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Reconstruction of a Signal from the Real Part  
of Its Discrete Fourier Transform

In this tutorial, we present a procedure 
for reconstructing a complex-valued, 
discrete-time signal from only partial 

Fourier transform (FT) information, 
more specifically, the real part of its dis-
crete FT (RDFT). By applying a delay, 
coupled with appropriate zero-padding 
to ensure a sufficiently dense sampling of 
the frequency axis, we show that any sig-
nal can be reconstructed perfectly from 
the RDFT alone. The presented proce-
dure can, in the case of a densely sampled 
DFT, provide a reduction in the compu-
tational complexity of analysis-modifica-
tion-synthesis-based speech processing 
methods that independently process the 
real and imaginary (RI) parts temporally. 
Furthermore, the perfect reconstruction 
property of this method implies that the 
RDFT alone captures all of the informa-
tion about the signal, which suggests that 
it may be a potentially useful frequency-
derived domain for the processing of 
speech signals.

Introduction
Discrete-time signal reconstruction from 
complete or partial frequency domain 
information is a very common task in 
digital signal processing. When refer-
ring to frequency domain information, 
we mean in terms of the magnitude and 
phase components, or RI parts that are 
computed from the DFT of the signal. 
By using the inverse DFT with appropri-
ate zero-padding, a discrete-time signal 

can be completely and uniquely deter-
mined, if both the magnitude and phase, 
or similarly, both the RI parts at each 
frequency sample are known.

Some previous literature has studied 
signal reconstruction techniques from 
partial FT information. Van Hove et al. 
[1] showed that a one- or two-dimensional 
signal can be uniquely specified by its FT 
magnitude and limited (1-bit) FT phase 
information. An iterative reconstruc-
tion algorithm was presented, where 
the mean squared error of the recon-
structed sequence decreased monotoni-
cally with each iteration, provided that 
the “signed FT magnitude is densely 
sampled in the frequency domain” [1]. 
Hayes et al. [2] developed a set of condi-
tions for reconstruction (to within a scale 
factor) of a discrete-time signal by using 
only FT magnitude or phase. An iterative 
reconstruction algorithm was presented 
that utilized an M-point DFT. The authors 
reported the total squared error was ob-
served to monotonically decrease with 
each iteration, as long as ,M N2$  where 
N  is the length of the discrete-time signal.

In this tutorial, we present a simple, 
noniterative procedure for reconstruct-
ing a discrete-time signal using only 
the RDFT. In contrast to the iterative 
methods that reconstructed a discrete-
time signal using only FT magnitude 
or phase [1]–[3], this procedure can 
perfectly reconstruct the original sig-
nal, if appropriate zero-padding and 
DFT sizes are used. This implies that 
the RDFT captures all the information 
about the signal.

Signal reconstruction  
from the RDFT

RDFT reconstruction procedure
Let us assume an N-length discrete-
time complex-valued signal ( ),x n  where 

, , , .n N0 1 1f= -  An extended signal 
( )x nu  is created by first delaying ( )x n

by one sample and padding a zero at the 
beginning and then padding a sufficient 
number of zeros at the end, to give it a 
length of M N2 1$ +
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[Zero-padding the first sample is only 
required if x(n) is a complex-valued sig-
nal. If x(n) is real-valued, the zero at the 
beginning is not necessary.] 

An M-point discrete FT is performed 
on this extended signal

	
( ) ( ) ,

, , ,

X k x n e

k M0 1 1for 

/

n

M
j nk M

0

1
2

f

=

= -

r

=

-
-u u/

�
(2)

where k  is the frequency sample. The 
complex DFT can be written as a sum of 
RI parts, ( )X kRu  and ( ),X kIu  respectively,

	 ( ) ( ) ( ) .X k X k jX kR I= +u u u � (3)

To reconstruct the signal using only the real 
part ( ),X kRu  we first multiply it by a factor 
of two and then take the inverse DFT
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The resulting signal ( )y n  from the 
inverse DFT contains the original signal 

( )x n  embedded within it [see (5) in the 
box at the bottom of the page], where 
) ( )x n  is the complex conjugate of ( ).x n  

Therefore, the original discrete-time 
signal ( )x n  can be perfectly recovered 
from this procedure.

Theoretical basis for the RDFT
The theoretical basis for the reconstruc-
tion procedure that was described in 
the previous section comes from a DFT 
property from [4, eq. (8.110)] [see (6) in 
the box at the bottom of the page], where 

( )x np  is a periodic signal (with a period 
of ),N  where each period is identical 
to ( ),x n  and { ( )}e X kR  is the RDFT 
of ( ).x n  When looking at this prop-

erty, recovering ( )x n  from the RDFT 
alone does not appear possible without 
the imaginary part . A similar situation 
occurs in the corresponding property 
that relates the imaginary part of the DFT 
as follows [4]:

[ ( ) ( )] { ( )}.jx n x n m X k
2
1 Ip p

DFT
- -*

This is because of the presence of the 
complex conjugate term ( ),x np -*  which 
completely overlaps with ( ),x np  and 
therefore results in time-domain aliasing. 
This is shown in Figure 1 for the case of a 
real-valued discrete-time signal of length 

.N 4=  Figure 1(d) shows the final sig-
nal as a result of taking the inverse of the 
RDFT of ( )x n  [shown in Figure 1(a)]. We 
can see the effects of aliasing distortion in 
Figure 1(d). Therefore, the original signal 

( )x n  cannot be perfectly recovered from 
the RDFT in this case.

To circumvent the problem of time-
domain aliasing, the signal ( )x n  is 
delayed by one sample and a zero is pad-
ded at the beginning to avoid the overlap 
at .n 0=  Further padding of N  zeros is 
performed at the end of the signal. This 
effectively extends the period of ( )x np  
from N  to .N2 1+  Therefore, by choos-
ing the value of ,M N2 1$ +  we can 
prevent the time-domain aliasing. This is 
demonstrated in Figure 2 for a real-valued 
discrete-time signal of length .N 4=  As 
we can see in Figure 2(d), the original sig-
nal ( )x n  can be perfectly recovered from 
the RDFT if the appropriate delay and 
zero-padding are applied.

Discussion and applications
One potential application of the RDFT 
method of signal reconstruction is in 
the area of speech enhancement, where 
noise-corrupted speech is processed to 
alleviate the degrading effects of the 
noise and therefore improve the qual-
ity and intelligibility of the speech. 
Recent studies in this area [5], [6] have 
shown that, over time, the estimation of 
the RI DFT coefficients are as effec-
tive as modulation-magnitude domain 
processing, where the DFT magnitude 
coefficients are temporally processed 
and then combined with the noisy DFT 
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Figure 1. Plots show the reconstruction of a discrete-time signal (without zero-padding) from only the RDFT: (a) the original real-valued signal ( )x n  with 
no delay or zero-padding );(N 4=  (b) a periodic version of ( )x n  (with a period of )N  as a result of the cyclic properties of the DFT; (c) a complex conju-
gate and time-reversed version of ( );x np  and (d) an output signal from taking the inverse DFT of the real part, showing the effect of time-domain aliasing. 
The shaded region shows the reconstructed signal.
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phase in the synthesis stage. In particu-
lar, the enhanced speech from the appli-
cation of minimum mean squared error 
estimation methods in the modulation-
RI domain was found to have improved 
speech intelligibility [6]. In the RI 
approach to speech enhancement, the 
enhancement algorithm is applied 
independently on the RI parts, treat-
ing them as if they were time-domain 
signals. The theoretical advantages of 
modulation-RI processing include a 
valid additive-noise assumption in this 
domain as well as eliminating the step 
of combining with the noisy DFT phase 
in the synthesis stage [5].

First, there can be computational 
advantages of the RDFT method of sig-
nal reconstruction in the analysis-mod-
ification-synthesis (AMS) framework 
[7] that is used in the modulation-RI 
enhancement method, because the latter 
method requires the processing of two 
sets of signals (R and I) as opposed to 
the former method (R only). In the AMS 
framework, speech is windowed into 
overlapping short (e.g., 32 ms) frames 
and then a densely sampled DFT is com-
puted for each frame. For speech signals 
sampled at 8 kHz, each frame would 
consist of 256 time-domain samples. In 
the case of a critically sampled M-point 
complex-valued DFT (where ),M 256=  

the computational complexity of the 
independent processing of RI parts 
would be identical to the RDFT (i.e., 
257 real numbers), which itself requires 
a 513-point DFT . More specifically for 
this particular case, a 256-point com-
plex-valued DFT would produce 256 
real and 256 imaginary values. Since a 
real-valued signal is being considered, 
the complex-conjugation property of the 
DFT means that only 129 real (including 
the dc value) and 128 imaginary values 
need to be processed, which gives a total 
of 257. 

For the RDFT processing, zero-pad-
ding is applied and a 513-point com-
plex-valued DFT would produce 257 
unique real values. However, a more 
densely sampled DFT is typically used 
in modulation-domain speech process-
ing because of its finer spectral interpo-
lation properties. In the densely sampled 
DFT case (e.g., ),M 512=  the RI pro-
cessing requires 513 unique values to 
be processed, as opposed to 257 unique 
values for the RDFT case. This poten-
tially represents a saving of roughly 
50% in computational complexity.

Second, the reconstruction proce-
dure suggests that the real (or imagi-
nary) part of the DFT alone is sufficient 
for perfect signal reconstruction, as long 
as it is densely sampled in the frequency 

axis; therefore, it captures all the infor-
mation of the discrete-time signal ( ).x n  
A similar procedure can be derived to 
perfectly reconstruct a signal from the 
imaginary part of the DFT using the 
same arguments. It can be inferred that 
after the DFT is performed, the sig-
nal information is replicated and then 
embedded among its RI parts. This 
raises a particularly interesting ques-
tion of whether processing just the 
RDFT would be advantageous when 
compared with processing both RI 
parts, especially given the increasing 
interest in incorporating phase-related 
information in speech processing (such 
as [8]).

Another real-valued transform is the 
discrete cosine transform (DCT), which 
can be interpreted as the DFT of a sym-
metrically extended signal. We have 
compared the RDFT with the DCT in 
modulation domain speech enhance-
ment experiments and will report the 
results in an upcoming paper.

Conclusions
In this tutorial, we have described a 
procedure for the reconstruction of a 
discrete-time, complex-valued signal 
from the RDFT. The RDFT procedure 
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Figure 2. Plots showing the reconstruction of a discrete-time signal (with delay and zero-padding) from only the RDFT: (a) an extended real-valued 
signal ( )x nu  with delay and zero padding );(M N2 1 9= + =  (b) a periodic version of ( )x nu  (with a period of )M  as a result of the cyclic properties of the 
DFT; (c) a complex conjugate and time-reversed version of ( );x npu  and (d) an output signal from taking the inverse DFT of the real part, showing no time-
domain aliasing. The shaded region contains the reconstructed signal.
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include ultrasound imaging, ultrasound 
elastography and thermography, and 
ultrasound system design. He is a staff 
systems engineer at Siemens Health-
ineers in Seattle, Washington. 
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can be used in applications that process 
real-valued signals in an analysis-mod-
ification-synthesis framework, where 
processing only the RDFT can provide 
a reduction in computational complex-
ity for the case of a densely sampled 
DFT. In contrast to previous methods 
of signal reconstruction from partial 
DFT information (i.e., DFT magnitude 
or phase), the reconstructed signal from 
the procedure described in this tutorial 
has no errors when compared with the 
original signal.
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