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Abstract

The existing Kalman filter (KF) suffers from poor estimates of

the noise variance and the linear prediction coefficients (LPCs)

in real-world noise conditions. This results in a degraded speech

enhancement performance. In this paper, a deep learning ap-

proach is used to more accurately estimate the noise variance

and LPCs, enabling the KF to enhance speech in various noise

conditions. Specifically, a deep learning approach to MMSE-

based noise power spectral density (PSD) estimation, called

DeepMMSE, is used. The estimated noise PSD is used to com-

pute the noise variance. We also construct a whitening filter

with its coefficients computed from the estimated noise PSD.

It is then applied to the noisy speech, yielding pre-whitened

speech for computing the LPCs. The improved noise variance

and LPC estimates enable the KF to minimise the residual noise

and distortion in the enhanced speech. Experimental results

show that the proposed method exhibits higher quality and intel-

ligibility in the enhanced speech than the benchmark methods

in various noise conditions for a wide-range of SNR levels.

Index Terms: Speech enhancement, Kalman filter, Deep-

MMSE, Deep Xi, noise PSD, LPC.

1. Introduction

The objective of a speech enhancement algorithm (SEA) is to

eliminate the embedded noise from a noisy speech signal. It

can be used as a front-end tool for many applications, such as

voice communication systems, hearing-aid devices, and speech

recognition. Various SEAs, namely spectral subtraction (SS)

[1, 2], MMSE [3, 4], Wiener Filter (WF) [5, 6], and Kalman

filter (KF) [7] have been introduced over the decades.

The SS method heavily depends on the accuracy of the

noise PSD estimate [8]. The MMSE and WF-based SEAs com-

pletely rely upon the accurate estimation of the a priori SNR

[9]. In [3], a decision-directed (DD) approach was proposed to

estimate the a priori SNR. Since this approach uses the speech

and noise power estimates from the previous frame, it is difficult

to estimate the a priori SNR accurately for the current frame.

The efficiency of KF-based SEA depends on how accu-

rately the noise variance and the LPCs are estimated. In [7],

the LPCs are computed from the clean speech, which is unavail-

able in practice. It is also limited to enhancing speech corrupted

with additive white Gaussian noise (AWGN). A sub-band itera-

tive KF for enhancing speech in different noise conditions was

proposed in [10]. The noisy speech is first decomposed into

16 sub-bands (SBs). An iterative KF is then employed to en-

hance the partially reconstructed high-frequency (HF) SBs. It

is assumed that the low-frequency (LF) SBs are less affected by

noise and are left unprocessed. The noise variance for the sub-

band iterative KF is estimated using a derivative-based method.

Nowadays, deep neural networks (DNNs) are widely used

for speech enhancement [11]. DNN-based SEAs typically give

an estimate of a time-frequency mask, which is used to compute

the spectrum of clean speech [11, 12]. A comparative study on

six different masks has also been performed in [13] to identify

an optimal mask for speech enhancement. However, the mask-

ing technique usually introduces residual and musical noise in

the enhanced speech [13].

In [14], a fully convolutional neural network (FCNN) based

SEA was introduced. This method is particularly designed

to enhance babble noise corrupted speech. In [15], a raw

waveform-based SEA using FCNN was proposed. Since the

input/output of [15] is a raw waveform, the enhanced speech is

not affected by the phase issues that are characteristic of mag-

nitude spectrum-based SEAs [11, 13, 14]. Zheng et al. intro-

duced a phase-aware DNN for speech enhancement [16]. Here,

the phase information (converted to the instantaneous frequency

deviation (IFD)) is jointly used with a time-frequency masks.

The enhanced speech is reconstructed with the estimated mask

and the phase information extracted from the IFD. Yu et al. in-

troduced a KF-based SEA, where the LPCs are estimated using

a deep neural network [17]. However, the noise covariance is

estimated during speech pauses, which is not effective in non-

stationary noise conditions. In addition, the silence detection

process was unspecified.

In this paper, a deep learning technique is used to resolve

the noise variance and the LPC estimation issues of the KF,

leading to the capability of performing speech enhancement in

various noise conditions. Firstly, the noise PSD is estimated us-

ing DeepMMSE [18], which is then used to compute the noise

variance. We also construct a whitening filter with its coeffi-

cients computed from the estimated noise PSD. The LPCs are

then computed from the pre-whitened speech, which is obtained

by employing the whitening filter to the noisy speech signal.

With the improved noise variance and LPCs, the KF is found

to be effective at minimising the residual noise as well as dis-

tortion in the enhanced speech. The efficiency of the proposed

method is evaluated against benchmark methods using objective

and subjective testing.

2. KF for speech enhancement

At discrete-time sample n, the noisy speech, y(n), can be rep-

resented as:

y(n) = s(n) + v(n), (1)

where s(n) and v(n) denote the clean speech, and uncorrelated

additive noise, respectively. The clean speech can be modeled

using a pth order linear predictor, as in [19, Chapter 8]:

s(n) = −
p
∑

i=1

ais(n− i) + w(n), (2)

where {ai; i = 1, 2, . . . , p} are the LPCs, and w(n) is assumed

to be white noise with zero mean and variance σ2
w.



Eqs. (1)-(2) can be used to form the following state-space

model (SSM) of the KF, as in [7]:

s(n) = Φs(n− 1) + dw(n), (3)

y(n) = c
⊤
s(n) + v(n). (4)

The SSM is comprised of the following:

1. s(n) is a p× 1 state vector at sample n, represented as:

s(n) = [s(n) s(n− 1) . . . s(n− p+ 1)]⊤, (5)

2. Φ is a p×p state transition matrix that relates the process

states at sample n and n− 1, represented as:

Φ =


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

, (6)

3. d and c are the p× 1 measurement vectors for the exci-

tation noise and observation, represented as:

d = c =
[

1 0 . . . 0
]T

,

4. y(n) represents the noisy observation at sample n.

Firstly, y(n) is windowed into non-overlapped and short

(e.g., 20 ms) frames. For a particular frame, the KF computes

an unbiased linear MMSE estimate ŝ(n|n) at sample n, given

y(n), by using the following recursive equations [7]:

ŝ(n|n− 1) = Φŝ(n− 1|n− 1), (7)

Ψ(n|n− 1) = ΦΨ(n− 1|n− 1)Φ⊤ + σ
2
wdd

⊤
, (8)

K(n) = Ψ(n|n− 1)c(c⊤Ψ(n|n− 1)c+ σ
2
v)

−1
, (9)

ŝ(n|n) = ŝ(n|n− 1) +K(n)[y(n)− c
⊤
ŝ(n|n− 1)], (10)

Ψ(n|n) = [I −K(n)c⊤]Ψ(n|n− 1). (11)

For a noisy speech frame, the error covariances (Ψ(n|n−1)
and Ψ(n|n) corresponding to ŝ(n|n − 1) and ŝ(n|n)) and the

Kalman gain K(n) are continually updated on a samplewise

basis, while σ2
v and ({ai}, σ2

w) remain constant. At sample n,

c
⊤
ŝ(n|n) gives the estimated speech, ŝ(n|n), as in [20]:

ŝ(n|n) = [1−K0(n)]ŝ(n|n− 1) +K0(n)y(n), (12)

where K0(n) is the 1st component of K(n) given by [20]:

K0(n) =
α2(n) + σ2

w

α2(n) + σ2
w + σ2

v

, (13)

where α2(n) = c
⊤
ΦΨ(n− 1|n− 1)Φ⊤

c is the transmission

of a posteriori mean squared error from the previous sample,

n− 1, to the total a priori mean prediction squared error [20].

Eq. (12) implies that K0(n) has a significant impact on

ŝ(n|n), which is the output of the KF. In practice, poor esti-

mates of σ2
u and ({ai}, σ2

w) introduce bias in K0(n), which

affects ŝ(n|n). In the proposed SEA, DeepMMSE is used to

accurately estimate σ2
u and ({ai}, σ2

w), leading to a more accu-

rate ŝ(n|n).

3. Proposed speech enhancement system

Fig. 1 shows the block diagram of the proposed SEA. Unlike

traditional KF method (section 2), in the proposed SEA, a 32

ms rectangular window with 50% overlap was considered for

converting y(n) into frames, i.e., y(n, l) = s(n, l) + v(n, l),
where lǫ{0, 1, 2, . . . , N − 1} is the frame index, N is the total

number of frames, and M is the total number of samples within

each frame, i.e., nǫ{0, 1, 2, . . . ,M − 1}.

The noisy speech, y(n) is also analyzed frame-wise using

the short-time Fourier transform (STFT):

Y (l,m) = S(l,m) + V (l,m), (14)

where Y (l,m), S(l,m), and V (l,m) denote the complex-

valued STFT coefficients of the noisy speech, the clean speech,

and the noise signal, respectively, for time-frame index l and

discrete-frequency bin m.

It is assumed that S(l,m) and V (l,m) follow a Gaussian

distribution with zero-mean and variances E{|S(l,m)|2} =
λs(l,m), and E{|V (l,m)|2} = λv(l,m), where E{·} rep-

resents the statistical expectation operator.

Figure 1: Block diagram of the proposed SEA.

3.1. Proposed σ2
v and ({ai}, σ2

w) estimation method

Firstly, the frame-wise noise PSD, λ̂v(l,m) is estimated using

DeepMMSE [18]. DeepMMSE is described in the following

subsection. An estimate of noise, v̂(n, l) is given by taking the

|IDFT| of

√

λ̂v(l,m) exp[∠Y (l,m)]. The noise variance, σ2
v

is then computed from v̂(n, l) frame-wise as:

σ
2
v =

1

M

M−1
∑

n=0

v̂
2(n, l). (15)

The LPC parameters, ({ai}, σ2
w) are sensitive to noise.

We compute ({ai}, σ2
w) (p = 10) frame-wise from pre-

whitened speech, yw(n, l), using the autocorrelation method

[19]. yw(n, l) is used to reduce bias in ({ai}, σ2
w). Then,

yw(n, l) is obtained by employing a whitening filter, Hw(z)
to y(n, l). Hw(z) is found, as in [19, section 8.1.7]:

Hw(z) = 1 +

q
∑

k=1

bkz
−k

, (16)

where the whitening filter coefficients, ({bk}; q = 40) are com-

puted from v̂(n, l) using the autocorrelation method [19].



3.2. DeepMMSE

DeepMMSE is an MMSE-based noise PSD estimator that em-

ploys the Deep Xi framework for a priori SNR estimation [18].

DeepMMSE does not exploit any underlying assumptions about

the speech or noise, and produces a noise PSD estimate with

negligible bias, unlike other MMSE-based noise PSD estima-

tors [21, 22]. DeepMMSE includes the following four stages:

1. The a priori SNR estimate, ξ(l,m), of |Y (l,m)|, is first

found using Deep Xi-ResNet. Deep Xi-ResNet is de-

scribed in the following subsection. The a priori SNR is

defined as ξ(l,m) = λs(l,m)
λv(l,m)

.

2. Next, the maximum-likelihood (ML) a posteriori SNR

estimate is computed using the a priori SNR [23]:

γ̂(l,m) = ξ(l,m) + 1.

3. Using ξ̂ and γ̂, the noise periodogram estimate is found

using the MMSE estimator [21, 22]: |V̂ (l,m)|2 =
[

1
(1+ξ(l,m))2

+ ξ(l,m)
(1+ξ(l,m))γ(l,m)

]

|Y (l,m)|2.

4. The final noise PSD estimate, λ̂v(l,m), is found by ap-

plying a first-order temporal recursive smoothing opera-

tion: λ̂v(l,m) = αλ̂d[l − 1, k] + (1 − α)|V̂ (l,m)|2,

where α is the smoothing factor. In this work, α = 0
was used, i.e. the instantaneous noise power spectrum

estimate from DeepMMSE was used.

3.3. Deep Xi-ResNet for ξ(l,m) estimation

Deep Xi-ResNet is used to estimate ξ(l,m) for DeepMMSE

(available at https://github.com/anicolson/DeepXi). Deep Xi is

a deep learning approach to a priori SNR estimation [24]. Dur-

ing training, the clean speech and noise of the noisy speech are

available. This allows the instantaneous case of the a priori

SNR to be used as the training target. To compute the instan-

taneous a priori SNR, λs(l,m) and λv(l,m) are replaced with

the squared magnitude of the clean-speech and noise spectral

components, respectively.

The observation and target of a training example for a deep

neural network (DNN) in the Deep Xi framework is |Yl| and

the mapped a priori SNR, ξ̄ξξl, respectively. The mapped a

priori SNR is a mapped version of the instantaneous a priori

SNR. The instantaneous a priori SNR is mapped to the interval

[0, 1] in order to improve the rate of convergence of the used

stochastic gradient descent algorithm. The cumulative distribu-

tion function (CDF) of ξdB(l,m) = 10 log10(ξ(l,m)) is used

as the map. As shown in [24, Fig. 2 (top)], the distribution of

ξdB(l,m) for the kth frequency component follows a normal

distribution. It is thus assumed that ξdB(l,m) is distributed nor-

mally with mean µk and variance σ2
k: ξdB(l,m) ∼ N (µk, σ

2
k).

Thus, the mapped a priori SNR is found by applying the normal

CDF to ξdB(l,m):

ξ̄(l,m) =
1

2

[

1 + erf

(

ξdB(l,m)− µk

σk

√
2

)]

, (17)

where µk and σ2
k found in [24] are used in this work. During

inference, the a priori SNR estimate, ξ̂(l,m), is found from

ˆ̄ξ(l,m) using ξ̂(l,m) = 10

((

σk

√
2erf−1(2ˆ̄ξ(l,m)−1)+µk

)

/10
)

.

Deep Xi-ResNet utilises a residual network consisting of 1-

D causal dilated convolutional units withing the Deep Xi frame-

work [18], as shown in Fig. 2 (a). It consists of E = 40 bottle-

neck residual blocks, where eǫ{1, 2, . . . , E} is the block index.

O

FC

Conv1D(1, 𝑑𝑓 , 1)
Conv1D(𝑟, 𝑑𝑓 , 𝑑)

+

|𝒀𝑙|

෡ഥ𝝃𝑙

𝐸 × (1, 𝑑𝑚𝑜𝑑𝑒𝑙 , 1)Conv1D

(a)
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⋯⋯⋯

෡ഥ𝝃𝑙
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(b)

Figure 2: (a) Deep Xi-ResNet and (b) example of the contextual

field of Deep Xi-ResNet with D = 4, E = 6, and r = 3.

Each block contains three convolutional units (CUs) [25], where

each CU is pre-activated by layer normalisation [26] followed

by the ReLU activation function [27]. The 1st and 3rd CUs

have a kernel size of r = 1 to that of r = 3 for the 2nd CU.

The 2nd CU employs a dilation rate (DR) of d, providing a con-

textual field over previous time steps. As in [18], d is cycled as

the block index e increases: d = 2(e−1 mod (log
2
(D)+1), where

mod is the modulo operation, and D is the maximum DR. An

example of how the DR is cycled is shown in Fig. 2 (b), with

D = 4, and E = 6. It can be seen that the DR is reset after

block three. This also demonstrates the contextual field gained

by the use of causal dilated CUs. For Deep Xi-ResNet, D is set

to 16. The 1st and 2nd CUs have an output size of df = 64 to

that of dmodel = 256 for the 3rd CU. FC is a fully-connected

layer with an output size of dmodel, where layer normalisation

is applied to the output of FC, followed by the ReLU activation

function. The output layer O is a fully-connected layer with

sigmoidal units.

4. Speech enhancement experiment

4.1. Training set

For training the ResNet, a total of 74250 clean speech record-

ings belonging to the train-clean-100 set from the Librispeech

corpus [28] (28539), the CSTR VCTK corpus [29] (42015), and

the si∗ and sx∗ training sets from the TIMIT corpus [30] (3696)

are used. 5% of the clean speech recordings are randomly se-

lected and used as a validation set. Thus, 70537 clean speech

recordings are used in the training set and 3713 in the valida-

tion set. The 2382 noise recordings adopted in [24] are used as

the noise training set. All clean speech and noise recordings are

single-channel, with a sampling frequency of 16 kHz.

4.2. Training strategy

The ResNet is trained using cross-entropy as the loss function

and the Adam algorithm [31] with default hyper-parameters.

The gradients are also clipped between [−1, 1]. The selection

order for the clean speech recordings is randomised for each

epoch. 175 epochs are used to train the ResNet, where a mini-

batch size of 10 noisy speech signals is used. The noisy signals

are created as follows: each clean speech recording selected for

the mini-batch is mixed with a random section of a randomly



selected noise recording at a randomly selected SNR level (-10

to 20 dB, in 1 dB increments).

4.3. Test set

For objective experiments, 30 utterances belonging to six

speakers are taken from the NOIZEUS corpus and are sampled

at 16 kHz [9, Chapter 12]. We generate a noisy data set that

has been corrupted by the passing car and café babble noise

recordings that were adopted in [24] at SNR levels from -5dB

to 15dB, in 5 dB increments. Note that these clean speech and

noise recordings are not used during training.

4.4. Evaluation metrics

The objective quality and intelligibility evaluation was carried

out using the perceptual evaluation of speech quality (PESQ)

[32] and quasi-stationary speech transmission index (QSTI)

[33] measures. We also analyse the enhanced speech spectro-

grams of the SEAs. The subjective evaluation was carried out

through blind AB listening tests [34, Section 3.3.4]. Five En-

glish speaking listeners participated in the tests, where the ut-

terance sp05 (“Wipe the grease off his dirty face”) was corrupted

with 5 dB passing car noise and used as the stimulus.

The proposed method is compared with benchmark meth-

ods, such as raw waveform processing using FCNN (RWF-

FCN) method [15], phase-aware DNN (IAM+IFD) method

[16], deep learning KF (DNN-KF) method [17], KF-Ideal

method (where ({ai}, σ2
w) and σ2

v are computed from the clean

speech and noise signal) and Noisy (noise corrupted speech).

5. Results and discussion

Fig. 3 (a)-(b) demonstrates that the proposed method consis-

tently shows improved PESQ scores over the benchmark meth-

ods, except the KF-Ideal method for all noise conditions and

SNR levels. The IAM+IFD method [16] attained the high-

est PESQ scores amongst the benchmark methods. The Noisy

speech shows the worse PESQ score for all conditions.
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Figure 3: Performance of each SEA in terms of: (a) PESQ for

passing car, (b) PESQ for café babble, (c) QSTI for passing

car, and (d) QSTI for café babble.

Fig. 3 (c)-(d) also shows that the proposed method demon-

strates a consistent QSTI improvement across the noise ex-

periments as well as the SNR levels, apart from the KF-Ideal

method. The existing IAM+IFD method [16] is found to be

competitive with the proposed method in terms of QSTI, typi-

cally at low SNR levels. However, the QSTI for each method at

high SNR levels is competitive.

It can be seen that the enhanced speech produced by the

proposed method (Fig. 4 (f)) exhibits significantly less residual

noise than that of the benchmark methods (Fig. 4 (c)-(e)) and

is similar to the KF-Ideal method (Fig. 4 (g)). The informal
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Figure 4: (a) Clean speech, (b) noisy speech (sp05 is corrupted

with 5 dB passing car noise), and the enhanced speech spec-

trograms produced by the: (c) RWF-FCN, (d) DNN-KF, (e)

IAM+IFD, (f) proposed, and (g) KF-Ideal methods.
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Figure 5: The mean preference score (%) for each SEA on sp05

corrupted with 5 dB passing car noise.

listening tests also confirm that the benchmark methods produce

enhanced speech with significantly more disturbances than the

proposes method.

Fig. 5 shows that the enhanced speech produced by the pro-

posed method is widely preferred by the listeners (76.33%) than

the benchmark methods, apart from the KF-Ideal (83.22%) and

clean speech. The IAM+IFD method [16] is found to be the

best preferred (66.67%) amongst the benchmark methods.

6. Conclusions

This paper introduced a deep learning and Kalman filter-based

speech enhancement algorithm. Specifically, DeepMMSE is

used to estimate the noise PSD for computing the noise vari-

ance. A whitening filter is also constructed using coefficients

estimated from the noise PSD. It is employed to the noisy

speech signal, yielding a pre-whitened speech. The LPCs are

computed from the pre-whitened signal. The large training set

of DeepMMSE yields more accurate estimates of the noise vari-

ance and the LPCs in various noise conditions. As a result,

the KF constructed with the improved parameters minimises the

residual noise as well as the distortion in the resultant enhanced

speech. Extensive objective and subjective testing implies that

the proposed method outperforms the benchmark methods in

various noise conditions for a wide range of SNR levels.
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