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ABSTRACT:
Minimum mean-square error (MMSE) approaches to speech enhancement are widely used in the literature. The qual-

ity of enhanced speech produced by an MMSE approach is directly impacted by the accuracy of the employed

a priori signal-to-noise ratio (SNR) estimator. In this paper, the a priori SNR estimate spectral distortion (SD) level

that results in a just-noticeable difference (JND) in the perceived quality of MMSE approach enhanced speech is

found. The JND SD level is indicative of the accuracy that an a priori SNR estimator must exceed to have no impact

on the perceived quality of MMSE approach enhanced speech. To measure the JND SD level, listening tests are con-

ducted across five SNR levels, five noise sources, and two MMSE approaches [the MMSE short-time spectral ampli-

tude (MMSE-STSA) estimator and the Wiener filter]. A statistical analysis of the results indicates that the JND SD

level increases with the SNR level, is higher for the MMSE-STSA estimator, and is not impacted by the type of

background noise. Following the literature, a significant improvement in a priori SNR estimation accuracy is

required to reach the JND SD level. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0002113
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I. INTRODUCTION

Minimum mean-square error (MMSE) approaches to

speech enhancement, such as the MMSE short-time spectral

amplitude (MMSE-STSA) estimator (Ephraim and Malah,

1984), are widely used in the literature. Their performance

is highly dependent upon the accuracy of the used a priori
SNR estimator. One measure used to determine the accuracy

of an a priori SNR estimate is spectral distortion (SD)

(Nicolson and Paliwal, 2019). SD is computed between an a
priori SNR estimate and its instantaneous case. The instan-

taneous a priori SNR is computed from the unobserved

clean speech and noise of the observed noisy speech.

A deep learning approach to a priori SNR estimation

was recently proposed, which attained significantly lower

SD levels than that of previous a priori SNR estimators

(Nicolson and Paliwal, 2019), such as the decision-directed

(DD) approach (Ephraim and Malah, 1984) and the har-

monic regeneration noise reduction (HRNR) technique

(Plapous et al., 2005). The recent improvement in a priori
SNR estimation accuracy has enabled MMSE approaches to

outperform recent deep learning approaches to speech

enhancement (Nicolson and Paliwal, 2019; Nikzad et al.,
2020; Roy et al., 2020a,b; Zhang et al., 2020).

It is clear that a priori SNR estimation has improved

significantly as of late. What is unknown, however, is the

SD level required by an MMSE approach to produce

enhanced speech indistinguishable to that of the instanta-

neous case. Determining this SD level thus forms the pur-

pose of this study, as it will provide a target level of

accuracy for a priori SNR estimation research. We further

define the target level of accuracy as the a priori SNR esti-

mate SD level that results in a just-noticeable difference

(JND) in the perceived quality of MMSE approach

enhanced speech. That is, the SD level that causes a JND

between: (1) the enhanced speech produced by an MMSE

approach utilising the instantaneous a priori SNR and (2)

the enhanced speech produced by an MMSE approach utilis-

ing the estimated a priori SNR. For an a priori SNR estima-

tor to have no impact on the perceived quality of MMSE

approach enhanced speech, it must attain an SD level lower

than that of the JND SD level.

In this study, a series of listening tests are conducted to

measure the JND SD level. For other psychoacoustic JNDs

recently reported in the literature, please see Agus et al.
(2018), Alkahtani (2019), Boucher et al. (2019), Chappel

et al. (2016), and Nadiroh and Arifianto (2018). We investi-

gate the JND SD level over a range of conditions. These

include multiple SNR levels, MMSE approaches, and noise

sources. Two popular MMSE approaches are tested, namely,

the MMSE-STSA estimator and Wiener filter (WF) (Loizou,

2013). We also compare the SD levels of current a priori
SNR estimators in the literature to that of the JND SD level.

This paper is organised as follows. In Sec. II, the analy-

sis, modification, and synthesis (AMS) framework and the

MMSE approaches are described. The experimental setup

for the listening tests is described in Sec. III. A statistical
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analysis is performed in Sec. IV to determine how each con-

dition impacts the JND SD level. Also included in Sec. IV is

a comparison between the SD levels of current a priori SNR

estimators in the literature to that of the JND SD levels.

Conclusions are drawn in Sec. V.

II. BACKGROUND

A. Analysis, modification, and synthesis framework

The short-time Fourier analysis, modification, and syn-

thesis (AMS) framework is used here for speech enhance-

ment (Allen, 1977; Allen and Rabiner, 1977). The AMS

framework consists of three stages: (1) the analysis stage,

where noisy speech undergoes short-time Fourier transform

(STFT) analysis, (2) the modification stage, where the noisy

speech magnitude spectrum is modified, and (3) the synthe-

sis stage, where the enhanced speech is synthesised by

applying the inverse STFT. A block diagram of the AMS

framework is shown in Fig. 1.

In the time-domain, the noisy speech signal, x½n�, is

given by

x n½ � ¼ s n½ � þ d n½ �; (1)

where s½n� and d½n� denote the clean speech and uncorrelated

additive noise, respectively, and n denotes the discrete-time

index. The noisy speech is analysed frame-wise using the

running STFT (Vary and Martin, 2006),

X l; k½ � ¼
XNd�1

n¼0

x nþ lNs½ �w n½ �e�j2pnk=Nd ; (2)

where l denotes the frame index, k denotes the discrete-

frequency index, Nd denotes the frame duration in discrete-

time samples, Ns denotes the frame shift in discrete-time

samples, and w½n� is an analysis window function. In polar

form, the noisy speech spectrum is expressed as

X l; k½ � ¼ jX l; k½ �jej/X l;k½ �; (3)

where jX½l; k�j and /X½l; k� denote the noisy speech magni-

tude and phase spectra, respectively. Similarly, the clean

speech magnitude and phase spectra are denoted as jS½l; k�j
and /S½l; k�, respectively, and the noise magnitude and

phase spectra are denoted as jD½l; k�j and /D½l; k�,
respectively.

The modified magnitude spectrum is then formed by

enhancing the noisy speech magnitude spectrum. The modi-

fied magnitude spectrum is an estimate of the clean speech

magnitude spectrum, and is denoted by jŜ½l; k�j. The modi-

fied spectrum is constructed by combining the modified

magnitude spectrum with the noisy speech phase spectrum

Y l; k½ � ¼ jŜ l; k½ �jej/X l;k½ �: (4)

The synthesis stage involves applying the inverse STFT

to the modified spectrum. First, the inverse discrete Fourier

transform (DFT) is applied to the modified spectrum

yf l; n½ � ¼ 1

Nd

XNd�1

k¼0

Y l; k½ �ej2pnk=Nd ; (5)

where yf ½l; n� is the framed enhanced speech. The least-

squares overlap-add method is subsequently applied to pro-

duce the final enhanced speech (Crochiere, 1980; Griffin

and Jae Lim, 1984),

y n½ � ¼

X1
l¼�1

w n� lNs½ �yf l; n� lNs½ �

X1
l¼�1

w2 n� lNs½ �
; (6)

where w½n� is a synthesis window function.

In this study, the Hamming window function is used for

analysis and synthesis, with a frame-duration of 32 ms

(Nd¼ 512) and a frame-shift of 16 ms (Ns¼ 256). The 257-

point single-sided noisy speech magnitude spectrum, which

includes both the DC frequency component and the Nyquist

frequency component is modified.

B. MMSE approaches to speech enhancement

In this investigation, we aim to determine how the

selected MMSE approach impacts the JND SD level. The

two MMSE approaches that are evaluated include the

MMSE-STSA estimator and the WF. The procedure to

enhance speech using the MMSE-STSA estimator and the

WF is described in this subsection. The MMSE-STSA esti-

mator optimally estimates [in the mean squared error (MSE)

sense] the magnitude spectrum of the clean speech (Ephraim

and Malah, 1984). Similarly, the WF approach optimally

estimates (in the MSE sense) the complex DFT coefficients

of the clean speech (Loizou, 2013). The MMSE-STSA and

WF approaches estimate the magnitude spectrum of the

clean speech by applying a gain function, G½l; k�, to jX½l; k�j:
FIG. 1. (Color online) Short-time Fourier AMS speech enhancement

framework.
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jŜ l; k½ �j ¼ G l; k½ �jX l; k½ �j: (7)

The result of Eq. (7) is used to compute the modified spec-

trum in Eq. (4).

An important parameter used to compute the gain func-

tion of an MMSE approach is the a priori SNR. The a priori
SNR (McAulay and Malpass, 1980) of a noisy speech spec-

tral component is defined as

n l; k½ � ¼ ks l; k½ �
kd l; k½ � ; (8)

where ks½l; k� ¼ EfjS½l; k�j2g is the variance of the clean

speech spectral component, and kd½l; k� ¼ EfjD½l; k�j2g is

the variance of the noise spectral component. The MMSE-

STSA estimator gain is given by

GMMSE�STSA l; k½ � ¼
ffiffiffi
p
p

2

ffiffiffiffiffiffiffiffiffiffiffi
� l; k½ �

p
c l; k½ � exp

�� l; k½ �
2

� �

� 1þ � l; k½ �ð ÞI0

� l; k½ �
2

� ��

þ� l; k½ �I1

� l; k½ �
2

� ��
; (9)

where I0ð�Þ and I1ð�Þ denote the modified Bessel functions of

zero and first order, respectively, and �½l; k� is given by

� l; k½ � ¼ n l; k½ �
n l; k½ � þ 1

c l; k½ �: (10)

Here, c½l; k� denotes the a posteriori SNR and is defined as

c l; k½ � ¼ jX l; k½ �j2

kd l; k½ � : (11)

The WF approach gain function is given by

GWF l; k½ � ¼ n l; k½ �
n l; k½ � þ 1

: (12)

For the listening tests, the JND is to be found between

the estimated a priori SNR, n̂½l; k�, and a reference. The ref-

erence can be computed from the clean speech and noise in

Eq. (1), as they are known completely during the listening

tests. There are two reference options.

Option 1: Equation (8) computed using the instantaneous

values jS½l; k�j2 and jD½l; k�j2 in place of ks½l; k� and kd½l; k�,
respectively, i.e., use the instantaneous a priori SNR as the

reference.

Option 2: Compute the clean speech and noise power spec-

tral densities (PSDs), ks½l; k� ¼ EfjS½l; k�j2g and kd½l; k�
¼ EfjD½l; k�j2g, for Eq. (8) using first-order recursive

smoothing, e.g., k̂s½l; k� ¼ ak̂s½l� 1; k� þ ð1� aÞjS½l; k�j2.

Through an informal listening test, it was found that

using first-order recursive smoothing (with a smoothing fac-

tor ranging from 0.1 to 0.9) produces enhanced speech that

exhibits significantly more speech distortion and reverbera-

tion than the enhanced speech of the instantaneous a priori
SNR. This is due to spectral smearing caused by the first-

order recursive smoothing algorithm. Objective scores for

the WF using options 1 and 2 are given in Table I. It can be

seen that the enhanced speech of option 1, the instantaneous

a priori SNR, produces higher objective quality and intelli-

gibility scores than option 2 at different a values. Hence, the

instantaneous case is used for the listening tests.

Additionally, the instantaneous value jD½l; k�j2 can be used

in the place of kd½l; k� in Eq. (11), giving the instantaneous a
posteriori SNR.

To uphold the statistical properties of the WF and the

MMSE-STSA estimator, the DFT coefficients (real and

imaginary parts) of the clean speech and the noise must be

statistically independent Gaussian random variables with

zero mean. However, finding the true probability distribu-

tion of the clean speech DFT coefficients is difficult, as

speech is neither a stationary nor an ergodic process

(Ephraim and Malah, 1984). This also applies to non-

stationary noise sources. Measuring their probability distri-

bution by examining long-term behavior has been suggested

(Martin, 2002; Porter and Boll, 1984). However, it is argued

that histograms of the DFT coefficients, obtained using a

large amount of data, reflect the relative frequency rather

than the true probability density of the DFT coefficients

(Ephraim and Malah, 1984). Hence, we assume that the

DFT coefficients of the clean speech used in this study (as

described in Sec. III A) are statistically independent

Gaussian random variables with zero mean and variances

that are time-varying (this assumption is also made for the

noise source DFT coefficients). This is identical to the

assumption made by Ephraim and Malah (1984).

III. EXPERIMENT SETUP

A. Clean speech and noise recordings

Determining how the noise source impacts the JND SD

level constitutes one part of this investigation. Therefore, we

utilise recordings of five different noise sources to produce

the noisy speech for the listening tests. Along with additive

white Gaussian noise (AWGN), four real-world noise sour-

ces, including two non-stationary and two coloured, are

TABLE I. Enhanced speech objective quality and intelligibility scores

(higher is better) using the WF with options 1 and 2. The perceptual evalua-

tion of speech quality (PESQ) metric is used to obtain the objective quality

scores (Rix et al., 2001). The short-time objective intelligibility (STOI)

metric (Taal et al., 2011) is used to obtain the objective intelligibility scores

(in %). The test set described in Sec. III E is used to obtain the objective

scores. The objective scores are averaged over all conditions.

Reference PESQ STOI

Option 1 2.97 95.5

Option 2; a ¼ 0:1 2.80 95.4

Option 2; a ¼ 0:5 2.06 93.5

Option 2; a ¼ 0:9 1.46 86.0
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included. The two real-world non-stationary noise sources

include voice babble from the RSG-10 noise dataset

(Steeneken and Geurtsen, 1988) and street music (recording

No. 26 270) from the Urban Sound dataset (Salamon et al.,
2014). The two real-world coloured noise sources include

F16 and factory (welding) from the RSG-10 noise dataset

(Steeneken and Geurtsen, 1988). These noise sources were

chosen because speech enhancement methods in the litera-

ture are typically evaluated using real-world non-stationary

and coloured noise sources (Nicolson and Paliwal, 2019;

Nikzad et al., 2020; Zhang et al., 2020). The clean speech

recordings from the TSP speech corpus (Kabal, 2002) are

used to produce the noisy speech for the listening tests

(only adult speakers are used). A total of 1378 clean

speech recordings are available for the listening tests, with

a minimum duration of 1.3 s and a maximum duration of

4.8 s. The clean speech and noise recordings are single-

channel, with a sampling frequency of 16 kHz (recordings

with a greater sampling frequency are downsampled). The

noisy speech is created by mixing the selected clean

speech and noise recording at a specified SNR level. The

SNR levels used for the listening tests include –5, 0, 5, 10,

and 15 dB.

B. Spectral distortion

Spectral distortion (SD) is a measure of a priori SNR

estimation accuracy,

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nd=2þ 1

XNd=2

k¼0

ðndB l; k½ � � n̂dB l; k½ �Þ2
vuut : (13)

It is defined as the root-mean-square difference between

the a priori SNR estimate (dB), n̂dB½l; k� ¼ 10 log10ðn̂½l; k�Þ,
and the instantaneous a priori SNR (dB), ndB½l; k�
¼ 10 log10ðn½l; k�Þ, over the spectral components of the lth
frame (Nicolson and Paliwal, 2019; Paliwal and Atal, 1993).

C. Stimuli generation

To find the JND SD level, the amount of distortion pre-

sent in the estimated a priori SNR must be controlled from

trial-to-trial. For a trial, the following stimuli pair is pro-

duced for a given noisy speech signal.

Stimulus 1: Enhanced speech produced by an MMSE

approach utilising the instantaneous a priori SNR.

Stimulus 2: Enhanced speech produced by an MMSE

approach utilising an a priori SNR estimate with an SD

level of D.

The instantaneous a priori SNR is first computed from

the clean speech and noise that form the noisy speech. The

instantaneous a priori SNR is then used with an MMSE

approach to create stimulus 1. The a priori SNR estimate

for stimulus 2 is created by adding a random number to each

component of the instantaneous a priori SNR (dB),

n̂dB l; k½ � ¼ ndB l; k½ � þ z; (14)

where z is a realisation of random variable Z. The distribu-

tion of Z is set so that the SD of n̂dB½l; k� is D.

The distribution of Z must emulate the distribution of

the distortion produced by current a priori SNR estimators.

Shown in Fig. 2 (top) are distributions of the distortion pro-

duced by the Deep Xi framework employing a residual long

short-term memory (ResLSTM) network (Nicolson and

Paliwal, 2019) and a residual bidirectional long short-term

memory (ResBiLSTM) network (Nicolson and Paliwal,

2019; Nicolson, 2020b). The distortion is calculated by sub-

tracting the estimated a priori SNR (dB) from the instanta-

neous a priori SNR (dB), ndB½l; k� � n̂dB½l; k�. Figure 2

(bottom) shows the quantile–quantile (Q–Q) plots of the

distortion of Deep Xi-ResLSTM and Deep Xi-ResBiLSTM

versus a standard normal distribution. The Q–Q plots produce

an approximately straight line—especially within two standard

deviations of the mean (95% of the distribution)—indicating

that the distortion follows a normal distribution.

Deep Xi-ResLSTM exhibits a small amount of bias

(l ¼ 2:08), while Deep Xi-ResBiLSTM exhibits even less

bias (l ¼ �0:85). This suggests that a more complex deep

neural network (DNN) exhibits less bias, given that the

ResBiLSTM network is more complex than the ResLSTM

network. This is demonstrated by Neal et al. (2018), where

it was found that both bias and variance decreases as the

complexity of the DNN grows. With the assumption that

more complex DNNs will be used to improve a priori SNR

estimation in the future, the bias of a priori SNR estimators

will decrease, i.e., the mean (l) of their distortion will

approach zero. Hence, we assume that Z is distributed

FIG. 2. (Color online) (Top) Histogram of the distortion of current a priori
SNR estimators. (Bottom) Quantile–quantile (Q–Q) plot of the distortion

versus a standard normal distribution. The mean and standard deviation of

the distortion is denoted by l and r, respectively. The distortion is found

over all spectral components of the test set described in Sec. III E.
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normally with zero mean. To determine the variance of Z,

Eq. (14) is first substituted into Eq. (13). With the knowl-

edge that Z has zero mean, we find that the variance of Z is

D2. Thus, Z is distributed normally with zero mean and a

variance of D2: Z � Nð0;D2Þ. The a priori SNR estimate

with an SD level of D is artificially created using Eq. (14),

which is subsequently used with an MMSE approach to cre-

ate stimulus 2.

D. Listening tests

The procedure used for the JND SD level listening tests

is described here. The results of the listening tests are used

to determine how the SNR level, the selected MMSE

approach, and the noise source impacts the JND SD level. In

order to analyse how each of these factors impacts the JND

SD level, listeners record JND SD levels for 30 conditions,

as described in Table II (one condition per row). Each con-

dition is determined by the employed MMSE approach,

noise source, and SNR level. Results for the first five condi-

tions in Table II enable us to determine how the SNR level

impacts the JND SD level. Results for the first ten condi-

tions in Table II enable us to determine how the selected

MMSE approach impacts the JND SD level. Results for the

last 25 conditions in Table II enable us to determine if the

type of background noise impacts the JND SD level.

For each of the conditions described in Table II, at least

20 listeners recorded a JND SD level. This is double the

amount of listeners that participated in previous speech

enhancement JND studies (Chappel et al., 2016; W�ojcicki

and Loizou, 2012). Each listener contributes a maximum of

one JND SD level per condition. Each listener records a

JND SD level for each condition over three separate ses-

sions (testing all 30 conditions in one session would cause

fatigue). Each session is completed in approximately

10–20 min. Each participant is given at least a 20 min break

before attempting another session. 20 listeners participated

in all three sessions (13 male and seven female, aged

between 18 and 41), where 10 of the listeners had prior

music/signal processing experience. Three listeners partici-

pated in only the first session (one male and two female,

aged between 18 and 35). Each listener possessed normal

hearing. Each session is conducted in a quiet room using

closed circumaural headphones (Sennheiser HD280 PRO) at

a comfortable listening level. Before starting the first ses-

sion, each listener participates in a practice test, to familiar-

ise themselves and to adjust the volume to a comfortable

level. The authors of this study did not participate in the lis-

tening tests.

Each listener completes ten tests during a session, one

test for each condition. The order of the conditions for a ses-

sion is randomised for each listener. The noisy speech used

for a test is created on the fly by mixing a random section of

a recording of the condition’s noise source with a randomly

selected clean speech recording, at the condition’s SNR

level. For each test in a session, a listener completes multi-

ple trials. For each trial, a stimuli pair is presented to the lis-

tener. The stimuli pair, as described previously, includes:

Stimulus 1, the enhanced speech produced by an MMSE

approach utilising the instantaneous a priori SNR and stim-

ulus 2, the enhanced speech produced by an MMSE

approach utilising an a priori SNR estimate with an SD

level of D. During a test, the condition and the noisy speech

remain the same from trial-to-trial, only D of stimulus 2

changes.

Stimulus 1 is played first as a reference to the listener,

followed by 200 ms of silence, and then stimulus 2. The

entirety of each stimulus was played to the listener. The

duration of each stimulus is between 1.3 and 4.8 s. The SD

level, D, is changed adaptively from trial-to-trial, in order to

find the SD level that is noticeable by the listener 50% of

the time (the JND SD level) (Booth and Freeman, 1993).

Once the stimuli pair for a trial has been presented, the lis-

tener selects one of three options. The first option is selected

if the stimuli pair has no perceivable difference in speech

quality. The second option is selected if there is a perceiv-

able difference in speech quality. The third option allows

the listener to re-listen to the stimuli pair for the trial. The

next trial is presented to the listener if one of the first two

options is selected.

TABLE II. Conditions for each of the tests. Each session consisted of 10

tests, with 30 total conditions tested over the three sessions.

Condition

Session Listeners MMSE approach Noise source SNR level

1 23 WF AWGN �5 dB

WF AWGN 0 dB

WF AWGN 5 dB

WF AWGN 10 dB

WF AWGN 15 dB

MMSE-STSA AWGN �5 dB

MMSE-STSA AWGN 0 dB

MMSE-STSA AWGN 5 dB

MMSE-STSA AWGN 10 dB

MMSE-STSA AWGN 15 dB

2 20 MMSE-STSA Voice babble �5 dB

MMSE-STSA Voice babble 0 dB

MMSE-STSA Voice babble 5 dB

MMSE-STSA Voice babble 10 dB

MMSE-STSA Voice babble 15 dB

MMSE-STSA F16 �5 dB

MMSE-STSA F16 0 dB

MMSE-STSA F16 5 dB

MMSE-STSA F16 10 dB

MMSE-STSA F16 15 dB

3 20 MMSE-STSA Street music �5 dB

MMSE-STSA Street music 0 dB

MMSE-STSA Street music 5 dB

MMSE-STSA Street music 10 dB

MMSE-STSA Street music 15 dB

MMSE-STSA Factory (welding) �5 dB

MMSE-STSA Factory (welding) 0 dB

MMSE-STSA Factory (welding) 5 dB

MMSE-STSA Factory (welding) 10 dB

MMSE-STSA Factory (welding) 15 dB
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An example of how the SD level, D, is changed adap-

tively from trial-to-trial is shown in Fig. 3. The up-down

method (Levitt, 1971) is used to adaptively control the SD

level from trial-to-trial, and has been used in many psycho-

acoustical studies (Buck et al., 2012; W�ojcicki and Loizou,

2012). The initial value for the up-down method is found by

using the ascending method of limits (Levitt, 1971). After

the initial value for the up-down method is found, six total

runs are used for each test, ensuring that at least six reversals

are completed, following (Wetherill and Levitt, 1965). An

SD level step size of 0.5 dB is used for the ascending

method of limits and the up-down method. The midpoint of

every second run is used as the mid-run estimate of the JND

SD level (the initial run for the ascending method of limits

is excluded, i.e., the midpoint of runs 2, 4, and 6, as shown

in Fig. 3, are used as the mid-run estimates) (Levitt, 1971).

This gives a total of three mid-run estimates for each test,

which are averaged to give the listener’s JND SD level for

the test/condition.

E. A priori SNR estimator test set

The test set from Nicolson and Paliwal (2019) is used

here to evaluate a priori SNR estimators in the literature,

which we refer to as the a priori SNR estimator test set

henceforth [available online (Nicolson, 2020a)]. The noisy

speech for the a priori SNR estimator test set was created

using a subset of the clean speech and noise recordings

described in Sec. III A. Four of the five noise sources from

Sec. III A were used, specifically, voice babble, F16, street
music, and factory (welding). Ten clean speech recordings

were randomly selected without replacement from the TSP

speech corpus (Kabal, 2002) (only adult speakers were

used) for each of the four noise recordings. To generate the

noisy speech, a random section of the noise recording was

mixed with the clean speech at five SNR levels:

f�5; 0; 5; 10; 15g dB. This created a test set of 200 noisy

speech signals. The noisy speech was single channel, with a

sampling frequency of 16 kHz. The a priori SNR estimator

test set is not used for the listening tests, rather, it is used to

compare the performance of a priori SNR estimators in the

literature to that of the JND SD levels.

IV. RESULTS AND DISCUSSION

The JND SD levels ascertained from the listening tests

are shown in Fig. 4. For each of the conditions described in

Table II, at least 20 JND SD levels are recorded. Each lis-

tener contributes a maximum of one JND SD level per con-

dition. 20 listeners participated in all three sessions and

three listeners participated in only the first session. In this

section, we perform a statistical analysis to determine how

the SNR level, MMSE approach, and noise source impacts

the JND SD level—before presenting the final JND SD lev-

els in Sec. IV F. Each of the following subsections is sum-

marised as follows.

Section IV A: determines if the JND SD level is

impacted by the SNR level.

Section IV B: determines if the JND SD level is

impacted by the selected MMSE approach.

FIG. 3. (Color online) A red cross indicates that a difference is not per-

ceived between the stimuli pair for a trial. A green plus indicates that a dif-

ference is perceived between the stimuli pair for a trial. The ascending

method of limits is used for the initial run, to find the initial SD level for the

up-down method. The up-down method then controls the SD level for six

runs. Mid-run estimates are found from the midpoint of runs 2, 4, and 6.

FIG. 4. (Color online) JND SD levels attained for each condition. The black

dot and the error bar indicate the mean and standard deviation, respectively,

of the JND SD level for the corresponding condition. Each condition com-

prises of a noise source, an SNR level, and an MMSE approach. The condi-

tions are described in Table II.
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Section IV C: determines if the JND SD level is

impacted by the noise source.

Section IV D: indicates why the JND SD level is

impacted by the SNR level.

Section IV E: indicates why the JND SD level is

impacted by the selected MMSE approach.

Section IV F: determines the final JND SD level.

Section IV G: presents a comparison of the final JND

SD level to the SD levels of current a priori SNR

estimators.

A. How the SNR level impacts the JND SD level

Presented in Table III are the statistics of the JND SD

level at each SNR level. The statistics are computed over

the JND SD levels for the WF and for AWGN. The disper-

sion at each SNR level is moderately consistent (Bartlett’s

test, p� 0:05), with a standard deviation (s) ranging from

0.98 to 1.46 and an interquartile range (IQR) ranging from

0.99 to 1.69. However, the mean at each SNR level is signif-

icantly different [one-way analysis of variance (ANOVA),

p � 0:05]. Despite the dispersion at each SNR level, there

exists a moderate positive relationship between the SNR

level and the JND SD level (Pearson correlation coefficient,

r¼ 0.38). In Sec. IV D, we indicate why the JND SD level

increases with the SNR level.

B. How the MMSE approach impacts the JND SD level

The distribution of the JND SD level for each MMSE

approach at each SNR level is shown in Fig. 5. Only the

JND SD levels for AWGN are considered. As shown in

Table IV, there is a significant difference between the mean

JND SD level of the MMSE-STSA estimator and the WF at

an SNR level of �5, 0, and 5 dB (two-sample t-test,

p � 0:05 for SNR levels �5, 0, and 5 dB). However, there is

no significant difference between the mean JND SD level of

the MMSE estimator and the WF at an SNR level of 10 and

15 dB (two-sample t-test, p> 0.05 for SNR levels 10 and

15 dB). This indicates that the choice of MMSE approach

impacts the JND SD level at an SNR level of 5 dB or less. In

Sec. IV E, we indicate why there is a significant difference

for each MMSE approach at an SNR level of 5 dB or lower.

C. How the noise source impacts the JND SD level

For this subsection, only JND SD levels for the MMSE-

STSA estimator and from listeners that completed all three

sessions are included. This provides a balanced sample size

for each of the noise sources. The spread of the JND SD

level for each of the noise sources is shown in Fig. 6. It can

be seen that the median JND SD level is similar for each of

the noise sources. The result of a one-way ANOVA test

between the JND SD levels of each noise source is given in

Table V. It can be observed that there is no significant dif-

ference between the mean JND SD level of the noise sources

at each SNR level (one-way ANOVA, p> 0.05 for each

SNR level). Moreover, there is no significant difference

between the dispersion of the JND SD level of the noise

sources at each SNR level (Barlett’s test, p> 0.05 for eachTABLE III. Statistics of the JND SD level as the SNR level increases. The

statistics for each SNR level are computed over the JND SD levels for

the WF and for AWGN. The mean (�x), the 95% confidence interval (CI),

the standard deviation (s), the interquartile range (IQR), and the sample size

(N) are the given statistics.

Statistic

SNR level

�5 0 5 10 15

�x 5.15 5.51 5.70 6.57 6.68

95% CI 60.42 60.48 60.40 60.48 60.61

s 1.03 1.17 0.98 1.18 1.46

IQR 1.26 1.69 1.05 0.99 1.23

N 23 23 23 23 23

FIG. 5. (Color online) Histograms of the JND SD levels for the MMSE-

STSA estimator and the WF at each tested SNR level. Only the JND SD lev-

els for AWGN are considered. Each histogram has a sample size (N) of 23.

TABLE IV. Tests to determine if there is a significant difference between

the JND SD levels of the MMSE-STSA estimator and WF at each SNR

level. Only the JND SD levels for AWGN are considered. The p-value for

the two-sample t-test and the number of samples (N) are the given statistics.

Statistic

SNR level

�5 0 5 10 15

Two-sample t-test, p 0.01 0.04 0.04 0.81 0.30

N 23 23 23 23 23
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SNR level). This indicates that the noise source has no

impact on the JND SD level, at least for the five tested.

D. Why the JND SD level is impacted by the SNR level

As shown in Sec. IV A, the JND SD level increases

with the SNR level. To explain this occurrence, we evaluate

the gain functions of the MMSE-STSA estimator and the

WF. The gain as a function of the a priori SNR is shown in

Fig. 7 (top). It can be observed that the gradient of the gain

decreases as the a priori SNR increases, as shown in Fig. 7

(bottom). The lower the gradient, the lower the resultant

gain distortion that a set SD level will cause. Therefore, a

set SD level applied to a greater instantaneous a priori SNR

will result in a lower gain distortion. The amount of gain

distortion adversely impacts the quality of the resultant

enhanced speech. This indicates that the JND SD level is the

SD level that causes sufficient gain distortion to produce a

JND. The gradient of the gain indicates that the JND SD

level will increase with the instantaneous a priori SNR. This

is because a greater SD level is required to produce suffi-

cient gain distortion to hear a JND at greater instantaneous a
priori SNRs.

Further insights can be obtained by examining the dis-

tribution of the instantaneous a priori SNR as the SNR level

increases. The distribution (in dB) as the SNR level

increases is presented in Figs. 8(a)–8(e). As shown in Fig.

8(f), the mean instantaneous a priori SNR increases with the

SNR level, while the standard deviation remains unchanged.

This causes the amount of gain distortion for a set SD level

to decrease on average as the SNR level increases. This indi-

cates that the JND SD level increases with the SNR level,

which is consistent with the results in Table III. The JND

SD level is thus directly impacted by the gradient of the

gain function. In summary, the JND SD level increases with

the SNR level because (1) a set SD level applied to a greater

instantaneous a priori SNR will cause a lower gain distor-

tion and (2) the mean instantaneous a priori SNR increases

with the SNR level.

E. Why the JND SD level is impacted by the MMSE
approach

Observing the gradient of the gain functions in Fig. 7

(bottom) provides insight as to why there is a significant

FIG. 6. (Color online) Boxplots of the JND SD level for each noise source.

Only JND SD levels for the MMSE-STSA estimator and from listeners that

completed all three sessions are included. A sample size (N) of 20 is used

for each boxplot. Each subplot corresponds to a different SNR level. The

central red mark indicates the median, and the bottom and top edges of the

blue box indicate the 25th and 75th percentiles, respectively. The whiskers

extend to the most extreme data points not considered outliers, and the out-

liers are plotted individually using the red “þ” symbol.

TABLE V. Statistics of the JND SD level for the noise sources at each SNR

level. The statistics are computed over the JND SD levels for the MMSE-

STSA estimator and for the listeners that completed all three sessions. The

p-value for a one-way ANOVA test, the p-value for a Bartlett’s test, and the

number of samples (N) are the given statistics.

Statistic

SNR level

�5 0 5 10 15

One-way ANOVA, p 0.90 0.81 0.91 0.40 0.29

Bartlett’s, p 0.57 0.67 0.58 0.39 0.71

N 20 20 20 20 20

FIG. 7. (Top) Gain as a function of the a priori SNR for the MMSE-STSA

estimator and the WF. (Bottom) Derivative of the gain as a function of the

a priori SNR for the MMSE-STSA estimator and the WF. The a posteriori
SNR is computed using its maximum likelihood (ML) estimate,

ĉ½l; k� ¼ n½l; k� þ 1, from Nicolson and Paliwal (2019).
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difference in the JND SD levels of the MMS-STSA estima-

tor and the WF at an SNR level of 5 dB or less. As estab-

lished in Sec. IV D, the gradient of the gain function has an

impact on the JND SD level as the SNR level changes. At

lower SNR levels, where the mean instantaneous a priori
SNR is also lower [Fig. 8(f)], the gradients of both gain

functions are different, causing a significant difference

between their JND SD levels. At greater SNR levels, where

the mean instantaneous a priori SNR is also greater, the gra-

dients of both gain functions are similar, causing a smaller

difference between their JND SD levels. This gives reason

as to why the JND SD levels for the WF are significantly

lower at SNR levels of 5 dB or less.

F. Final JND SD levels

As determined in Secs. IV A and IV B, the SNR level

and the selected MMSE approach has a significant impact

on the JND SD level. In this subsection, we present the final

JND SD levels, as given by the mean MMSE-STSA estima-

tor and WF JND SD levels at each of the tested SNR levels.

The analysis in Sec. IV C indicates that the noise source has

no significant impact on the JND SD level. Thus, the final

JND SD levels are independent of the noise source. The

mean MMSE-STSA estimator JND SD level at each tested

SNR level is presented in Table VI. These are the SD levels

that an a priori SNR estimator must exceed to have no

impact on the perceived quality of MMSE-STSA estimator

enhanced speech. The statistics are computed over the JND

SD levels of all the noise sources. This provides a larger

sample size to compute the statistics for the MMSE-STSA

estimator.

The mean MMSE-STSA estimator JND SD level is sig-

nificantly different at each SNR level (one-way ANOVA,

p � 0:05). This is due to a moderate positive relationship

between the mean MMSE-STSA estimator JND SD level

and the SNR level (Pearson correlation coefficient,

r¼ 0.37). The dispersion of the mean MMSE-STSA estima-

tor JND SD level at each SNR level is significantly different

(Bartlett’s test, p � 0:05), with the dispersion tending to

increase with the SNR level [see standard deviation (s) in

Table VI]. This is consistent with reports from listeners that

it was more difficult to track the JND SD level at higher

SNR levels. The mean WF JND SD level at each tested

SNR level is presented in Table III. These are the SD levels

that an a priori SNR estimator must exceed to have no

impact on the perceived quality of WF enhanced speech. As

the WF is only tested with AWGN, its statistics are com-

puted from a smaller sample size than that of the MMSE-

STSA estimator. This impacts the 95% confidence interval

(CI) of the mean WF JND SD levels. As can be observed,

the CI for the WF is greater (Table III) than that of the

MMSE-STSA estimator (Table VI) for each SNR level.

G. SD levels of a priori SNR estimators

Here, we compare the SD levels of current and previous

a priori SNR estimators found in the work by Nicolson and

Paliwal (2019) (the used test set is described in Sec. III E).

The previous a priori SNR estimators include the DD

approach (Ephraim and Malah, 1984), the two-step noise

reduction (TSNR) technique (Plapous et al., 2004), HRNR

(Plapous et al., 2005), and selective cepstro-temporal

smoothing (SCTS) (Breithaupt et al., 2008). Each uses the

MMSE noise power spectral density (PSD) estimator by

Gerkmann and Hendriks (2012). The current estimators

FIG. 8. (Color online) (a)–(e) Distribution of the instantaneous a priori
SNR (dB) as the SNR level increases. The distribution is found over 100

randomly selected clean speech recordings described in Sec. III A. Each

clean speech recording is corrupted with AWGN at five different SNR lev-

els: f�5; 0; 5; 10; 15g dB. (f) Mean and standard deviation of the instanta-

neous a priori SNR (dB) as the SNR level increases.

TABLE VI. Statistics of the JND SD level for the MMSE-STSA estimator

as the SNR level increases. The statistics are computed over all noise sour-

ces at each SNR level. This means that multiple JND SD levels for each

participant are used at each SNR level. The mean (�x), the 95% confidence

interval (CI), the standard deviation (s), the interquartile range (IQR), and

the sample size (N) are the given statistics.

SNR level

Statistic �5 0 5 10 15

�x 5.88 6.09 6.31 6.83 7.48

95% CI 60.24 60.25 60.28 60.24 60.32

s 1.22 1.30 1.46 1.25 1.67

IQR 1.51 1.09 1.70 1.58 1.86

N 103 103 103 103 103

J. Acoust. Soc. Am. 148 (4), October 2020 Aaron Nicolson and Kuldip K. Paliwal 1887

https://doi.org/10.1121/10.0002113

https://doi.org/10.1121/10.0002113


include Deep Xi-ResLSTM and Deep Xi-ResBiLSTM. The

SD levels are averaged over all noise sources [voice babble,

F16, street music, and factory (welding)], and compared to

the JND SD levels of the MMSE-STSA estimator and the

WF, as shown in Fig. 9. It can be seen that the a priori SNR

estimator with the highest accuracy (Deep Xi-ResBiLSTM)

produces an SD level that is substantially greater than the

JND SD level of the MMSE-STSA estimator and the WF at

each SNR level. A significant improvement in a priori SNR

estimation accuracy is thus required to surpass the JND SD

levels of the MMSE-STSA estimator and the WF at each

SNR level.

Objective quality and intelligibility scores for the

MMSE-STSA estimator and the WF using different a priori
SNRs are given in Table VII. It can be observed that the

objective scores decrease when the instantaneous a priori
SNR is corrupted to the JND SD level. Although the objec-

tive scores produced by Deep Xi-ResBiLSTM outperform

noisy speech, they are significantly worse than that of the

instantaneous case corrupted to the JND SD level. This is

consistent with the SD levels presented in Fig. 9. The objec-

tive scores for the instantaneous a priori SNR corrupted to

the JND SD level indicate the speech enhancement perfor-

mance that is attainable by an a priori SNR estimator that is

capable of exceeding the JND SD level.

H. Future recommendations

In this study, the JND SD level for the MMSE-STSA

estimator and the WF are presented. However, there are

other commonly used MMSE approaches in the literature,

including the MMSE log-spectral amplitude (MMSE-LSA)

estimator (Ephraim and Malah, 1985) and the square-root

WF (SRWF) (Lim and Oppenheim, 1979). As shown in Sec.

IV B, the selected MMSE approach has a significant impact

on the JND SD level. Therefore, the JND SD levels for other

MMSE approaches will need to be investigated. Moreover,

only five noise sources were considered in this study. To

claim concretely that the noise source has no impact on the

JND SD level would require a larger set of noise sources.

V. CONCLUSION

In this study, the a priori SNR estimate SD level that

results in a JND in the perceived quality of MMSE approach

enhanced speech is found through a series of listening tests.

An a priori SNR estimator will have no impact on the

FIG. 9. (Color online) SD levels attained by each of the a priori SNR esti-

mators in Nicolson and Paliwal (2019). The red plots are the JND SD levels

for the MMSE-STSA and the WF. The test set described in Sec. III E is

used to obtain the SD levels. SD levels are averaged over all noise sources.

TABLE VII. Enhanced speech objective quality and intelligibility scores (higher is better) for the MMSE-STSA estimator and the WF. Scores are given for

the estimated a priori SNR from Deep Xi-ResBiLSTM, the instantaneous a priori SNR corrupted to the JND SD level, and the instantaneous a priori SNR.

The mean opinion score of the listening quality objective (MOS-LQO) is used as the objective quality metric, where the wideband perceptual evaluation of

quality (Wideband PESQ) is the objective model used to obtain the MOS-LQO score (Morioka et al., 2005). The short-time objective intelligibility (STOI)

metric (Taal et al., 2011) is used to obtain the objective intelligibility scores (in %). The test set described in Sec. III E is used to obtain the objective scores.

The objective scores are averaged over all noise sources. The a posteriori SNR for Deep Xi-ResBiLSTM is computed using the maximum likelihood (ML)

estimate ĉ½l; k� ¼ n½l; k� þ 1, as in Nicolson and Paliwal (2019). The instantaneous a posteriori SNR is used with the instantaneous a priori SNR corrupted

to the JND SD level, and the instantaneous a priori SNR.

Method A priori SNR

SNR level

MOS-LQO STOI

�5 0 5 10 15 �5 0 5 10 15

Noisy speech — 1.04 1.06 1.12 1.28 1.59 59.3 71.3 82.0 90.2 95.3

WF Deep Xi-ResBiLSTM 1.17 1.35 1.65 2.14 2.68 67.4 81.7 90.4 95.1 97.5

WF JND SD level 2.04 2.44 2.85 3.31 3.65 89.4 92.4 95.1 97.0 98.4

WF Instantaneous 2.16 2.53 2.96 3.38 3.74 90.9 93.7 96.0 97.7 98.7

MMSE-STSA Deep Xi-ResBiLSTM 1.19 1.42 1.74 2.18 2.69 67.4 81.0 89.7 94.7 97.3

MMSE-STSA JND SD level 2.14 2.43 2.88 3.24 3.63 89.9 92.6 94.9 96.8 98.1

MMSE-STSA Instantaneous 2.58 2.89 3.24 3.61 3.89 93.1 94.8 96.4 97.8 98.7
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perceived quality of MMSE approach enhanced speech if it

is able to attain SD levels lower than that of the JND SD

level. Thus, the JND SD level is a target level of accuracy

for a priori SNR estimation research. A statistical analysis

indicates that the SNR level, along with the selected MMSE

approach, has a significant impact on the JND SD level. The

JND SD level increases with the SNR level and the JND SD

level of the MMSE-STSA estimator is higher than that of

the WF at each SNR level. Moreover, there was no statisti-

cally significant difference between the JND SD levels of

the five tested background noise sources at each SNR level.

Following the literature, it is determined that a significant

improvement in a priori SNR estimation accuracy is

required to reach the JND SD level.
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