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Abstract—The existing augmented Kalman filter (AKF) suffers
from poor LPC estimates in real-world noise conditions, which
degrades the speech enhancement performance. In this paper, a
deep learning technique exploits the LPC estimates for the AKF
to enhance speech in various noise conditions. Specifically, a deep
residual network is used to estimate the noise PSD for computing
noise LPCs. A whitening filter is also implemented with the noise
LPCs to pre-whiten the noisy speech signal prior to estimating
the speech LPCs. It is shown that the improved speech and noise
LPCs enable the AKF to minimize the residual noise as well as
distortion in the enhanced speech. Experimental results show that
the enhanced speech produced by the proposed method exhibits
higher quality and intelligibility than the benchmark methods in
various noise conditions for a wide-range of SNR levels.

Index Terms—Speech enhancement, augmented Kalman filter,
Deep Xi, noise PSD, LPC.

I. INTRODUCTION

The aim of a speech enhancement algorithm (SEA) is to

eliminate embedded noises from a noisy speech signal. SEAs

are used in many applications, such as voice communication

systems, hearing aid devices, and speech recognition. Various

SEAs, namely spectral subtraction (SS) [1], [2], MMSE [3],

[4], Wiener Filter (WF) [5], [6], and Kalman filter (KF) [7]

have been introduced in the literature.

The SS method heavily depends on the accuracy of the

noise estimate [8]. The MMSE and WF-based SEAs rely upon

the accurate estimation of the a priori SNR [9]. In [3], the

decision-directed (DD) approach was proposed to estimate

the a priori SNR. However, the use of speech and noise

power estimates from the previous frame makes it inefficient

at computing the a priori SNR for the current frame.

In KF-based SEA [7], Paliwal and Basu computed the LPCs

from clean speech for enhancing white noise corrupted speech.

Gibson et al. introduced an augmented KF (AKF) to iteratively

suppress the colored noise [10]. The LPCs for the AKF of the

current iteration are estimated from the filtered signal of the

previous iteration. The enhanced speech (after 3-4 iterations)

suffers from musical noise and distortion. Roy et al. proposed

a sub-band iterative KF-based SEA. Due to enhancing the

high-frequency sub-bands (SBs) only, the low-frequency SBs

may still get affected by noise.

In [11], a robustness metric-based tuning offsets the bias of

the KF gain caused by poor LPC estimates. In [12], it was

shown that the robustness metric gives an under-estimated

Kalman gain, resulting in distorted speech, which can be

resolved by sensitivity tuning of the KF gain. Both [11], [12]

operate in stationary noise conditions. George et al. introduced

robustness metric-based tuning of the AKF for colored noise

suppression [13]. The robustness metric still gives distorted

speech. Yu et al. introduced a KF-based SEA, where the LPCs

are estimated using a deep neural network [14]. However, the

noise covariance estimated during speech pauses makes the

KF ineffective at dealing with non-stationary noise conditions.

The silence detection process was also unspecified.

In this paper, a deep learning technique is used to resolve the

LPC estimation issues of the AKF, leading to the capability of

performing speech enhancement in various noise conditions.

Firstly, the noise PSD is estimated using a deep residual net-

work (ResNet) [15], from where the noise LPCs are computed.

The noise LPCs are then used to implement a whitening filter

to pre-whiten the noisy speech signal prior to computing the

speech LPCs. With the improved speech and noise LPCs, the

AKF is found to be effective at minimizing the residual noise

as well as distortion in the enhanced speech. The efficiency

of the proposed method is evaluated against the benchmark

methods using objective and subjective testing.

II. AKF FOR SPEECH ENHANCEMENT

Assuming that the colored noise v(n) is additive and un-

correlated with speech s(n), the noisy speech y(n) at sample

nǫ{0, 1, 2, . . . ,M − 1} can be represented as:

y(n) = s(n) + v(n). (1)

Both s(n) and v(n) can be modeled using pth and qth order

linear predictors, as in [16]:

s(n) = −
p∑

i=1

ais(n− i) + w(n), (2)

v(n) = −
q∑

k=1

bkv(n− k) + u(n), (3)

where {ai; i = 1, 2, . . . , p} and {bk; k = 1, 2, . . . , q} are the

LPCs, and w(n) and u(n) are assumed to be white noise with

zero mean and variance σ2
w and σ2

u, respectively.

Eqs. (1)-(3) can be used to form the following augmented

state-space model (ASSM) of the AKF, as [13]:

x(n) = Φx(n− 1) + dz(n), (4)

y(n) = c⊤x(n), (5)



where x(n) = [s(n) . . . s(n−p+1) v(n) . . . v(n−q+1)]⊤ is

a (p+q)×1 state-vector, Φ =

[
Φs 0
0 Φv

]
is a (p+q)×(p+q)

state-transition matrix constructed with the {ai} and {bj}, d =[
ds 0
0 dv

]
, ds =

[
1 0 . . . 0

]⊤
, dv =

[
1 0 . . . 0

]⊤
,

z(n) =

[
w(n)
u(n)

]
, and c =

[
1 0 . . . 0 1 0 . . . 0

]⊤

is a (p+ q)× 1 vector [13].

Firstly, y(n) is windowed into non-overlapped, short (e.g.,

20 ms) frames. For a particular frame, the AKF computes an

unbiased and linear MMSE estimate x̂(n|n) at sample n, given

y(n) by using the following recursive equations [10]:

x̂(n|n− 1) = Φx̂(n− 1|n− 1), (6)

Ψ(n|n− 1) = ΦΨ(n− 1|n− 1)Φ⊤ + dQd⊤, (7)

K(n) = Ψ(n|n− 1)c(c⊤Ψ(n|n− 1)c)−1, (8)

x̂(n|n) = x̂(n|n− 1) +K(n)[y(n)− c⊤x̂(n|n− 1)], (9)

Ψ(n|n) = [I −K(n)c⊤]Ψ(n|n− 1), (10)

where Q =

[
σ2
w 0
0 σ2

u

]
is the process noise covariance.

For a noisy speech frame, the error covariances Ψ(n|n−1)
and Ψ(n|n) corresponding to x̂(n|n−1) and x̂(n|n), and the

Kalman gain K(n) are continually updated on a samplewise

basis, while ({ai}, σ2
w) and ({bk}, σ2

u) remain constant. At

sample n, g⊤x̂(n|n) gives the estimated speech, ŝ(n|n),
where g =

[
1 0 0 . . . 0

]⊤
is a (p + q) × 1 column

vector. As in [13], ŝ(n|n) is given by:

ŝ(n|n) = [1−K0(n)]ŝ(n|n− 1) +K0(n)[y(n)−
v̂(n|n− 1)], (11)

where K0(n) is the 1st component of K(n) given by [13]:

K0(n) =
α2(n) + σ2

w

α2(n) + σ2
w + β2(n) + σ2

u

, (12)

where α2(n) and β2(n) are the transmission of a posteriori

error variances (of the speech and noise) by the augmented

dynamic model from the previous sample, n− 1 [13].

Eq. (11) implies that K0(n) has a significant impact on the

ŝ(n|n) estimates, which is the output of the AKF. In practice,

poor estimates of ({ai}, σ2
w) and ({bk}, σ2

u) introduce bias in

K0(n), which affects the ŝ(n|n) estimates. In the proposed

SEA, a deep learning technique is used to estimate the LPCs

for the AKF, leading to an improved ŝ(n|n) estimate.

III. PROPOSED SPEECH ENHANCEMENT SYSTEM

Fig. 2 shows the block diagram of the proposed SEA.

Firstly, a 32 ms rectangular window with 50% overlap was

considered for converting y(n) into frames, i.e., y(n, l) =
s(n, l)+v(n, l), where lǫ{0, 1, 2, . . . , N−1} is the frame index

and N is the total number of frames. The DFT coefficients

Y (l,m), S(l,m), and V (l,m) are found using the square-

root-Hann window and correspond to y(n), s(n) and v(n).
These can also be represented as:

Y (l,m) = S(l,m) + V (l,m), (13)

Fig. 1. Block diagram of the proposed deep learning AKF-based SEA.

where m is the discrete-frequency index.

It is assumed that S(l,m) and V (l,m) follow a Gaussian

distribution with zero-mean and variances E{|S(l,m)|2} =
λs(l,m), and E{|V (l,m)|2} = λv(l,m), where E{·} repre-

sents the statistical expectation operator.

A. Proposed ({bk}, σ2
u) and ({ai}, σ2

w) Estimation Method

The ({bk}, σ2
u) estimates from the initial speech pauses used

by the existing AKF [13] makes it limited to suppressing only

colored noises. In the proposed SEA, the noise PSD estimate,

λ̂v(l,m), is used to compute ({bk}, σ2
u). Specifically, the noise

power estimate, |V̂ (l,m)|2 is obtained through a simplified

version1 of the MMSE method as described in [17], [18]:

|V̂ (l,m)|2 =

(
1

1 + ξ(l,m)

)
|Y (l,m)|2, (14)

ξ(l,m) =
λs(l,m)

λv(l,m)
, (15)

where ξ(l,m) is the a priori SNR.

In practice, the existing decision-directed approach [17],

[18] gives a biased estimate of ξ̂(l,m), which affects the

|V̂ (l,m)|2 estimate. To resolve this, we employ a ResNet

[15] within the Deep Xi framework (Deep Xi-ResNet) [19] to

estimate ξ̂(l,m), as described in section III-B. The smoothed

noise PSD estimate, λ̂v(l,m) is obtained as:

λ̂v(l,m) = ηλ̂v(l − 1,m) + (1− η)|V̂ (l,m)|2. (16)

where η is a smoothing constant and set to 0.9.

The |IDFT| of λ̂v(l,m) yields an estimate of the noise

autocorrelation, R̂vv(τ), where τ is the autocorrelation lag.

By solving R̂vv(τ) using the Levinson-Durbin recursion [16],

the ({bk}, σ2
u) (q = 40) estimates are obtained. Then {bk}’s

are used to design the whitening filter, Hw(z) as [16]:

Hw(z) = 1 +

q∑

k=1

bkz
−k. (17)

1The simplification is a result of setting the a posteriori SNR to γ̂(l,m) =
ξ̂(l,m) + 1, which is the maximum-likelihood estimate.



Employing Hw(z) to y(n, l) gives the whitened speech,

yw(n, l) for computing the ({ai}, σ2
w) (p = 10) [16].

B. Deep Xi-ResNet for ξ̂(l,m) Estimation

Deep Xi-ResNet is used to estimate ξ̂(l,m) (model

3e from https://github.com/anicolson/DeepXi). Specifically, it

takes |Y l| (which contains all frequency components for lth

frame) as its input and gives an estimate of the mapped a

priori SNR, ˆ̄ξξξl, as described in section III-C. Deep Xi-ResNet

O

FC

Conv1D(1, 𝑑𝑓 , 1)
Conv1D(𝑟, 𝑑𝑓 , 𝑑)

+

|𝒀𝑙|

ഥ𝝃𝑙

𝐸 × (1, 𝑑𝑚𝑜𝑑𝑒𝑙 , 1)Conv1D
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⋯⋯⋯
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Fig. 2. (a) Deep Xi-ResNet and (b) example of the contextual field of Deep
Xi-ResNet with D = 4, E = 6, and r = 3.

is shown in Fig. 2 (a). It consists of E = 40 bottleneck residual

blocks, where eǫ{1, 2, . . . , E} is the block index. Each block

contains three one-dimensional causal dilated convolutional

units (CDCUs) [20], where each convolutional unit (CU) is

pre-activated by layer normalisation [21] followed by the

ReLU activation function [22]. The 1st and 3rd CUs have a

kernel size of r = 1 to that of r = 3 for the 2nd CU. The 2nd

CU employs a dilation rate (DR) of d, providing a contextual

field over previous time steps. As in [23], d is cycled as the

block index e increases: d = 2(e−1 mod (log
2
(D)+1), where

mod is the modulo operation, and D is the maximum DR.

An example of how the DR is cycled is shown in Fig. 2 (b),

with D = 4, and E = 6. It can be seen that the DR is reset

after block three. This also demonstrates the contextual field

gained by the use of CDCUs. For Deep Xi-ResNet, D is set

to 16. The 1st and 2nd CUs have an output size of df = 64
to that of dmodel = 256 for the 3rd CU [24]. FC is a fully-

connected layer with an output size of dmodel, where layer

normalisation is applied to the output of FC, followed by

the ReLU activation function. The output layer O is a fully-

connected layer with sigmoidal units.

C. Mapped a priori SNR Training Target

The training target for the ResNet is a mapped version of

the instantaneous a priori SNR. For the instantaneous case,

|S(l,m)| and |V (l,m)| in Eq. (15) are known to compute

λs(l,m) and λv(l,m). In [19], ξdB(l,m) = 10 log10[ξ(l,m)]
was mapped to the interval [0, 1] in order to improve the

rate of convergence of the used stochastic gradient descent

algorithm. The cumulative distribution function of ξdB(l,m)
was used as the map. It can be seen from [19, Fig. 2 (top)]

that the distribution of ξdB for a given frequency component,

m follows a normal distribution. Thus, it was assumed that

ξdB(l,m) is distributed normally with mean µm and variance

σ2
m: ξdB(l,m) ∼ N (µm, σ2

m). The mapped a priori SNR

ξ̄(l,m) is given by:

ξ̄(l,m) =
1

2

[
1 + erf

(
ξdB(l,m)− µm

σm

√
2

)]
. (18)

Following [19], the statistics of ξdB(l,m) for each noisy

speech spectral component are found over a sample of 1, 000
noisy speech files from the training set. During inference,

ξ̂(l,m) is found from ξ̂dB(l,m) as follows:

ξ̂(l,m) = 10(ξ̂dB(l,m)/10), (19)

where the ξ̂dB(l,m) is computed from ˆ̄ξ(l,m) as follows:

ξ̂dB(l,m) = σm

√
2erf−1

(
2ˆ̄ξ(l,m)− 1

)
+ µm. (20)

IV. SPEECH ENHANCEMENT EXPERIMENT

A. Training Set

For training Deep Xi-ResNet, a total of 74, 250 clean

speech recordings belonging to the train-clean-100 set from

the Librispeech corpus [25] (28, 539), the CSTR VCTK corpus

[26] (42, 015), and the si∗ and sx∗ training sets from the

TIMIT corpus [27] (3, 696) are used. 5% of the clean speech

recordings are randomly selected and used as a validation

set. Thus, 70, 537 clean speech recordings are used in the

training set and 3, 713 in the validation set. The 2, 382 noise

recordings adopted in [19] are used as the noise training set.

All clean speech and noise recordings are single-channel, with

a sampling frequency of 16 kHz.

B. Training Strategy

The following strategy was employed to train the ResNet:

• Cross-entropy as the loss function.

• The Adam algorithm [28] with default hyper-parameters

is used for gradient descent optimisation.

• Gradients are clipped between [−1, 1].

• The selection order for the clean speech recordings is

randomised for each epoch.

• 175 epochs are used to train the ResNet.

• A mini-batch size of 10 noisy speech signals.

• The noisy signals are created as follows: each clean

speech recording selected for the mini-batch is mixed

with a random section of a randomly selected noise

recording at a randomly selected SNR level (-10 to 20

dB, in 1 dB increments).

C. Test Set

For objective experiments, 30 utterances belonging to six

speakers are taken from the NOIZEUS corpus and are sampled

at 16 kHz [9, Chapter 12]. We generate a noisy data set that

has been corrupted by non-stationary (babble) and colored

(factory2) noises [29] at SNR levels from -5dB to 15dB, in 5

dB increments.



D. Evaluation Metrics

The objective quality and intelligibility evaluation is carried

out using the perceptual evaluation of speech quality (PESQ)

[30] and quasi-stationary speech transmission index (QSTI)

[31] measures. We also analyze the enhanced speech spec-

trograms of the SEAs. The subjective evaluation was carried

out through blind AB listening tests [32, Section 3.3.4]. Five

English speaking listeners participated in the tests, where the

utterance sp05 (“Wipe the grease off his dirty face”) was

corrupted with 5 dB babble noise and used as the stimulus.

The proposed method is compared with benchmark meth-

ods, such as MMSE-STSA [3], AKF-IT [10], robustness-

metrics-based tuning of AKF (AKF-RMBT) [13], AKF-Ideal

(where ({ai}, σ2
w) and ({bk}, σ2

u) are computed from the clean

speech and noise signal) and Noisy (noise corrupted speech).

V. RESULTS AND DISCUSSION

Fig. 3 (a)-(b) demonstrates that the proposed method con-

sistently shows improved PESQ scores over the benchmark

methods, except for AKF-Ideal. The AKF-RMBT method [13]

exhibits competitive PESQ scores with the proposed method

for babble noise (Fig. 3 (a)), however, for factory2 noise, its

efficiency is reduced and is only competitive with the other

benchmark methods (Fig. 3 (b)).
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Fig. 3. Performance comparison of the SEAs in terms of average: PESQ; (a)
babble, (b) factory2 and QSTI; (c) babble, (d) factory2 noise conditions.

Fig. 3 (c)-(d) shows that the proposed method demonstrates

a consistent QSTI improvement across the noise experiments,

apart from AKF-Ideal. The existing AKF-RMBT method [13]

is also competitive with the proposed method. The QSTI

scores of MMSE-STSA [3] and Noisy methods are signifi-

cantly lower than the AKF-IT method [10] at low SNR levels.

It can be seen that the enhanced speech produced by the

proposed method (Fig. 4 (f)) exhibits significantly less residual

noise than that of the benchmark methods (Fig. 4 (c)-(e)) and

is similar to that of the AKF-Ideal (Fig. 4 (g)). Some distortion

and noise-flooring is found for the AKF-RMBT method [13]

(Fig. 4 (e)). The enhanced speech of the MMSE-STSA method

[3] contains significant residual noise (Fig. 4 (c)).

Fig. 5 shows that the enhanced speech produced by the pro-

posed method is widely preferred by the listeners (78%) than

the benchmark methods, apart from the AKF-Ideal (81.75%)

and clean speech. The AKF-RMBT method [13] is found to

be the best preferred (54%) amongst the benchmark methods.
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VI. CONCLUSIONS

This paper introduced a deep learning and augmented

Kalman filter-based single channel speech enhancement algo-

rithm. Specifically, Deep Xi-ResNet is used to estimate the

noise PSD for computing the noise LPCs. A whitening filter is

then constructed with the noise LPCs to pre-whiten the noisy

speech signal prior to the speech LPC estimates. The large

training set of Deep Xi-ResNet enables the LPC estimates to

be effective in various noise conditions. As a result, the im-

proved speech and noise LPCs enable the AKF to minimize the

residual noise as well as distortion in the resultant enhanced

speech. Extensive objective and subjective testing imply that

the proposed method outperforms the benchmark methods in

various noise conditions for a wide range of SNR levels.
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