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Abstract
In this paper, we propose an iterative Kalman filtering scheme
that has faster convergence and introduces less residual noise,
when compared with the iterative scheme of Gibson, et al. This
is achieved via the use of long and overlapped frames as well
as using a tapered window with a large side lobe attenuation for
linear prediction analysis. We show that the Dolph-Chebychev
window with a −200 dB side lobe attenuation tends to enhance
the dynamic range of the formant structure of speech corrupted
with white noise, reduce prediction error variance bias, as well
as provide for some spectral smoothing, while the long over-
lapped frames provide for reliable autocorrelation estimates and
temporal smoothing. Speech enhancement experiments on the
NOIZEUS corpus show that the proposed method outperformed
conventional iterative and non-iterative Kalman filters as well as
other enhancement methods such as MMSE-STSA and PSC.
Index Terms: speech enhancement, Kalman filtering

1. Introduction
In the problem of speech enhancement, where a speech signal
corrupted by noise is given, we are primarily interested in sup-
pressing the noise so that the quality and intelligibility of speech
are improved. Speech enhancement is useful in many applica-
tions where corruption by noise is undesirable and unavoidable.
For example, speech enhancement techniques are used as a pre-
processor in speech coding standards for cellular telephony in
order to suppress the background noise prior to coding. Various
speech enhancement methods have been reported in the litera-
ture and these include spectral subtraction, MMSE estimation
methods, Wiener filtering, subspace methods, and Kalman fil-
tering [1].

The Kalman filter is an unbiased, time-domain, linear min-
imum mean squared error (MMSE) estimator, where the un-
known states of a dynamic system are estimated using a lin-
ear combination of noise-corrupted observations and predicted
states. The Kalman filter has been of particular interest in
speech enhancement because of several advantages it has over
other spectral domain-based enhancement methods: (1) the
speech production model is inherent in the Kalman recursion
equations by using a linear predictor as the dynamic model; (2)
the enhanced speech from the ideal Kalman filter contains no
random frequency tones (otherwise known in the literature as
musical noise); (3) the Kalman filter makes no stationarity as-
sumptions; (4) the Kalman filter can be ‘turned-on’ at the first
sample n = 0, where the recursion parameters are initialised
with their expected values; and (5) the non-stationary Kalman
filter can be viewed as a joint estimator for both the magnitude
and phase spectrum of speech [2].

The enhancement performance of the Kalman filter is
somewhat dependent on the accuracy of the LPC and excita-
tion variance estimates. Ideally, these coefficients should be
obtained from the clean speech, as was done in [3]. However,
in practice, the LPCs and variances are generally not known
a priori, so they must be estimated from the noise-corrupted
speech. Depending on the noise characteristics and signal-to-
noise ratio (SNR), the LPCs and excitation variance obtained
using conventional spectral estimation methods will be poor.
The enhanced speech from this suboptimal Kalman filter has
been reported previously to suffer from wideband residual noise
[4]. Several iterative methods have been proposed that address
the issue of unreliable LPC or noise estimates [5, 6, 7]. While
the iterative LPC estimation method in [5] generally results in
improved SNRs after three or four iterations, ‘musical’ residual
noise accompanies the enhanced speech. The enhanced speech
also suffers from distortion, which can degrade the intelligibil-
ity. Therefore the iterative LPC estimation method of [5] does
not adequately address the problem of poor LPC estimates, es-
pecially during the first iteration.

In this paper, we propose the use of long and overlapped
tapered windows with large side lobe attenuation in the lin-
ear prediction analysis to reduce the presence of background
residual noise in iterative Kalman filter-enhanced speech. The
proposed method aims to provide a better initial estimate, so
that the subsequent iteration results in improved performance.
Using objective tests on the NOIZEUS speech corpus [1], we
show that the proposed enhancement method (using only two
iterations) performs better than conventional iterative and non-
iterative Kalman filtering schemes. We also compare the pro-
posed Kalman filter with the phase spectrum compensation
method [8] and MMSE-STSA (short-time spectral amplitude)
methods [9].

2. Conventional Kalman filtering for speech
enhancement

2.1. Non-iterative (conventional) Kalman filtering

If the clean speech is represented as x(n) and the noise signal as
v(n), then the noise-corrupted speech y(n), which is the only
observable signal in practice, is expressed as:

y(n) = x(n) + v(n) (1)

In the Kalman filter that is used for speech enhancement [3],
v(n) is a zero-mean, white Gaussian noise that has a variance of
σ2

v and is uncorrelated with x(n). A pth order linear predictor is
used to model the speech signal and together with the corrupting
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Figure 1: Comparing the rectangular, Hamming, and Dolph-
Chebychev (with −80 dB side lobe attenuation) windows in the:
(a) time domain; and (b) frequency domain.

noise, we can represent in state vector representation:

x(n) = Ax(n − 1) + dw(n) (2)

y(n) = c
T
x(n) + v(n) (3)

where A is the state transition matrix (containing the model pa-
rameters), x(n) = [x(n) x(n − 1) . . . x(n − p + 1)]T

is the ‘hidden’ state vector, d = [1 0 . . . 0]T and c =
[1 0 . . . 0]T are the measurement vectors for the excita-
tion noise and observation, respectively.

The Kalman filter recursively computes an unbiased and
linear MMSE estimate x̂(n|n) of the hidden state vector at time
n, given the noisy observation y(n), by using the following
equations:

P (n|n − 1)=AP (n − 1|n − 1)AT + σ2
wdd

T (4)

K(n)=P (n|n − 1)c
h
σ2

v + c
T

P (n|n − 1)c
i
−1

(5)

x̂(n|n − 1)=Ax̂(n − 1|n − 1) (6)

P (n|n)=[I − K(n)cT ]P (n|n − 1) (7)

x̂(n|n)=x̂(n|n − 1) + K(n)[y(n) − c
T

x̂(n|n − 1)] (8)

During the operation of the Kalman filter, the noise-corrupted
speech y(n) is windowed into non-overlapped and short (e.g.
20 ms) frames and the LPCs and excitation variance σ2

w are es-
timated. These LPCs remain constant during the Kalman filter-
ing of speech samples in the frame, while the Kalman parame-
ters (such as Kalman gain K(n) and error covariance P (n|n))
and state vector estimate x̂(n|n) are continually updated on a
sample-by-sample basis (regardless of whichever frame we are
in).

When the LPC parameters from clean speech are available,
the Kalman filter performs remarkably well [3]. However, when
applied in practice, where LPC parameters are estimated from
noise-corrupted speech, the performance of the Kalman filter
degrades rapidly at low SNRs [4].

2.2. Iterative Kalman filtering

Several iterative Kalman filtering methods have been reported in
the literature [5, 6, 7]. In this study, we have focused on the im-
plementation of Gibson et al. [5], where in the first iteration, the
LPC parameters are estimated using the noise-corrupted speech
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Figure 2: Power spectral estimates from linear predictive model
(five realisations) of windowed speech corrupted with white
noise at 10 dB SNR (thick line represents clean speech): (a)
rectangular window; (b) Dolph-Chebychev window.

frame and the Kalman filter enhances the speech frame using the
recursive equations given in Section 2.1. Then in subsequent it-
erations, the Kalman filter-enhanced speech frame is used to
re-estimate the LPCs and excitation variances and the frame is
filtered again.

This method of iterating between Kalman filtering and pa-
rameter re-estimation from the filtered speech was shown to
be an approximated EM (Expectation Maximisation) algorithm
that does not guarantee improved performance in subsequent it-
erations [6]. While objective measures such as SNR have been
shown to improve in the first few iterations [5], we have found
experimentally the enhanced output to contain musical noise
and speech distortion at low SNRs.

3. Proposed iterative Kalman filter for
improved speech enhancement

3.1. LPC analysis window with large side lobe attenuation

Tapered windows are often used in spectral estimation to reduce
the effect of spectral leakage caused by abrupt frame bound-
aries. This is possible due to the lower spectral side lobes in the
magnitude spectrum of tapered windows (such as the Hamming
window) when compared with that of the rectangular window,
as can be seen in Figure 1. On the other hand, the main spectral
lobe of tapered windows is wider, which tends to smooth the
magnitude spectrum of the signal. In addition to this, the vari-
ance of the windowed signal is also reduced when compared
that of the original signal.

We can exploit these properties of tapered windows to ob-
tain a better estimate of the linear predictive model in the initial
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iteration. To better appreciate the benefits that tapered windows
bring to the linear predictive model, Figures 2(a) and (b) each
show five realisations of PSD estimates from a frame of white
noise-corrupted speech at 10 dB SNR that has been windowed
with rectangular and Dolph-Chebychev windows, respectively.
We can see that applying the tapered window has enhanced the
dynamic range of the formants and reduced some of the bias in
the prediction error variance introduced by the white noise.

In the proposed iterative Kalman filter, we apply a Dolph-
Chebychev window with a −200 dB side lobe attenuation dur-
ing the LPC analysis in the first iteration only. In the subsequent
iteration, a rectangular window is used during the LPC analysis.

3.2. Long and overlapped frames

As was done in [4], we operate the iterative Kalman filter on
long and overlapped frames of 80 ms, which is shown in Fig-
ure 3. Using long frames ensures that autocorrelation estimates
(used in the linear prediction analysis) are more statistically reli-
able while overlapping frames ensures that the model estimates
are updated frequently enough. In this study, we applied a frame
update of 10 ms and a modified Hanning window as the synthe-
sis window:

ws(n) = 0.5

»
1 − cos

„
2πn + π

N

«–
(9)

for n = 0, 1, . . . , N − 1, where N is the number of sam-
ples in each frame. Together with the synthesis window, the
overlap-add method also provides some temporal averaging,
which smooths the transition between successive frames.

4. Speech enhancement experiments
4.1. Experimental setup

In our experiments, we use the NOIZEUS speech corpus, which
is composed of 30 phonetically balanced sentences belonging
to six speakers [1]. The corpus is sampled at 8 kHz. For our
objective experiments, we generate a stimuli set that has been
corrupted by additive white Gaussian noise at four SNR levels
(0, 5, 10 and 15 dB). The objective evaluation was carried out
on the NOIZEUS corpus using the PESQ (perceptual evaluation
of speech quality) measure.

The treatment types used in the evaluations are listed below
(p is the order of the LPC analysis):

1. Original clean speech (Clean);
2. Speech corrupted with white Gaussian noise (Noisy);
3. Non-iterative Kalman filter with LPCs estimated from

clean speech, 20 ms, p = 10, no overlap, rectangular
window (Kalman clean);

4. Non-iterative Kalman filter with LPCs estimated from
noise-corrupted speech, 20 ms, p = 10, no overlap, rect-
angular window (Kalman noisy);

5. Iterative Kalman filter [5] with three iterations , 20 ms,
p = 10, no overlap, rectangular window (Kalman iter-
ative);

6. Proposed iterative Kalman filter using the Dolph-
Chebychev analysis window (−200 dB side lobe attenu-
ation), long 80 ms frames, and two iterations, p = 10
(Kalman proposed); and

7. MMSE-STSA method [9] (MMSE).
8. Phase spectrum compensation [8] (PSC).

Table 1: Average PESQ results comparing the proposed method
with the iterative Kalman filter of [5] for speech corrupted by
white noise.

Method Input SNR (dB)
0 5 10 15

No enhancement 1.566 1.829 2.131 2.471
Kalman iterative (1 iter) 1.739 2.059 2.394 2.742
Kalman iterative (2 iter) 1.921 2.288 2.628 2.978
Kalman iterative (3 iter) 2.019 2.396 2.736 3.086
Kalman iterative (4 iter) 2.004 2.359 2.680 3.023
Kalman proposed (2 iter) 2.176 2.502 2.819 3.142

Table 2: Average PESQ results comparing the different speech
enhancement methods with the proposed method for speech
corrupted by white noise. (Iterative Kalman filter results are
shown in the bottom half of the table)

Method Input SNR (dB)
0 5 10 15

No enhancement 1.566 1.829 2.131 2.471
Kalman clean 2.499 2.786 3.077 3.383
Kalman noisy 1.739 2.059 2.394 2.742
MMSE-STSA 1.960 2.328 2.640 2.941

PSC 1.965 2.335 2.702 3.065
Kalman iterative 2.019 2.396 2.736 3.086
Kalman proposed 2.176 2.502 2.819 3.142

4.2. Results and discussion

Table 1 shows the average PESQ of the proposed method when
compared with the iterative Kalman filter of [5], for a varying
number of iterations. We can see that the performance of it-
erative Kalman filter improves up till three iterations and then
tapers off. In addition, the proposed method has converged to
better PESQ scores using less iterations, which confirms the ef-
fectiveness of using long tapered windows in the initial itera-
tion.

Table 2 presents PESQ results from the objective evalua-
tion of the proposed iterative Kalman filter as well as other en-
hancement methods. We can see that the iterative Kalman fil-
ters outperform all enhancement methods, except for the ideal
clean case (i.e. where LPCs are estimated from clean speech).
This correlates with the spectrograms, where we can see rel-
atively little wideband residual noise in Figures 4 (d) and (h)
when compared with the other methods. However, it can be
noted that the proposed method does cause an oversuppression
of speech, which may affect intelligibility.

From informal listening tests, the conventional iterative
Kalman filter was found to suffer from annoying musical tones,
which can be noticed in the spectrogram as isolated dots in the
non-speech areas (Figure 4(d)). The proposed iterative Kalman
filter did not introduce musical tones, but rather, a smooth and
slow-varying ‘washy’ residual artifact was noted in informal lis-
tening. We believe this artifact to be less annoying than musical
noise.

5. Conclusion
In this paper, we have proposed an iterative Kalman filtering
scheme that improves on the iterative Kalman filter of Gib-
son, et al. [5] by introducing lower and less annoying residual
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Figure 3: Diagram showing the use of overlapping frames and initialisation of error covariance and state estimate in the Kalman filter.
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Figure 4: Spectrograms of all treatment types on the NOIZEUS
corpus corrupted with white Gaussian noise at an SNR of 5 dB:
(a) Clean speech (sp10.wav) ‘The sky that morning was clear
and bright blue’; (b) noise-corrupted speech; (c) Kalman noisy;
(d) Kalman iterative; (e) MMSE-STSA; (f) PSC; (g) Kalman
clean; (h) Kalman proposed.

noise as well as faster convergence. We have shown that the
Dolph-Chebychev window tends to enhance the dynamic range
of the formant structure of speech corrupted with white noise,
reduce prediction error bias, as well as provide for some spec-
tral smoothing due to the wider main lobe, while the long over-
lapped frames introduce temporal smoothing. Speech enhance-
ment experiments that were performed show that the proposed
method outperformed conventional iterative and non-iterative
Kalman filters as well as other enhancement methods such as
MMSE-STSA and PSC.
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