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Protein structure determination has long been one of the most
challenging problems in molecular biology for the past
60 years. Here we present an ab initio protein tertiary-structure
prediction method assisted by predicted contact maps from
SPOT-Contact and predicted dihedral angles from SPIDER
3. These predicted properties were then fed to the crystallogra-
phy and NMR system (CNS) for restrained structure modeling.
The resulted structures are first evaluated by the potential
energy calculated by CNS, followed by dDFIRE energy function

for model selections. The method called SPOT-Fold has been
tested on 241 CASP targets between 67 and 670 amino acid
residues, 60 randomly selected globular proteins under
100 amino acids. The method has a comparable accuracy to
other contact-map-based modeling techniques. © 2019 Wiley
Periodicals, Inc.

DOI: 10.1002/jcc.26132

Introduction

Protein tertiary structures are the foundations for their diverse
functions. This was demonstrated by the first experimentally
solved protein structure of myoglobin, which provided a deep
mechanistic understanding to its function.[1] Protein structures
can be experimentally determined by a number of techniques
such as nuclear magnetic resonance,[2] X-ray crystallography,
and cryogenic electron microscopy.[3] However, the high cost of
experimental structure determination and the low cost of
whole-genome sequencing make it practically necessary to
model protein structures computationally.

Computational techniques for protein structure modeling are
assessed in the biennial Critical Assessment of Structure Predic-
tion (CASP) meeting,[4] in which computational scientists pre-
dict soon-to-be-solved protein structures in the summer,
followed by model assessment against the structures solved
experimentally afterward later in the year. The latest published
CASP results[5,6] indicate that the most reliable techniques mix,
match, and assemble known native structures either in whole
(template-based modeling) or in part (fragment assembly).[7–12]

“Ab initio” structure-prediction techniques are the methods
that attempt to predict protein structures without relying on
known structures (template or fragment). These fragment-free
techniques have the potential to model structures with unseen
folds. While some successes were made for small proteins,[13–15]

it remains challenging for proteins of moderate or large sizes
(>100 residues). Recently, highly accurate prediction of protein
contact maps can be made by integrating modern deep learn-
ing with evolutionary coupling techniques.[16–18] This led to the
development of several methods for ab initio structure predic-
tion restrained by predicted contacts.[19–21] The accuracy of
these methods is remarkably close to those of fragment-based
techniques for template-free modeling targets. Moreover, they

are computationally more efficient because fewer decoys are
required to capture near-native conformations.[19,21]

In this paper, we seek to further improve ab initio structure
prediction by following the same contact-restrained approach.
This work is built on our recent success in improving prediction
of secondary structure (SS), backbone torsion angles, and con-
tact maps by using two-dimensional long-short term memory
bidirectional neural networks (2D-LSTM-BRNN) and residual
convolution neural networks (ResNet).[16,18,22–24] We showed
that the software CNS[25,26] with the input of the distance and
angle restraints[27] derived from 1D backbone-structure and 2D
contact predictions can produce near-native structures. The
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performance of the method called SPOT-Fold is compared to
CoinFold using 227 recent CASP targets and other methods
using free modeling targets in CASP12 and CASP13.

Methodology

Test datasets

Three datasets were used to test our method of distance- and
angle-restrained protein structure prediction. One dataset is
based on 213 CASP targets (CASP-T213): 39 from CASP12,[6]

82 from CASP11,[28] and 92 from CASP10.[29] These targets were
chosen from those with native structures released, between
67 and 670 amino acid residues after randomly removing some
proteins of similar sizes to avoid biases toward a specific pro-
tein size. The whole protein sequence is employed even if it
contains multiple domains. We also randomly selected 60 non-
redundant small globular proteins with 80–100 amino acid resi-
dues from 1199 nonredundant test proteins collected
previously (SGP60).[23] In addition, we obtained 14 free model-
ing targets (CASP13-FM) and 14 template-based modeling hard
targets (CASP13-TBM-hard) from the most recent CASP13. These
are proteins with no or marginal similarity to known structures.

Contact map prediction

Protein contact maps were predicted by SPOT-Contact.[18] The
method employed an ensemble of hybrid ultra-deep ResNet
and 2D-LSTM BRNNs to capture both short and long-distance
interactions. A contact between two residues is defined by a
distance cut off of 8 Å between two Cβ atoms of amino acid
residues (Cα for Glycine).

SS, angles and torsion angles prediction

In SPOT-Fold protocol, SPIDER3[23,24] was utilized to predict SS,
three backbone dihedral angles rotated about the N-Cα bond
(ϕ), the Cα-C bond (ψ), and the Cαi-Cαi+1 bond (τ), and θ angle
between three neighboring Cα atoms. For comparison,
predicted SS was also converted to ϕ and ψ angle restraints.
This was done by using the average ϕ and ψ angles in different
secondary-structure states of proteins in SABmark database[30]

as described by Adhikari and Cheng[19,21] before. The results
with these torsion angles are labeled as SPOT-Fold(SS).

Tertiary structure construction

Here, we employed a CNS[25,31] version 1.3 modified by Adhikari
and Cheng[19,21] for contact-restrained protein-structure predic-
tion. As in CONFOLD[19,21] and CoinFold,[20] protein models
were built in two stages according to predicted distance and
torsion angle restraints. For distance restraints, we selected top
contact pairs with the highest prediction confidence. A list of
40 sets of contact pairs was obtained for top 0.1L, 0.2L, 0.3L, …
4.0L predictions with L, the length of the target protein. All
predicted contact pairs were converted to distance restraints
between the two Cβ atoms (Cα for glycine) of the two amino
residues. In addition to predicted contact pairs, predicted θ
angles between three neighboring Cα atoms were also
converted to distance restraints. On the other hand, all

predicted torsion angles (ϕ, ψ, and τ) are employed as torsion
angle restraints in CNS.[25,31] The distance restraining energy
was calculated by the default soft-square energy function
implemented in CNS.

In the first stage, 20 conformations were constructed for each
of the above-mentioned 40 sets of predicted contact pairs by
using the distance-geometry simulated annealing protocol in
CNS. These conformations were then evaluated according to
restraining energies in CNS. The top 5 of the 20 models were
selected. The predicted contact pairs that were not in contact
in the top 5 models were removed from the predicted contact-
pair list. All 40 sets of contact pairs were updated at this stage.
In the second stage, the distance-geometry simulated
annealing was performed again but with the updated list of
contact pairs and 20 models are built for each list. This led the
final 800 structural models (20 × 40).

Model selection and evaluation

The final 800 structures with all heavy atoms were ranked by the
dDFIRE energy function[32,33] for top 1 to top 5 models. dDFIRE is
a statistical energy function based on the distance-scaled finite
ideal-gas reference state that accounts for dipolar interactions.
Following CASP, we evaluated our models according to the
global distance test (GDT)[34] between the protein models and
the experimental structures. GDT score ranges from 0 to 1, with
0 for no structural similarity and 1 for the perfect match.

Comparsion with CoinFold models

Results of CoinFold predicted contact maps and model struc-
tures were obtained from its online server at http://raptorx.
uchicago.edu/ContactMap/.

Results

Effect of angle and distance-restraints on model accuracy

To illustrate the impact of different restraints on model accu-
racy, angles (ϕ and ψ) predicted from SS, angles (ϕ, ψ, θ, and τ)
(AG), and contact maps are used separately and in combination
to build protein models by the distance-geometry simulated
annealing module in CNS. The results for the CASP-T213 set are
shown in Table 1. It is clear that mostly random structures were
generated when only angle restraints were employed. Introduc-
ing predicted contact maps yield substantial improvement
(>250% increase) regardless if SS or angles were employed in
conjunction with contact maps. Using SPIDER3 predicted angles
provides a small (2%) but statistically significant improvement
in median GDT values (the p-value of a two-tailed T-test of a
significant level at 0.05 is 0.0051).

The small and visible improvement by using angle over that
by using SS can be further illustrated by the accuracy of model
structural fragments. Figure 1 shows the average of the best
root-mean-squared-distance (RMSD) value between a TOP5
model and actual native structure for the CASP-T213 set as a
function of the fragment size (4–12 residues). When coupled
with the same contact map, AG-based restraints yielded consis-
tently more accurate fragments than SS-based restraints
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regardless of the specific size of a fragment. As a comparison,
the result from CoinFold is also shown. Our method yields sub-
stantial improvement over CoinFold whether angles from SS or
AG were used in restraints with contact maps.

It is of interest to know how much improvement is due to
two separate stages. Stage 1 is construction of initial models
based on raw restraints whereas stage 2 is based on updated
restraints using the models generated from stage 1. As shown
in Table 2, both the TOP1 and the best in TOP5 GDT scores of
the CASP-T213 proteins are improved in the second stage,
when predicted contact maps are combined with either with
predicted SS or from predicted torsion angles. The larger Max,
Med, and Ave values indicate the better overall sampling of the
800 structures in the second stage. The improvement is 5% in
median GDT scores.

Model accuracy

Figure 2 shows the model accuracy for SGP60 as a function of
Neff, which is a measure of the number of effective homolo-
gous sequences from Hblits.[35,36] A higher Neff indicates higher

quality for evolution information and more accurate prediction
for contact maps and backbone angles.[18,22,23] Results shown
in Figure 3 indicate that higher Neff values lead to high-quality
models.

Model quality assessment and accuracy comparison

The dDFIRE energy function[32,33] is used to evaluate the models
and select the TOP1 and TOP5 predicted structures. As shown
in Table 3, compared to using the restraint energy calculated
from CNS, labeled as ResE, both TOP1 and TOP5 have improved
when using dDFIRE energy function. For example, TOP1 GDT
values of SPOT-Fold and SPOT-Fold(SS) have improved by 5%.
TOP5 values of SPOT-Fold and SPOT-Fold(SS) have improved
by 3%.

We submitted the proteins in the CASP-T213 set to CoinFold
within the RaptorX sever.[20,37] The GDT scores of the TOP1 and
the best in TOP5 structures for each protein are compared
between CoinFold and our method in Figures 3A and 3B,
respectively. Our method outperforms Coinfold on both the
TOP1 and the best in TOP5 structures because there are sub-
stantially more proteins with higher GDT scores for our method.
The average GDT scores of our TOP1 and the best in TOP
5 models are 0.436 and 0.457, respectively, which are 6–7%
improvement over 0.407 and 0.433 given by CoinFold.

To further examine the accuracy of our method, we com-
pared SPOT-Fold with CoinFold on the 28 targets from CASP13

Table 1. The GDT-scores of sampled conformations in the CASP-T213
set by using restraints from predicted SS, angles (AG), contact and
secondary (SPOT-Fold(SS)), and contact and angles (SPOT-Fold). The
columns 2–4 are the maximum, median, and average GDT scores of the
800 models built for each target in CASP-T213. The Top 1 is the GDT
score of the conformation with the lowest dDFIRE energy, and Top 5 is
the maximum GDT score among 5 lowest dDFIRE energy models. These
values are averaged over 213 targets.

Max Med Ave TOP1 TOP5

SS 0.1336 0.1199 0.1204 0.1219 0.1295
AG 0.1375 0.1218 0.1214 0.1266 0.1341
SPOT-Fold(SS) 0.4915 0.3184 0.3114 0.4356 0.4527
SPOT-Fold 0.4948 0.3236 0.3136 0.4364 0.4570

Figure 1. The average of the best root-mean-squared distance (RMSD)
between a top-5 model fragment and its native structure for the CASP-T213
set as a function of the size of fragments.

Table 2. The average GDT scores of TOP1 and the best GDT scores in
TOP5 models for the CASP-T213 set at two stages (1 and 2) of model
constructions, given by combining predicted contact maps (SPOT-Fold)
with predicted SSs or backbone angles.

Stage Max Med Ave TOP1 TOP5

SPOT-Fold 1 0.4873 0.3073 0.3018 0.4308 0.4525
2 0.4948 0.3236 0.3136 0.4364 0.4570

SPOT-Fold(SS) 1 0.4853 0.3031 0.3005 0.4262 0.4442
2 0.4915 0.3184 0.3114 0.4356 0.4527

Figure 2. The TOP1 GDT scores of SGP60 sets as a function of the number
of effective homologous sequences (Neff) for each protein.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library J. Comput. Chem. 2020, 41, 745–750 747

http://WWW.C-CHEM.ORG


in Table 4. The average GDT scores of our TOP1 and the best in
TOP 5 models are 2% and 6% higher than models from
CoinFold. A further analysis (Fig. 4) indicates that SPOT-Fold
improves over CoinFold significantly for CASP13-TMB-hard
(No. 15–28 in Table 4) and comparable for CASP13-FM
(No. 1–14 in Table 4).

We compared SPOT-Fold with other methods on the 17 FM
targets from CASP13, and listed the average Top1 TMscores
and GDT scores in Table 5. Our detailed results of every
domains are presented in Table 6.

Performance improvement is observed for the SGP60 set. As
shown in Figure 5, our method has 45 (75%) proteins with
higher GDT scores for the TOP1 model than CoilFold. The aver-
age GDT score of TOP1 models from the CoinFold server is
0.5456, compared to 0.6246 by our method. This is a 14.5%
improvement.

Illustrative examples

Figure 6 illustrates the model predicted (TOP1) for a target in
comparison with its corresponding experimental structures. 2i5fA
from SGP60 with 99 amino acids has a mixed helix and sheet
conformation. The GDT score of the TOP1 models is 0.7882.

Conclusions

In this paper, we presented a new method SPOT-Fold for
ab initio protein structure prediction. The model prediction is

Figure 3. Comparison of (A) Top 1 and (B) Top 5 GDT scores for
213 proteins given by CoilFold and by our method (SPOT-Fold).

Table 3. : The GDT-scores of the CASP-T213 set from CoinFold,
SPOT-Fold(SS) and SPOT-Fold. The TOP1 and TOP5 models are selected
based on the lowest CNS restraining energy (ResE) or dDFIRE energy
function in SPOT-Fold(SS) and SPOT-Fold.

SPOT-Fold(SS) SPOT-Fold

CoinFold ResE dDFIRE ResE dDFIRE

TOP1 0.4069 0.4144 0.4356 0.4155 0.4364
TOP5 0.4326 0.4474 0.4527 0.4457 0.4570

Table 4. TOP5 and TOP1 results predicted by SPOT-Fold and CoinFold
methods, averaged over 28 targets from CASP13.

Top1 Top5

No. Target ID SPOT-Fold CoinFold SPOT-Fold CoinFold

1 T0950 0.1564 0.2135 0.1820 0.2500
2 T0953s1 0.3576 0.3750 0.3646 0.3750
3 T0953s2 0.3105 0.2762 0.3105 0.2792
4 T0957s1 0.2341 0.2150 0.2771 0.2197
5 T0960 0.1257 0.1330 0.1257 0.1330
6 T0963 0.1168 0.1078 0.1195 0.1099
7 T0968s1 0.3276 0.5539 0.3491 0.5733
8 T0968s2 0.3596 0.4408 0.4232 0.4671
9 T0969 0.3870 0.1864 0.4216 0.2020
10 T0970 0.1366 0.1521 0.1495 0.1521
11 T0980s1 0.3087 0.3724 0.3087 0.3980
12 T0980s2 0.3468 0.3468 0.3468 0.3468
13 T1021s3 0.2336 0.2600 0.2827 0.2618
14 T1022s1 0.2444 0.2723 0.2701 0.2836
15 T0954 0.4525 0.3820 0.4525 0.3820
16 T0955 0.6524 0.5915 0.6585 0.6280
17 T0957s2 0.4045 0.5488 0.4602 0.5796
18 T0958 0.5982 0.5149 0.6250 0.5298
19 T0965 0.5667 0.5024 0.5952 0.5024
20 T0966 0.1852 0.1359 0.1893 0.1359
21 T0986s1 0.5730 0.5590 0.6292 0.5815
22 T0986s2 0.2583 0.4667 0.4617 0.4833
23 T1005 0.4224 0.2680 0.4303 0.2735
24 T1009 0.4359 0.2235 0.4648 0.2329
25 T1011 0.0867 0.3119 0.2438 0.3187
26 T01021s1 0.3607 0.3691 0.3809 0.3742
27 T01021s2 0.4499 0.2378 0.4936 0.2851
28 T01022s2 0.1835 0.1086 0.2272 0.1136

Average 0.3413 0.3338 0.3680 0.3469
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based on the distance-geometry simulated annealing module
in CNS and the two-stage protocol of CONFOLD.[19,21] The dis-
tance restraints were obtained from the contact maps predicted
by SPOT-Contact and angle restraints from dihedral angles
predicted by SPIDER3. The method performance was evaluated
by using CASP-T213, CASP13-FM, CASP13-TBM-hard and SGP60
sets according to the commonly used GDT scores. SPOT-Fold
models outperformed models from CoinFold online server of
the similar approach for free modeling. The method is
computationally efficient. For the smallest 67 and largest

670 amino-acid proteins in our dataset, CPU times are 38 and
248 h, respectively, to finish all the modeling by using a single
core of an Intel Xeon 2.2GHz processor.
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Figure 6. The crystal structure (left) and
the TOP1 models from SPOT-Fold (right)
of 2i5fA with GDT = 0.7882. [Color figure
can be viewed at wileyonlinelibrary.com]
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