8] and

Radix-2 Cooley-Tuckey FFT implementations. A variety of

signals were processed with spectrograms of the resulting files,

shown in Section VI.

The proposed method was implemented within MATLAB

using a frame length of approximately 50ms, Hann windowing

and a synthesis shift ofN/4. The DFT method was imple-

mented to make use of the fast matrix calculations available

within MATLAB. The FFT method uses the FFTW library

used by MATLAB. The filterbank method implementation

creates R band-pass filtered signals using triangular filterbanks

to ensure unity reconstruction. Each of these signals are

then processed using a standard Phase Vocoder before being

recombined to create the final signal. More details on using

each implementation can be found in Section V.

Systematic batch processing of Male Speech.wav was un-

dertaken to compare the computation time of the proposed

method and the filterbank method. The number of regions

was increased from 2 to 500 with a frame size of 50ms.

750 and 1025 regions were also tested. The time-scale ratio

was a linearly spaced vector from 50% to 200%. Due to the

large amount of time required for the filterbank method, only

a single trial was used for each number of regions.

For comparing the direct DFT implementation and the FFT

implementation, three tests were used. Initially, processing was

restricted to computing the composite frequency frame using

a range of frame lengths of white noise, where R = N
2 .

DFT, FFTW and Radix-2 Cooley-Tukey FFT implementations

were used in this initial testing. Secondary testing using DFT

and FFTW implementations was conducted in which frame

length was held at 50ms, while the number of regions was

varied from 2 to N
2 . The time taken to process a short speech

file 50 times, with no change in speed, was averaged. The

implementations have not been optimised to avoid processing

with no change in speed. The break even point for the number

of regions for each frame length was also tested. The DFT

and FFT methods processed a frame of white noise 10 times

subsequently increasing the number of regions until the DFT

method was faster than the FFT.

A white noise burst was used during testing, as it gives

a clear indication of the temporal manipulations from the

proposed method. Speech and complex music were also tested,

with figures included, however the reader is advised to listen

to the resulting files for greater insight to the capabilities of

the proposed method. The reversibility of the method was also

examined through the application of inverse time-scale ratios.

Testing was done using a 6-core 1.6Ghz Xeon processor and

MATLAB 2017a, with all code and results available online.

IV. RESULTS

The proposed FDTSM method is significantly faster than the

filterbank method. As can be seen in Figure 1, processing time

is initially similar, but increases as the number of filters and

regions increases. To process a 2.5 second file, at a sample

rate of 44.1kHz and a frame length of 2048, the proposed

method took 0.099 seconds while the filterbank method took

0.299 seconds for 2 regions. For the same file the proposed

method took 7.82 seconds while the filterbank method took

38.23 minutes for 1025 regions. The ratio for computation time

between the two methods linearly increases for the number of

regions and fits the linear equation
tfbank

tfft
= 0.287R+ 5.006

with R2 = 0.9977. Subjectively, the bandpass nature of the

filterbank method combined with a lack of phase coherency

between the filtered signals produces a thin and tinny sound.

This occured for all numbers of regions tested.

200 400 600 800 1000

100

102

Filterbank Method

Proposed FFT Method

Fig. 1. Processing time for Proposed and Filterbank FDTSM methods.

Initial comparison of the speed of the DFT and FFT showed

the high efficiency of the FFTW algorithm, beating both

the Radix-2 Cooley-Tuckey FFT and DFT. After optimising

the DFT implementation, results were found to confirm the

theoretical computational complexity. This can be seen in

Figure 2, where the frame size was increased and the number

of regions was held at N
2 .

0 1000 2000 3000 4000 5000

Frame size (N)

10-6

10-4

10-2

100

102

104

T
im

e
(s

)

Frequency Domain Transformation Time

Direct Calculation

FFTW Calculation

Radix-2 FFT Calculation

Fig. 2. Frequency domain transform processing time for Direct DFT, FFTW

and Radix-2 Cooley-Tuckey FFT.

Following from this testing, the frame size was held constant

while the number of regions was increased. It can be seen in

Figure 3 that the efficiency of the FFT method is inversely

proportional to the number of regions used for processing.

The same is true for the DFT method, however it is not linear

in nature and approaches a limit as the number of regions

approaches N
2 . This results in a break even point, where it

is faster to process using the DFT method, even when using

the highly optimised FFTW implementation. Further testing

of the break even point was conducted, and it was found that

the results fit the linear equation R = 0.203N − 25.61 with

R2 = 0.9981, for the computer used for testing.

200 400 600 800 1000

Number of Regions

1

2

3

4

5

6

7

8

T
im

e
(s

ec
)

FDTSM Processing Time for Number of Regions

Direct Method

FFT Method

Fig. 3. Processing time for Proposed DFT and FFTW FDTSM methods as
the number of regions increases.

V. SOFTWARE IMPLEMENTATION

A MATLAB software implementation can be found at

github.com/zygurt/TSM/ and is utilised in the following way.

1) FDTSM.m, FDTSM Direct.m and FDTSM FFT.m

take the input signal (x), the frame length (N) and a

region information structure as input arguments. The

region information structure should contain 2 fields,

region.TSM and region.upper, containing the TSM ratio

for each region and the upper bound of each region,

respectively. TSM region parameters are set such that 1

is 100%, 0.5 is 50% and 2 is 200% and must be greater

than 0. These vectors must be the same length, with the

final value in the upper bound vector equal to N
2 +1. The

function accepts multi-channel signals, however these

signals are summed before processing. The time scaled

signal is returned from the function.

2) FDTSM script.m is a script that has the minimum

code required to load an audio file, set region pa-

rameters to use the FDTSM function and write the

resulting file to disk with a useful filename. Output

files are saved into the AudioOut folder as File-

name TSM ratios FDTSM.wav.

3) FDTSM GUI example.m gives an example of a

graphic equalizer style interface for FDTSM. The in-

terface, shown in Figure 4, allows the user to set the

speed of 10 bands, each an octave in width, to between

50% and 200%. The current TSM ratio is displayed

below each slider. The user is also able to load a file

and reset all of the bands to 100%. The frequency range

for each band is displayed above each slider and is set

automatically by the sample rate of the input audio file.

Each region width, in bins, is a successive power of 2.

The filename, path, and TSM ratios for each region are

returned to the script, which applies time scaling before

saving the resulting file to disk. This script makes use

of both FDTSM 10 Band GUI.m and .fig files.

4) The AudioIn folder contains the 3 source files used

to generate the examples. Electropop.wav is synthetic

polyphonic music, Male speech.wav is an utterance of

“I am sitting in a room”, and White.wav is a quarter

second white noise burst starting at one second. Caution

should be used during playback of White.wav. The files

have a sample rate of 44.1 kHz and a bit depth of 16

bits.

VI. PROCESSING EXAMPLES

Intended as an audio effect and for sound design, the three

audio files included with the software implementation, were

used to generate a range of sample results, using a frame length

of 50ms. By processing White.wav with linearly spaced TSM

values of 50-200% across N
2 + 1 regions the sweep signal in

Figure 5 can be generated. Figures 6 and 7 shows the result

of processing White.wav with bounded random TSM ratios.

When considering musical signals, setting the time scales

for frequency ranges to multiples of each other yields interest-

ing results, such as Figure 8, where Electropop.wav from 0-

323Hz was scaled to 50% with the remainder of the signal left

untouched. This results in a half time feel. FDTSM processing

of speech also gives interesting results such as the subtle

Fig. 4. A 10-band graphic equalizer style GUI for FDTSM.

Fig. 5. Spectrogram of White.wav after FDTSM with linearly spaced TSM

ratios between 50% and 200% applied in 1025 regions.

processing shown in Figure 9. This file was processed such

that the middle frequencies of the speech were slowed, giving

a slowly increasing delay to the band-passed signal. Finally,

the FDTSM is reversible when the inverse TSM ratios are

applied. Figure 10 shows the result of applying inverse time

scaling ratios to the file shown in Figure 5. The resulting signal

is similar, but not identical, to the original due to artifacts in the

phase vocoder, but allows for interesting applications beyond

sound design.

VII. CONCLUSION

This paper has presented an efficient method and imple-

mentation for the arbitary time-scaling frequency ranges of a

signal. This was achieved through the use of a composite fre-

quency frame for each time instance followed by standard fre-

quency domain TSM. An example user interface, comparison

of frequency domain transformation and processing examples

were presented. Future work will improve the implementation

to allow for the modification of time scales for each region

during processing, phase locking within regions and adaptively

choosing the frequency transform method based on the number

Fig. 6. Spectrogram of White.wav after FDTSM with random TSM ratios

between 50% and 200% applied in 1025 regions and 20% TSM applied to

region 50.

Fig. 7. Spectrogram of White.wav after FDTSM with random TSM ratios

between 0% and 100% applied in 32 regions.

of regions. Real time implementations for streams of audio will

also be considered.

REFERENCES

[1] J. Flanagan and R. Golden, “Phase vocoder,” Bell System Technical

Journal, vol. 45, no. 9, pp. 1493–1509, 1966.
[2] M. Portnoff, “Implementation of the digital phase vocoder using the fast

fourier transform,” IEEE Transactions on Acoustics, Speech, And Signal
Processing, vol. 24, no. 3, pp. 243–248, 1976.

[3] J. Laroche and M. Dolson, “Improved phase vocoder time-scale modi-
fication of audio,” IEEE Transactions on Speech and Audio Processing,
vol. 7, no. 3, pp. 323–332, 1999.

[4] J. Driedger and M. Muller, “A review of time-scale modification of music
signals,” Applied Sciences, vol. 6, no. 2, pp. 57–83, 2016.

[5] W. Verhelst and M. Roelands, “An overlap-add technique based on
waveform similarity (wsola) for high quality time-scale modification of
speech,” Proceedings of ICASSP ’93, vol. 2, pp. 554–557, 1993.

[6] S. Rudresh, A. Vasisht, K. Vijayan, and C. S. Seelamantula, “Epoch-
synchronous overlap-add (esola) for time-and pitch-scale modification of
speech signals,” arXiv preprint arXiv:1801.06492, 2018, unpublished.

[7] U. Zölzer, X. Amatriain, D. Arfib, J. Bonada, G. De Poli, P. Dutilleux,
et al., DAFX - Digital Audio Effects, John Wiley & Sons, 2002.

[8] M. Frigo and S. G. Johnson, “The design and implementation of fftw3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

Fig. 8. Spectrogram of Electropop.wav after FDTSM with 10-band GUI set

to [50, 50, 50, 50, 100, 100, 100, 100, 100, 100]%.

Fig. 9. Spectrogram of Male Speech.wav after FDTSM with 3 regions

[N/64, N/16, N/2] set to [100, 90, 100]%.

Fig. 10. Spectrogram of Figure 5 after FDTSM recovery using inverse TSM

ratios.

