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An acoustic phonemic recognition system for continuous speech is presented. The system utilizes both steady-
state and transition segments of the speech signal to achieve recognition. The information contained in
formant transitions is utilized by the system by using a synthesis-based recognition approach. It is shown that
this improves the performance of the system considerably. Recognition of continuous speech is accomplished
here in three stages: segmentation, steady-state recognition, and synthesis-based recognition. The system has
been tried out on 40 test utterances, each 3—4 s in duration, spoken by a single male speaker and the following
results are obtained: 5.4% missed segment error, 8.3% extra segment error, 52.3% correct recognition using
only steady-state segments, and 62.0% correct recognition using both steady-state and transition segments.

PACS numbers: 43.70.5c

INTRODUCTION

There are in existence a number of acoustic phonemic
recognition systems for speech which were developed
either independently (Reddy, 1967; Niederjohn and Thom-
as, 1973; Hess, 1976; Paliwal and Rao, 1977) or as
part of so-called speech understanding systems (Reddy
et al., 1973; Schwatz and Makhoul, 1975; Weinstein
et al., 1975; Goldberg, 1975). These systems use pri-
marily the acoustic information contained in the steady-
state segments of continuous speech for recognition of
phonemes. Since there is considerable acoustic variabil-
ity in continuous speech arising from different inter-
phonemic contexts and speaking rates, steady-state in-
formation alone is not enough for the phonemic tran-
scription of continuous speech. Also, it is well estab-
lished that the acoustic information contained in transi-
tion segments plays an important role in human percep-
tion (Delattre ef al., 1955; Lindblom and Studdert-Ken-
nedy, 1967). Hence, it would seem that it would be a
good strategy for machine recognition systems to try to
utilize this transitional information to the maximum pos-
sible extent.

A simple and straightforward procedure for utilizing
the transitional information for speech recognition would
be to store sample transition segments in some parame-
terized form for all possible phoneme pairs (assuming
that context effects between immediate neighbors only
are important). One could then classify the input tran-
sition segment by comparing it, after time normaliza-
tion, with all stored transition segments using some
suitable distance measure. Such an approach, as used
by Dixon and Silverman (1977), would require prohibi-
tively large memory. A more economic and flexible
approach to utilize this transitional information for re-
cognition has been proposed by Thosar and Rao (1971,
1976). Their scheme utilizes interphoneme contextual
information contained in formant transitions and em-
ploys internal trial synthesis and feedback comparison
as a means for recognition. This synthesis-based re-
cognition scheme has been tried out on vowel-stop—vow-
el utterances and encouraging results are reported.
Cook (1976) and Klatt (1974) have also used a synthesis-
based strategy for word verification.
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The work presented in this paper is an extension to
Thosar and Rao’s work. Their synthesis-based recogni-
tion scheme with some modifications has been used here
to recognize continuous speech. The system, shown in
the form of a block diagram in Fig. 1, accomplishes
speech recognition in three stages: segmentation,
steady-state recognition, and synthesis-based recogni-
tion. The recognition system accepts unconstrained
continuous speech spoken in an ordinary office-room en-
vironment. The system as implemented here is trained
for a single male speaker.

For the purpose of training and testing the recognition
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FIG. 1. Block diagram of the recognition system.
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FIG. 2. Digital spectrogram of the speech utterance “ They
told wild tales ” with manual segmentation and labeling.

system, it is necessary to have correct segmentation
and labeling of speech utterances. This is done here
manually using the digital spectrograms of speech utter-
ances plotted by the computer on a line printer. Figure
2 shows the digital spectrogram of a speech utterance
“They told wild tales.” In this figure, the boundaries

of steady-state and transition segments are marked
manually and the steady-state segments are manually
labeled.

I. DATA ACQUISITION AND END-POINT DETECTION

All the speech utterances used in the present study are
recorded in an ordinary office room using an Akai GX-
365 tape recorder and an Altec-Lansing 681 A dynamic
microphone. The corpus chosen for evaluating the sys-
tem is a phonetically balanced set of 40 English sen-
tences.! These are spoken twice by a single male speak-
er whose mother tongue is Marathi (an Indian language
spoken in the western part of the country). The record-
ing is done in two different sessions separated by an in-
terval of one week. The first set of 40 spoken sentences
is used for training the recognition system, while the
second set is used for testing the system.

The recorded signal is fed through a high-fidelity vari-
able-gain amplifier to a fixed, passive lowpass filter
(with a cutoff frequency of 8000 Hz and an attenuation of
36 dB per octave) which is used as a de-aliasing filter.
The filtered signal is digitized using a sampling frequen-
cy of 20 kHz by means of a 12-bit analog-to-digital
(A/D) converter connected to the CDC-160A Computer
and stored on magnetic tape. For digitization, the quan-
tization step size of the A/D converter is set manually
by visually examining the audio signal amplitude of all
the recorded utterances on an oscilloscope and adjusting
the amplifier gain so that the full quantizer range is util-
ized without clipping.

In order to avoid the unnecessary processing of silence
intervals which precede and follow the actual speech ut-
terance, it is necessary to determine the endpoints of
each utterance. For this, the digitized signal is scanned
forward from the beginning of the recording interval and
backward from the end. Endpoint detection is accom-
plished by using an adaptive energy threshold (Rabiner
and Sambur, 1975).

Il. SEGMENTATION
For dividing the continuous speech signal into a se-

quence of phoneme sized acoustic segments, a recogni-
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tion-then-segmentation approach is employed. In this
approach, the speech signal is analyzed at the rate of
100 frames per second and each frame is independently
classified into a phonemic class. Segmentation is
achieved by noting a change in frame classification.
Reddy et al. (1973) and Dixon and Silverman (1976) clas-
sified every frame into 40 phonemic classes making a
straightforward implementation of a classification al-
gorithm. This, however, is quite expensive because the
distance measure has to be calculated for each of the 40
phonemic classes. Inthe present effort, these phonemes
are grouped into five broad categories: (1) vowel (VO:
/i, 1, /el, /=/, /a/, /a/, /3/, [o/, /U/, [uf);

(2) vowel-like (VL: /m/, /n/, /8/, /i/, /x/, /A/, /w/);
(3) voiced stop (VS: /b/, /&/, /d/, /g/); (4) unvoiced
stop [US: /p/, /t/, /k/, silence (denoted by SI)]; and (5)
fricative (FR: /1/, /6/, //, /s/, /I/, /2z/).* This
grouping of phonemes into fewer categories not only
saves computation time but also reduces frame classifi-
cation errors, thus leading to a smaller number of extra
phonetic boundaries detected by the segmenter in the
speech signal.

The following six parameters are selected for frame
classification: total energy, voice frequency energy
(80 to 300 Hz), low-frequency energy (300 to 1000 Hz),
mid-frequency energy (1000 to 3200 Hz), high-frequency
energy (3200 to 7000 Hz), and zero crossing rate.
These parameters are found to provide adequate discrim-
ination between the classes (Paliwal and Rao, 1977;
Paliwal, 1978). The parameters total energy and zero
crossing rate are measured for every frame directly
from the speech waveform, using a rectangular window
of 10 ms duration. The other four parameters are mea-
sured from the power spectrum. In order to compute
the power spectrum, the speech waveform is weighted
by a 12.2-ms Hamming window and then subjected to a
256-point discrete Fourier transformation using a radix-
2 fast Fourier transform (FFT) algorithm.

The six-dimensional pattern so obtained for each
frame is classified into one of the five classes using a
pattern classifier which needs: (1) a definition of a dis- _
tance measure and (2) reference patterns for each of -
the five classes in a six-dimensional parametric space.
In the present study, a weighted Euclidean distance mea-
sure is used and its value d; for the ith class is given by

di= g;[wn (X =mg )2, (1)

where N is the dimensionality of the space (here it is 6),
m;; and w,; are jth components of the mean vector and
the weight vector, respectively, of the ith class and X
is the jth component of the input pattern to be classified.
The class-conditional weights w,; associated with differ-
ent parameters are taken here to be proportional to the
standard deviations 0;; of the respective parameters
(Sebestyen, 1962). The input pattern X is classified in-
to category i if

d;<d,, @)
for all j#i.

wf

The reference patterns (mean vector and standard de-
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TABLE I. Confusion matrix for frame classification. (Frame TABLE HII. Confusion matrix for segment classification.
classification accuracy= 83, 9%.) (Segment classification accuracy =89, 9%.)
Classified Classified
Vo VL Vs Us FR Vo VL Vs uUs FR
Intended Intended
VO 79.9% 19.0%  0.6%  0.1%  0.4% vo 86.5% 13.0%  0.5%  0.0% 0.0%
VL 7.1%  87.29 5.7%  0.0% 0.0
VL 17.2%, 71. 9% 10.69% 0.19% 0.2%
Vs 0.0% 1.1%  96.6% 2.2% 0.0%
Vs 0.0% 3.8% 90.7% 4, 8%, 0. 7%
Us ; 0. 0% 0. 0% 3.1% 96. 9% 0. 0%
Us 0.0%  0.0% 3.2% 96.3%  0.5% sy 0.0 1.7%  0.9% s.29 92.2%
FR 0.3% 5. 0% 1.9% 7.6% 85. 29, 3 o ? ! ¢

viation vector) are computed for each class from data
in the training set as follows:

m, = Er' Z; Xin (3)
and
N,
=E,1_ i: (Xyn =m0, )2, (4)
B=1

where N, is the number of preclassified training pat-
terns in the ith class and X, ,, the jth component of the
kth training pattern of the ith class. The performance
of the frame classifier on the test set data is shown in
Table I in the form of a confusion matrix. The classif-
ier achieves a frame classification accuracy of 83.9%.
Most of the confusions that occur are between VO and
VL classes.

Once frame classification is completed for an entire
utterance, segmentation of this utterance is carried out
in two steps. In the first step, assuming the minimum
duration of each phonemic segment to be 30 ms, isolated
10-ms frames bearing labels which are different from
those of both their neighbors are taken to have been
wrongly classified and are corrected. In the second
step, contiguous frames with identical labels are group-
ed together to form individual acoustic segments and
segment boundaries are inserted where the labels of
two adjacent frames differ. In cases where two adjac-
ent phonemes belong to the same category (as /b/ and
/d/ in the word “robbed,” /a/ and /u/ in “house,” /r/
and /1/ in “girl”), segment boundaries are missed at

this stage. Such composite segments are detected on
the basis of their relatively long durations, divided into
two equal segments and treated independently.

The performance of the segmentation system is evalu-
ated by comparing the machine obtained segment bound-
aries with those obtained manually from digital spectro-
grams and is judged on the basis of two types of errors:
the missing segment error and the extra segment error.
When the system is used to segment the 40 test utter-
ances which have 971 manually derived segments, 52
segment boundaries are missed and 81 segment bound-
aries are wrongly inserted by the system. The segmen-
tation results thus show 5.4% missed segment error and
8.3% extra segment error. These results, summarized
in Table II, are comparable to those reported earlier in
the llterature (Goldberg, 1975; Schwartz and Makhoul,
1975; Baker, 1975; Dixon and Silverman, 1976, 19'?'7)

The performance of the system for classification of
segments into the five broad categories is given in the
form of a confusion matrix in Table III. Segment clas-
sification accuracy is found here to be 89.9%. Most of
the classification errors are due to confusion between
VO and VL categories. This is comparable to the seg-
ment classification accuracy of 88.6% reported by Dixon
and Silverman (1976) at the phoneme-class level (for
seven phoneme classes: silence, voiced stop, nasal,
aspiration, fricative, glide, vowel-like).

Il. STEADY-STATE RECOGNITION

The steady-state recognition system labels the acous-
tic segments on the basis of their steady-state proper-

TABLE II. Comparison of our results on segmentation with those reported by others.

Reference Missed segments Extra segments Other remarks
Goldberg (1975) 3. 7% 27.6% Tested on 1085 segments in 40 sentences
spoken by a single speaker.
Schwartz and Makhoul 5.1% 5.4% Tested on 473 segments in 15 sentences
(1975) spoken by five male speakers.
Baker (1975) 9.3% 17.6% Tested on 216 segments in five sentences
spoken by four male and one female speakers.
Dixon and Silverman 6. 9% 10, 5% Tested on 6175 segments in 8.5 min of
(1976) speech, spoken by a single speaker.
Dixon and Silverman 6,199 6.07% Tested on 1507 segments in 2 min of
(1977) speech, spoken by a single speaker.
Ours 5.4% 8.3% Tested on 971 segments in 40 sentences
spoken by a single speaker.
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ties into 31 phoneme classes. For this, nine parame-
ters are used. The first six parameters are the same
as those used for the frame classification process de-
scribed earlier. The remaining three parameters are
the frequencies of the first three formants for vocalic
sounds and energies in the ranges 3000 to 4200, 4200 to
5800, and 5800 to 7000 Hz for nonvocalic sounds. These
energies are computed directly from the power spectrum
evaluated already. Formant frequencies can be extract-
ed from the power spectrum either by using an analysis-
by-synthesis procedure (Bell et al., 1961) or by means
of a peak-picking procedure. Since the analysis-by-syn-
thesis procedure is iterative in nature and needs too
much computation time, the peak-picking procedure is
used for extracting formants,

For peak-picking, the power spectrum has to be
smoothed. This has been done by using the selective
linear prediction technique (Makhoul, 1975) which gives
a better smoothed spectrum for formant extraction than
that obtained by using the cepstrum smoothing method
(Schafer and Rabiner, 1970). A portion of the power
spectrum from 0 to 3350 Hz is selected for smoothing
and the ten predictor coefficients are computed. The
smoothed spectrum in the selected range is obtained by
computing a 128-point discrete Fourier transform of
these predictor coefficients by using a pruned decima-
tion-in-time FFT algorithm (Skinner, 1976). The peaks
in the range 0 to 3200 Hz are picked and form the raw
data from which the formants can be extracted by using
an algorithm suggested by Markel (1973). The formant
trajectories so obtained are smoothed using a nonlinear
3-point median filter (Rabiner ef al., 1975) and a zero
phase 3-point Hanning filter (coefficients }, &, I).

The segmentation system described in the preceding
section partitions the continuous speech signal into a
sequence of phoneme-sized acoustic segments with each
segment classified as one of the five broad categories.
The acoustic segments not belonging to the vowel cate-
gory (i.e., consonant segments) are assumed not to con-
tain any transitions and treated here, for recognition
purposes, as steady-state segments. The acoustic seg-
ments belonging to the vowel category are assumed to
include steady-state and transition segments. These
are further segmented on the basis of transitions of the
second formant which, among the formants, has the
maximum variability and carries the highest functional
load. This is accomplished in two steps. First, only
the middle 20% of the segment is considered as the
steady-state segment and the average value of the sec-
ond formant frequency is computed over this segment.
The steady-state segment is then extended in both direc-
tions until the absolute deviation of the second formant
frequency from its average value exceeds 5% of the aver-
age. This algorithm works in most cases. However,
where the transition in the second formant is very small,
the entire vowel segment gets detected as the steady-
state segment. In such cases, 40% of the segment in the
middle is considered as the steady-state segment and
the remaining segments on both sides are labeled as
transitions.

The values of the nine parameters are averaged over
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each of the steady-state segments. The nine-dimension-
al vector so obtained is then classified into one of the
31 phoneme classes, using a weighted Euclidean dis-
tance classifier given by Egs. (1) and (2), by matching
it with only those phonemes which belong to the broad
category into which the segment has been already clas-
sified by the segmentation system, thus reducing the
time taken by the classifier. The reference patterns
(mean and standard deviation vectors) needed by the
weighted Euclidean distance classifier are computed
from the manually labeled steady-state segments of the
40 training utterances by using Eqs. (3) and (4).

The steady-state recognition system has been tried
out on the test set of 40 sentences. Table IV presents
the results obtained in the form of a confusion matrix.?
The system achieves phonemie transcription with 52,3%
accuracy. The recognition score increases to 72.6% if.
the first two choices are considered and to 82.0% if the
first three choices are included. These results com-
pare favorably with those reported in the literature.
Goldberg (1975), for instance, has reported (for 29
phoneme classes) a recognition accuracy of 28.7% in
the first choice, 44.4% in the first two choices, and
54.6% in the first three choices. Dixon and Silverman
(1977) have achieved a phoneme recognition accuracy
of 57.9% using only the steady-state properties of the
acoustic segments.

IV. SYNTHESIS-BASED RECOGNITION

The synthesis-based recognition system uses both
steady-state and transition segments for recognizing
continuous speech. The recognition procedure considers
a transition segment and the two steady-state segments
on either side of it at a time. The steady-state seg-
ments are tentatively recognized by the steady-state re-
cognizer and the M best phonemic choices are retained
along with their distance measures. The control com-
ponent passes the two lists of tentatively recognized
phonemes, each containing M elements, to a synthesiz-
er which in turn generates trial patterns representing
the transition segments for all the M? combinations pos-
sible for the phoneme pair. These synthesized transi-
tion segments are compared with the input transition
segment stored in the temporary store using a weighted
Euclidean distance measure and the results of this com-
parison are transferred to the control component. The
control component then combines the distances for the
two steady-state segments and the transition segment
and outputs a list of most likely phoneme pairs along
with their confidence measures,

Here, two points should be noted. First, the steady-
state recognizer not only contributes to the decision
measure used for final recognition, but also limits the
number of transition segments required to be synthesiz-
ed by the internal synthesizer. If the value of Mis 3 and
the total number of phonemes in the vocabulary is 30,
this reduction in number is by a factor of 100, Secondly,
since all the nine trial patterns generated internally are
compared with the input pattern, the system is capable
of providing the recognition output in the form of a list
of most probable phoneme pairs along with their good-
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ness measures. This leaves scope for a final choice to
be made in each case using higher level linguistic in-
formation.

Formant transitions are among the most important and
extensively studied context effects and known to play a
significant role in the human perception of stops (Delat-
tre ef al., 1955) and vowels (Lindblom and Studdert-Ken-
nedy, 1967). So the first three formant frequencies are
the only parameters used here to represent speech dur-
ing the transition segments and only consonant—vowel
(CV) and vowel—-consonant (VC) types of transition seg-
ments are used in the recognition process. Holmes
et al. (1964) and Rao and Thosar (1974) have studied
speech synthesis-by-rule using linear interpolation of
formants during transitions and found the resulting syn-
thetic speech to be highly intelligible., So for synthesiz-
ing the transition segments, the time variation of each
of the three formants is assumed here to be linear.

In order to generate the trial transition segments for
each phoneme pair, the synthesizer needs information
about the duration of the transition segment, the form-
ant-transition slopes and the formant frequencies at the
vowel end of the transition segment. The duration of
the synthesized transition segment is adjusted to be the
same as that of the input transition segment. The val-
ues of the formant transition slopes are taken from a
prestored table. (The procedure for computing the pre-
stored values of the formant transition slopes for all the
consonants occurring in all the vowel contexts is de-
scribed in the footnote.?) The formant frequencies at
the vowel end of the transition segment are adjusted to
be the same as those computed from the input speech
signal for the end frame of the steady-state vowel seg-
ment (i.e., the frame immediately next to the transition
segment). This ensures that variations in vowel form-
ants from utterance to utterance do not interfere in the
recognition process.

The procedure for synthesizing the trial transition
segments is illustrated in Fig. 3. The figure shows a
hypothetical spectrographic display (showing a formant
trajectory) of a CV utterance. Two vertical lines (at
t=f, and t=t,) divide the CV utterance into three seg-
ments: steady-state consonant segment (£<t,), transi-

STEADY-STATE |TRANSITION SEGMENT |STEADY-STATE

CONSONANT VOWEL

SEGMENT SEGMENT
I SR /%2, frer)
G ————::5‘? ® ® 8 0 8 8 8
z R e~
w = T
2 e
w o VT
x R i g
T8 // -~

-~ rd
e
h t2
TIME t ——>

FIG. 3. Illustration of how to synthesize the transition seg-
ments. Formant values computed from the input speech sig-

nal are shown by closed circles. Dashed lines show synthe-

sized transition segments.
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tion segment (t, </<t,), and steady-state vowel segment
(t=t,). The computed formant frequencies for the input
speech signal are shown here by closed circles. As-
sume that the M best phonemic choices given by the
steady-state recognizer are {C,, i=1,2, ..., M} for the
steady-state consonant segment and {V., i=1,2, ..., M}
for the steady-state vowel segment. The synthesizer
then has to synthesize M? trial transition segments for
M? combinations {(C,, V), i=1,2,...,M,j=1,2,... ,M}.
This is done by using the following linear equation

flj{t)=si.‘{t‘ t:)"'f:cx: tl = t“z! (5)

where f;,(f) is the formant frequency of the synthesized
transition segment for the combination (C;, V,) at time ¢,
s;; the formant-transition' slope taken from the pre-
stored table for the combination (C;, V), and f,., the
terminal formant frequency at the vowel end of the tran-
sition segment to be synthesized and is taken to be equal
to the formant frequency value computed from the input
speech signal for the first frame (i.e., at {=¢,) of the
steady-state vowel segment. The synthesized transition
segments for the M® combinations are shown in the fig-
ure by the dashed lines.

For comparing the synthesized trial transition seg-
ments with the input transition segment, the following
distance measure is defined

di= g (zl [W,‘(F“—f;,}]’), 6)

where d; is the distance of ith phoneme pair, N is the
duration of the transition segment, W, is the weight as-
sociated to kth formant, F,, and f}, are the frequencies
of the kth formant at the jth point of transition for input
transition segment, and the ith trial transition segment,
respectively. The weights W,, W, and W, associated
with the first three formants are fixed here to 0.42, 0.5,
and 0.08, respectively.

For final recognition using both steady-state and
transition segments, the distances for the two steady-
state segments and the transition segment are combined
into a distance d given by :

d=dg +W -dp+ds, (7)

where dg, and d, are the distances for initial and final
steady-state segments and d; is the distance for the
transition segment. Here, both steady-state distances
are given equal weights, but the transition distance is
weighted by a factor W with respect to the steady-state
distances. The weight W is fixed here to a value that
gives the best recognition results on the training set.
Before the steady-state and transition distances are
used in Eq. (7), they are normalized as follows: if M
is the number of choices given by the recognizer and d
represents the distance associated with the ith choice,
then the normalized distance d; associated with ith
choice is given by

d,=(M'd£/§;d}. ®)

The synthesis-based recognition system gives at its
output a sequence of recognized phoneme pairs. Thus a
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phoneme B in the phoneme sequence ABC is recognized
as Bl using the context effects between phonemes A and
B and as B2 using the context effects between B and C.
For evaluating the performance of the recognition sys-
tem, the phoneme B is considered to be recognized as
Bl or B2 depending on the distance measures associated
with them.

The system has been tried out on a test set of 40 utter-
ances. Using both steady-state and transition segments,
a recognition score of 62.0% is obtained in the first
choice, 72.0% in the first two choices, and 78.5% in
the first three choices. The recognition results are
shown in Table V in the form of a confusion matrix.

V. DISCUSSION

As mentioned earlier, the steady-state recognition
system recognizes 52.3% of the phonemes in the first
choice. The incorporation of transition segments in the
recognition system using the synthesis-based recogni-
tion approach improves the phoneme recognition score
from 52.3% to 62.0%.° This improvement in recognition
score is significant at the 99% confidence level (Wilks,
1949, p. 218) and points to the usefulness of transition
segments in phonemic recognition of continuous speech.
These results compare favorably with those reported by
Dixon and Silverman (1977) who obtained phoneme re-
cognition scores of 57.9% using only steady-state seg-
ments and 63.3% using both steady-state and transition
segments. The Dixon and Silverman system, it may be
noted, stores transition segments (sampled at seven
time instants) for all possible combinations of phoneme
pairs and uses the whole power spectrum to represent
these transition segments. The present system, on the
other hand, uses only CV and VC types of linearly syn-
thesized transition segments for matching with the input
transition segment and only the first three formants to
represent these transition segments.®

A major advantage of the present synthesis-based re-
cognition approach is that the acoustic variability in the
input speech signal which occurs from utterance to utter-
ance due to different articulation speeds and other fac-
tors is compensated here by the adaptive nature of the
synthesized transition segments (i.e., by taking the
formant frequencies at the vowel end of the synthesized
transition segment to be the same as those computed
from the input speech signal for the first frame of the
steady-state vowel segment). This makes the recogni-
tion system less prone to errors. Such compensation
for the acoustic variability cannot easily be provided
for in the stored transition segment approach (Dixon and
Silverman, 1977). Another advantage of synthesis-based
recognition approach is that it requires comparatively
less memory than the stored transition segment ap-
proach. The computational effort in synthesizing the
linear transition segments is very little; this is com-
parable to the computations involved in time normaliza-
tion of stored transition segments in the other approach.

V1. CONCLUSION
In this paper, a ph_onemic recognition system for con-
tinuous speech has been described. The system utilizes
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both steady-state and transition segments of the speech
signal for recognition. The acoustic information con-
tained in the transition segments is incorporated into
the system using a synthesis-based recognition ap-
proach. It has been shown that utilization of interphone-
mic contextual effects contained in formant transitions
improves the performance of the steady-state recogniz-
er considerably.

Though the recognition system as implemented here
utilizes context effects between immediate neighbors
only, it can, in principle, also incorporate context ef-
fects between nonadjacent phonemes. Since the synthe-
sis-based recognition approach offers an economic meth-
od of making use of transition segments, it is compara-
tively easy to train the system for a new speaker. The
present system depends heavily on the correct estima-
tion of formants within the transition segments. In or-
der to follow fast transitions faithfully, the formant ex-
traction method should be able to estimate the formant
frequencies correctly for small analysis intervals, A
pitch-asynchronous formant extraction method which
yields correct estimates of formant frequencies for
such small analysis intervals of voiced speech is under
development.
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'The 40 English sentences used in the present investigation
are taken from the lists 49, 50, 71, and 72 of the report
“IEEE recommended practice for speech quality measure-
ment,” IEEE Trans. Audio Electroacoust. AU-17, 225-246
(1969). 4

*In the present paper, phonemes /v/ (as in “vote™) and /3/ (as
in “azure”) are not considered because these do not oceur in
Indian languages. Most Indian speakers of English therefore
substitute these hy the phonemes /w/ (as in“will’” and /z/
(as in “z00"), respectively. Also, the phoneme /3/ (as in
“then”) is articulated as a stop and does not show any frica-
tivelike noise. This is therefore treated as a voiced stop.

*While reporting the recognition results on the basis of steady-
state information, some of the recognition systems reported
in the literature (Reddy, 1967; Dixon and Silverman, 1977)
group all the voiced stops into one class and all the unvoiced
stops into another class. This is done due to the availability
of very little steady-state information to diseriminate these
stops individually. In the present paper, we report the
steady-state recognition results for these stops ind ividually
(as shown in Table IV) because of two reasons. First, we do
not want to discard any acoustic information which may be
present in the steady-state segments due to the stop burst.
Second, even if this information is very'little, this would be
reflected by the distance measure associated with each phon-
emic choice given by the steady-state recognizer.

‘A question that arises is whether the data in the training set
itself can be used for deriving the formant-transition slopes
for synthesizing the trial transition segments. The training
set used being too small to have in it all the consonants in all
the vowel contexts, the synthesizer would then not be able to
generate trial transition segments for all the M? combinations
of phoneme pairs. It would be artificially forced to trim down
the list of M? combinations of phoneme pairs. This would
bias the recognition process, pushing recognition scores up-
wards if the texts for the training and test sets are the same
and causing the performance to deteriorate unduly if they
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are different. This problem is solved here by recording
once, all possible CV syllables in a carrier sentence “Shall
1 speak (CV) tomorrow?” and computing the values of for-
mant-transition slopes from them. (For the phoneme /9/,
VC syllables are used for computing the formant-transition
slopes. )

5If the sample (consisting of the data in the test set) is assumed
to be drawn from a binomial distribution, the 95% confidence
limits for the recognition score can be calculated from a for-
mula given by Wilks (1949, p. 200).
+3.1% using the steady-state segments and 62.0% + 3.0% using
both steady-state and transition segments.

5The usefulness of nonlinear time functions for synthesizing
the transition segments is under investigation. Preliminary
results indicate that using nonlinear transitions does not im-
prove the recognition performance appreciably.
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