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RNA secondary structure prediction using an
ensemble of two-dimensional deep neural
networks and transfer learning
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The majority of our human genome transcribes into noncoding RNAs with unknown struc-

tures and functions. Obtaining functional clues for noncoding RNAs requires accurate base-

pairing or secondary-structure prediction. However, the performance of such predictions by

current folding-based algorithms has been stagnated for more than a decade. Here, we

propose the use of deep contextual learning for base-pair prediction including those non-

canonical and non-nested (pseudoknot) base pairs stabilized by tertiary interactions. Since

only <250 nonredundant, high-resolution RNA structures are available for model training, we

utilize transfer learning from a model initially trained with a recent high-quality bpRNA

dataset of >10,000 nonredundant RNAs made available through comparative analysis.

The resulting method achieves large, statistically significant improvement in predicting all

base pairs, noncanonical and non-nested base pairs in particular. The proposed method

(SPOT-RNA), with a freely available server and standalone software, should be useful for

improving RNA structure modeling, sequence alignment, and functional annotations.
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RNA secondary structure is represented by a list of the
nucleotide bases paired by hydrogen bonding within its
nucleotide sequence. Stacking these base pairs forms the

scaffold driving the folding of RNA three-dimensional struc-
tures1. As a result, the knowledge of the RNA secondary structure
is essential for modeling RNA structures and understanding their
functional mechanisms. As such, many experimental methods
have been developed to infer paired bases by using one-
dimensional or multiple-dimensional probes, such as enzymes,
chemicals, mutations, and cross-linking techniques coupled with
next-generation sequencing2,3. However, precise base-pairing
information at the resolution of single base pairs still requires
high-resolution, three-dimensional RNA structures determined
by X-ray crystallography, nuclear magnetic resonance (NMR), or
cryogenic electron microscopy. With <0:01% of 14 million
noncoding RNAs collected in RNAcentral4 having experimentally
determined structures5, it is highly desirable to develop accurate
and cost-effective computational methods for direct prediction of
RNA secondary structure from sequence.

Current RNA secondary-structure prediction methods can be
classified into comparative sequence analysis and folding algo-
rithms with thermodynamic, statistical, or probabilistic scoring
schemes6. Comparative sequence analysis determines base pairs
conserved among homologous sequences. These methods are
highly accurate7 if a large number of homologous sequences are
available and those sequences are manually aligned with expert
knowledge. However, only a few thousand RNA families are
known in Rfam8. As a result, the most commonly used approach
for RNA secondary-structure prediction is to fold a single RNA
sequence according to an appropriate scoring function. In this
approach, RNA structure is divided into substructures such as
loops and stems according to the nearest-neighbor model9.
Dynamic programming algorithms are then employed for locat-
ing the global minimum or probabilistic structures from these
substructures. The scoring parameters of each substructure can be
obtained experimentally10 (e.g., RNAfold11, RNAstructure12, and
RNAshapes13) or by machine learning (e.g., CONTRAfold14,
CentroidFold15, and ContextFold16). However, the overall
precision (the fraction of correctly predicted base pairs in all
predicted base pairs) appears to have reached a “performance
ceiling”6 at about 80%17,18. This is in part because all existing
methods ignore some or all base pairs that result from tertiary
interactions19. These base pairs include lone (unstacked), pseu-
doknotted (non-nested), and noncanonical (not A–U, G–C, and
G–U) base pairs as well as triplet interactions19,20. While some
methods can predict RNA secondary structures with pseudoknots
(e.g., pknotsRG21, Probknot22, IPknot23, and Knotty24) and
others can predict noncanonical base pairs (e.g., MC-Fold25, MC-
Fold-DP26, and CycleFold27), none of them can provide a com-
putational prediction for both, not to mention lone base pairs and
base triplets.

The work presented in this paper is inspired by a recent
advancement in the direct prediction of protein contact maps from
protein sequences by Raptor-X28 and SPOT-Contact29 with deep-
learning neural network algorithms such as Residual Networks
(ResNets)30 and two-dimensional Bidirectional Long Short-Term
Memory cells (2D-BLSTMs)31,32. SPOT-Contact treats the entire
protein “image” as context and used an ensemble of ultra-deep
hybrid networks of ResNets coupled with 2D-BLSTMs for pre-
diction. ResNets can capture contextual information from the
whole sequence “image” at each layer and map the complex rela-
tionship between input and output. Also, 2D-BLSTMs proved very
effective in propagating long-range sequence dependencies in
protein structure prediction29 because of the ability of LSTM cells
to remember the structural relationship between the residues that
are far from each other in their sequence positions during training.

Similar to protein contact map, a RNA secondary structure is a
two-dimensional contact matrix, although its contacts are defined
differently (hydrogen bonds for RNA base pairs and distance cutoff
for protein contacts, respectively). However, unlike proteins, the
small number of nonredundant RNA structures available in the
Protein Data Bank (PDB)5 makes deep-learning methods unsui-
table for direct single-sequence-based prediction of RNA secondary
structure. As a result, machine-learning techniques are rarely
utilized. To our knowledge, the only example is mxfold33 that
employs a small-scale machine-learning algorithm (structured
support vector machines) for RNA secondary-structure prediction.
Its performance after combining with a thermodynamic model
makes some improvement over folding-based techniques. How-
ever, mxfold is limited to canonical base pairs without accounting
for pseudoknots.

Recently, a large database of more than 100,000 RNA
sequences (bpRNA34) with automated annotation of secondary
structure was released. While this database is large enough for us
to employ deep-learning techniques, the annotated secondary
structures from the comparative analysis may not be reliable at
the single base-pair level. To overcome this limitation, we first
employed bpRNA to train an ensemble of ResNets and LSTM
networks, similar to the ensemble used by us for protein contact
map prediction by SPOT-Contact29. We then further trained the
large model with a small database of precise base pairs derived
from high-resolution RNA structures. This transfer-learning
technique35 is used successfully by us for identifying molecular
recognition features in intrinsically disordered regions of pro-
teins36. The resulting method, called SPOT-RNA, is a deep-
learning technique for predicting all bases paired, regardless if
they are associated with tertiary interactions. The new method
provides more than 53%, 47%, and 10% improvement in F1 score
for non-nested, noncanonical, and all base pairs, respectively,
over the next-best method, compared with an independent test
set of 62 high-resolution RNA structures by X-ray crystal-
lography. The performance of SPOT-RNA is further confirmed
by a separate test set of 39 RNA structures determined by NMR
and 6 recently released nonredundant RNAs in PDB.

Results
Initial training by bpRNA. We trained our models of ResNets
and LSTM networks by building a nonredundant set of RNA
sequences with annotated secondary structure from bpRNA34 at
80% sequence-identity cutoff, which is the lowest sequence-identity
cutoff allowed by the program CD-HIT-EST37 and has been
employed previously by many studies for the same purpose38,39.
This dataset of 13,419 RNAs after excluding those >80% sequence
identities was further randomly divided into 10,814 RNAs for
training (TR0), 1300 for validation (VL0), and 1,305 for an inde-
pendent test (TS0). By using TR0 for training, VL0 for validation,
and the single sequence (a one-hot vector of Lx4) as the only input,
we trained many two-dimensional deep-learning models with
various combinations in the numbers and sizes of ResNets,
BLSTM, and FC layers with a layout shown in Fig. 1. The per-
formance of an ensemble of the best 5 models (validated by VL0
only) on VL0 and TS0 is shown in Table 1. Essentially the same
performance with Matthews correlation coefficient (MCC) at 0.632
for VL0 and 0.629 for TS0 suggests the robustness of the ensemble
trained. The F1 scores, the harmonic mean of precision, and sen-
sitivity are also essentially the same between validation and test
(0.629 vs. 0.626). Supplementary Table 1 further compared the
performance of individual models to the ensemble. The MCC
improves by 2% from 0.617 (the best single model) to 0.629 in TS0,
confirming the usefulness of an ensemble to eliminate random
prediction errors in individual models.
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Transfer learning with RNA structures. The models obtained
from the bpRNA dataset were transferred to further train on base
pairs derived from high-resolution nonredundant RNA structures
with TR1 (training set), VL1 (validation set), and TS1 (test set)
having 120, 30, and 67 RNAs, respectively. The TS1 set is inde-
pendent of the training data (TR0 and TR1) as it was obtained by
first filtering through CD-HIT-EST at the lowest allowed
sequence-identity cutoff (80%). To further remove potential
homologies, we utilized BLAST-N40 against the training data
(TR0 and TR1) with an e-value cutoff of 10. To examine
the consistency of the models built, we performed 5-fold cross-
validation by combining TR1 and VL1 datasets. The results of
cross-validation on training data (TR1+VL1) and unseen TS1 for
the ensemble of the same top 5 models are shown in Table 1. The
minor fluctuations on 5-fold with MCC of 0.701 ± 0.02 and F1 of

0.690 ± 0.02 and small difference between 5-fold cross-validation
and test set TS1 (0.701 vs. 0.690 for MCC) indicate the robustness
of the models trained for the unseen data. Table 1 also shows that
the direct application of the model trained by bpRNA leads to a
reasonable but inferior performance on TS1 compared with the
model after transfer learning. The improvement in MCC is 6%
before (0.650) and after (0.690) transfer learning on TS1. Sup-
plementary Tables 2 and 3 compare the result of the ensemble of
models and five individual models for five-fold cross-validation
(TR1+VL1) and independent test set (TS1), respectively. Sig-
nificant improvement of the ensemble over the best single model
is observed with 3% improvement in MCC for cross-validation
and independent tests.

Comparison between transfer learning and direct learning. To
demonstrate the usefulness of transfer learning, we also perform
the direct training of the 5 models with the same ensemble net-
work architecture and hyperparameters (the number of layers, the
depth of layers, the kernel size, the dilation factor, and the
learning rate) on the structured RNA train set (TR1) and vali-
dated by VL1 and tested by TS1. The performance of the
ensemble of five models by direct learning on VL1 and TS1 is
shown in Table 1. Similar performance between validation and
test with MCC= 0.583, 0.571, respectively, confirms the robust-
ness of direct learning. However, this performance is substantially
lower than that of transfer learning (21% reduction of the MCC
value and 30% reduction in F1 score). This confirms the difficulty
of direct learning with a small training dataset of TR1 and the
need for using a large dataset (bpRNA) that can effectively utilize
capabilities of deep-learning networks. Supplementary Table 4
further compared the performance of individual models with the
ensemble by direct learning on TR1. Figure 2a compares the
precision-recall (PR) curves given by initial training (SPOT-
RNA-IT), direct training (SPOT-RNA-DT), and transfer learning
(SPOT-RNA) on the independent test set TS1. The results are
from a reduced TS1 (62 RNAs rather than 67) because some
other methods shown in the same figure do not predict secondary
structure for sequences with missing or invalid bases. Interest-
ingly, direct training starts with 100% precision at very low
sensitivity (recall), whereas both initial training and transfer
learning have high but <100% precision at the lowest achievable
sensitivities for the highest possible threshold that separates
positive from negative prediction. This suggests that the existence
of false positives in bpRNA “contaminated” the initial training.
Nevertheless, the transfer learning achieves a respectable 93.2%
precision at 50% recall. This indicates that the fraction of
potential false positives in bpRNA is small.

Comparison with other secondary-structure predictors.
Figure 2a further compares precision/recall curves given by our
transfer-learning ensemble model with 12 other available RNA

Table 1 Performance of SPOT-RNA on validation and test set after initial training, transfer learning, and direct training.

Method Training set Analysis set MCCa F1b Precision Sensitivity

Initial training TR0 VL0 0.632 0.629 0.712 0.563
TR0 TS0 0.629 0.626 0.709 0.560
TR0 TS1 0.650 0.630 0.897 0.485

Transfer learning TR1+VL1 TR1+VL1 0.701 (0.02c) 0.690 (0.02c) 0.853 (0.02c) 0.580 (0.03c)
TR1+VL1 TS1 0.690 (0.02c) 0.687 (0.01c) 0.888 (0.02c) 0.562 (0.02c)

Direct training TR1 VL1 0.583 0.546 0.854 0.401
TR1 TS1 0.571 0.527 0.870 0.378

aMatthews correlation coefficient
bHarmonic mean of precision and sensitivity
cStandard deviation based on five-fold cross-validation
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Fig. 1 Generalized model architecture of SPOT-RNA. The network layout of
the SPOT-RNA, where L is the sequence length of a target RNA, Act.
indicates the activation function, Norm. indicates the normalization
function, and PreT indicates the pretrained (initial trained) models trained
on the bpRNA dataset.
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secondary-structure predictors on independent test set TS1. Two
predictors (CONTRAfold and CentroidFold) with probabilistic
outputs are also represented by the PR curves with the remaining
shown as a singular point. The performance of most existing
methods is clustered around the sensitivity of 50% and precision
of 67–83% (Table 2). By comparison, our method SPOT-RNA
improves by 9% in MCC and more than 10% in F1 score over the
next-best mxfold.

The results presented in Fig. 2a are the overall performance at
the base-pair level. Figure 2b shows the distribution of the
F1 score among individual RNAs in terms of median, 25th, and
75th percentiles. SPOT-RNA has the highest median F1 score
along with the highest F1 score (0.348) for the worst-performing
RNA, compared with nearly 0 for all other methods. This
highlights the highly stable performance of SPOT-RNA, relative
to all other folding-based techniques, including mxfold, which
mixes thermodynamic and machine-learning models. The
difference between SPOT-RNA and the next-best mxfold on
TS1 is statistically significant with P value < 0.006 obtained
through a paired t test. Also, we calculated the ensemble defect
(see the “Methods” section) from the predicted base-pair
probabilities for SPOT-RNA, CONTRAfold, and CentroidFold
on TS1. The ensemble defect metric describes the deviation of
probabilistic structural ensembles from their corresponding
native RNA secondary structure, where 0 represents a perfect
prediction. The ensemble defect for SPOT-RNA was 0.19 as
compared with 0.24 and 0.25 for CONTRAfold and Centroid-
Fold, respectively, showing that the structural ensemble
predicted by SPOT-RNA is more similar to target structures
in comparison with the other two predictors.

Our method was trained for RNAs with a maximum length of
500 nucleotides, due to hardware limitations. It is of interest to
determine how our method performs in terms of size depen-
dence. As the maximum sequence length in TS1 was 189,
therefore, we added 32 RNAs of sequence length from 298 to
1500 to TS1 by relaxing the resolution requirement to 4Å and
including RNA chains complexed with other RNAs (but ignored
inter-RNA base pairs). The reason for relaxing the resolution to
4Å and including RNA chains complexed with other RNAs
because there were not many high-resolution and single-chain
long RNAs in PDB. Supplementary Fig. 1 compares the F1 score
of each RNA given by SPOT-RNA with that from the next-best

mxfold as a function of the length of RNAs. There is a trend of
lower performance for a longer RNA chain for both methods as
expected. SPOT-RNA consistently outperforms mxfold within
500 nucleotides that our method was trained on. Supplementary
Fig. 1 also shows that mxfold performs better with an average of
F1 score at 0.50, compared with 0.35 by SPOT-RNA on 21 long
RNAs (L > 1000). We found that the poor performance of SPOT-
RNA is mainly because of the failure of SPOT-RNA to capture
ultra long-distance pairs with sequence separation >300. This
failure is caused by the limited long RNA data in training. By
comparison, the thermodynamic algorithm in mxfold can locate
the global minimum regardless of the distance between sequence
positions of the base pairs.

The above comparison may be biased toward our method
because almost all other methods compared can only predict
canonical base pairs, which include Watson–Crick (A–U and
G–C) pairs and Wobble pairs (G–U). To address this potential
bias, Table 2 further compares the performance of SPOT-RNA
with others on canonical pairs, Watson–Crick pairs (A–U and
G–C pairs), and Wobble pairs (G–U), separately on TS1. Indeed,
all methods have a performance boost when noncanonical pairs
are excluded from performance measurement. SPOT-RNA
continues to have the best performance with 6% improvement
in F1 score for canonical pairs and Watson–Crick pairs over the
next-best mxfold and 7% improvement for Wobble pairs over the
next-best ContextFold. mxfold does not perform as well in
predicting Wobble pairs and is only the fourth best.

Base pairs associated with pseudoknots are challenging for both
folding-based and machine-learning-based approaches because
they are often associated with tertiary interactions that are
difficult to predict. To make a direct comparison in the capability
of predicting base pairs in pseudoknots, we define pseudoknot
pairs as the minimum number of base pairs that can be removed
to result in a pseudoknot-free secondary structure. The program
bpRNA34 (available at https://github.com/hendrixlab/bpRNA)
was used to obtain base pairs in pseudoknots from both native
and predicted secondary structures. Table 3 compares the
performance of SPOT-RNA with all 12 other methods regardless
if they can handle pseudoknots or not for those 40 RNAs with at
least one pseudoknot in the independent test TS1. As none of the
other methods predict multiplets, we ignore the base pairs
associated with the multiplets in the analysis. mxfold remains the
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Fig. 2 Performance comparison of SPOT-RNA with 12 other predictors by using PR curve and boxplot on the test set TS1. a Precision-recall curves on the
independent test set TS1 by initial training (SPOT-RNA-IT, the green dashed line), direct training (SPOT-RNA-DT, the blue dot-dashed line), and transfer
learning (SPOT-RNA, the solid magenta line). Precision and sensitivity results from ten currently used predictors are also shown as labeled with open
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were also shown as curves (Gold and Black) because their methods provide predicted probabilities. b Distribution of F1 score for individual RNAs on the
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second best behind SPOT-RNA although it is unable to predict
pseudoknots, due to the number of base pairs in pseudoknots
accounting for only 10% of all base pairs (see Supplementary
Table 7). Table 3 shows that all methods perform poorly with
F1 score < 0.3 for base pairs associated with pseudoknots. Despite
the challenging nature of this problem, SPOT-RNA makes a
substantial improvement over the next-best (pkiss) by 52% in
F1 score.

Noncanonical pairs, triplets, and lone base pairs are also
associated with tertiary interactions other than pseudoknots.
Here, lone base pairs refer to a single base pair without
neighboring base pairs (i.e., [i, j] in the absence of [i− 1, j+ 1]
and [i+ 1, j− 1]). Triplets refer to the rare occasion of one base
forming base pairs with two other bases. As shown in
Supplementary Table 5, SPOT-RNA makes a 47% improvement
in F1 score for predicting noncanonical base pairs over CycleFold.
Although the sensitivity of prediction given by SPOT-RNA is low
(15.4%), the precision is high at 73.2%. Very low performance for
triplets and lone pairs (F1 score < 0.2) is observed.

Secondary structure of RNAs is characterized by structural
motifs in their layout. For each native or predicted secondary
structure, the secondary-structure motif was classified by
program bpRNA34. The performance in predicting bases in
different secondary structural motifs by different methods is
shown in Table 4. According to the F1 score, SPOT-RNA makes
the best prediction in stem base pairs (6% improvement over the
next best), hairpin loop nucleotide (8% improvement), and bulge
nucleotide (11% improvement), although it performs slightly
worse than CONTRAfold in multiloop (by 2%). mxfold is best for
internal loop prediction over the second-best predictor Knotty by
18%. To demonstrate the SPOT-RNA’s ability to predict tertiary
interactions along with canonical base pairs, Supplementary
Figs. 2 and 3 show two examples (riboswitch41 and t-RNA42)
from TS1 with one high performance and one average
performance, respectively. For both the examples, SPOT-RNA
is able to predict noncanonical base pairs (in green), pseudoknot
base pairs, and lone pair (in blue), while mxfold and IPknot
remain unsuccessful to predict noncanonical and pseudoknot
base pairs.

To further confirm the performance of SPOT-RNA, we
compiled another test set (TS2) with 39 RNA structures solved
by NMR. As with TS1, TS2 was made nonredundant to our
training data by using CD-HIT-EST and BLAST-N. Figure 3a
compares precision-recall curves given by SPOT-RNA with 12
other RNA secondary-structure predictors on the test set TS2.
SPOT-RNA outperformed all other predictors on this test set
(Supplementary Table 6). Furthermore, Fig. 3b shows the
distribution of the F1 score among individual RNAs in terms of
median, 25th, and 75th percentiles. SPOT-RNA achieved the
highest median F1 score with the least fluctuation although the
difference between SPOT-RNA and the next-best (Knotty this
time) on individual RNAs (shown in Supplementary Fig. 4) is not
significant with P value < 0.16 obtained through a paired t test.
Ensemble defect on TS2 is the smallest by SPOT-RNA (0.14 for
SPOT-RNA as compared with 0.18 and 0.19 by CentroidFold and
CONTRAfold, respectively). Here, we did not compare the
performance in pseudoknots because the number of base pairs in
pseudoknots (a total of 21) in this dataset is too small to make
statistically meaningful comparison.

In addition, we found a total of 6 RNAs with recently solved
structures (after March 9, 2019) that are not redundant according
to CD-HIT-EST and BLAST-N to our training sets (TR0 and
TR1) and test sets (TS1 and TS2). The prediction for a synthetic
construct RNA (released on 26 June 2019, chain H in PDB ID
6dvk)43 was compared with the native structure in Fig. 4a. For
this synthetic RNA, SPOT-RNA yields a structural topology veryT
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similar to the native secondary structure with F1 score of 0.85,
precision of 97%, and sensitivity of 77%. In particular, SPOT-
RNA captures one noncanonical base pair between G46 and A49
correctly but missed others in pseudoknots. The SPOT-RNA
predictions of Glutamine II Riboswitch (chain A in PDB ID 6qn3,
released on June 12, 2019)44 and Synthetic Construct Hatchet
Ribozyme (chain U in PDB ID 6jq6, released on June 12, 2019)45

are compared with their respective native secondary structure
in Fig. 4b, c, respectively. For these two RNAs, experimental
evidence suggests strand swapping in dimerization44,45. Thus,
their monomeric native structures are obtained by replacing the
swapped stand by its original stand. SPOT-RNA is able to predict
both the stems and pseudoknot (in Blue) with an overall F1 score
of 0.90 for Glutamine II Riboswitch. For Hatchet Ribozyme,
SPOT-RNA is able to predict native-like structure with F1 score
of 0.74 although it has missed noncanonical and pseudoknot base
pairs.

Three other RNAs are Pistol Ribozyme (chain A and B in PDB
ID 6r47, released on July 3, 2019)46, Mango Aptamer (chain B in
PDB ID 6e8u, released on April 17, 2019)47, and Adenovirus
Virus-associated RNA (chain C in PDB ID 6ol3, released on July
3, 2019)48. SPOT-RNA achieves F1 score of 0.57, 0.41, and 0.63
on Pistol Ribozyme, Mango Aptamer, and adenovirus virus-
associated RNA, respectively. For this level of performance, it is
more illustrative to show a one-dimensional representation of
RNA secondary structure (Fig. 5a–c). The figures show that the
relatively poor performance of Pistol Ribozyme and Mango
Aptamer RNAs is in part due to the uncommon existence of
a large number of noncanonical base pairs (in Green).
For adenovirus virus-associated RNA (VA-I), SPOT-RNA’s
prediction is poor. It contains three false-positive stems with
falsely predicted pseudoknots (Fig. 5c).

Performance comparison on these 6 RNAs with 12 other
secondary-structure predictors is shown in Fig. 6. SPOT-RNA
outperforms all other predictors on Synthetic Construct RNA
(Fig. 6a), Glutamine II Riboswitch (Fig. 6b), and Pistol Ribozyme
(Fig. 6c). It is the co-first (same as mxfold) in Mango Aptamer
(Fig. 6e) and the second best (behind mxfold only) in Hatchet
Ribozyme (Fig. 6d). However, it did not do well on adenovirus
virus-associated RNA (Fig. 6f), which was part of RNA puzzle-
2017, when compared with other methods. This poor prediction
compared with other methods is likely because this densely
contacted, base-pairing network without pseudoknots (except
those due to noncanonical base pairs) is most suitable for

folding-based algorithms that maximize the number of stacked
canonical base pairs.

Discussion
This work developed RNA secondary-structure prediction
method purely based on deep neural network learning from a
single RNA sequence. Because only a small number of high-
resolution RNA structures are available, deep-learning models
have to be first trained by using a large database of RNA sec-
ondary structures (bpRNA) annotated according to comparative
analysis, followed by transfer learning to the precise secondary
structures derived from 3D structures. Although the slightly noisy
data in bpRNA lead to an upbound around 96% for the precision
(Fig. 2a), the model generated from transfer learning yields a
substantial improvement (30% in F1 score) over the model based
on direct learning TS1. Without the need for folding-based
optimization, the transfer-learning model yields a method that
can predict not only canonical base pairs but also those base pairs
often associated with tertiary interactions, including pseudoknots,
lone, and noncanonical base pairs. By comparing with 12 current
secondary-structure prediction techniques by using the inde-
pendent test of 62 high-resolution X-ray structures of RNAs, the
method (SPOT-RNA) achieved 93% in precision, which is a 13%
improvement over the second-best method mxfold when the
sensitivity for SPOT-RNA is set to 50.8% as in mxfold.

One advantage of a pure machine-learning approach is that all
base pairs can be trained and predicted, regardless if it is asso-
ciated with local or nonlocal (tertiary) interactions. By compar-
ison, a folding-based method has to have accurate energetic
parameters to capture noncanonical base pairs and sophisticated
algorithms for a global minimum search to account for pseu-
doknots. SPOT-RNA represents a significant advancement in
predicting noncanonical base pairs. Its F1 score improves over
CycleFold by 47% from 17% to 26% although both methods have
a low sensitivity at about 16% (Supplementary Table 5). SPOT-
RNA can also achieve the best prediction of base pairs in pseu-
doknots although the performance of all methods remains low
with an F1 score of 0.239 for SPOT-RNA and 0.157 for the next-
best (pkiss, Table 3). This is mainly because the number of base
pairs in pseudoknots is low in the structural datasets (an average
of 3–4 base pairs per pseudoknot RNA in TS1, see Supplementary
Table 7). Moreover, a long stem of many stacked base pairs is
easier to learn and predict than a few nonlocal base pairs in
pseudoknot. As a reference for future method development, we

Table 3 Performance of all the predictors on 40 pseudoknot RNAs in the test set TS1.

All Base Pairs Base Pairs in Pseudoknots Base Pair not in Pseudoknots

MCCa F1b Precision Sensitivity F1b Precision Sensitivity F1b Precision Sensitivity

SPOT-RNA 0.769 0.764 0.875 0.679 0.239 0.550 0.153 0.797 0.872 0.734
mxfold 0.687 0.682 0.797 0.595 0.000 0.000 0.000 0.714 0.780 0.659
ContextFold 0.686 0.680 0.797 0.594 0.000 0.000 0.000 0.714 0.781 0.658
CONTRAfold 0.659 0.658 0.735 0.595 0.000 0.000 0.000 0.688 0.719 0.659
Knotty 0.678 0.678 0.740 0.625 0.108 0.134 0.090 0.707 0.761 0.660
IPknot 0.638 0.629 0.769 0.533 0.131 0.458 0.076 0.664 0.768 0.585
RNAfold 0.605 0.606 0.666 0.555 0.000 0.000 0.000 0.646 0.666 0.628
ProbKnot 0.610 0.611 0.669 0.562 0.118 0.256 0.076 0.632 0.663 0.603
CentroidFold 0.616 0.616 0.682 0.562 0.000 0.000 0.000 0.644 0.668 0.621
RNAstructure 0.585 0.584 0.650 0.531 0.000 0.000 0.000 0.621 0.647 0.598
RNAshapes 0.569 0.568 0.639 0.512 0.000 0.000 0.000 0.591 0.622 0.563
pkiss 0.564 0.565 0.619 0.520 0.157 0.180 0.139 0.566 0.616 0.523
CycleFold 0.455 0.458 0.423 0.499 0.000 0.000 0.000 0.482 0.422 0.563

aMatthews correlation coefficient
bHarmonic mean of precision and sensitivity
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also examined the ability of SPOT-RNA to capture triple inter-
actions: one base paired with two other bases. Both precision and
sensitivity are low (12% and 7%, respectively, Supplementary
Table 5). This is mainly because there is a lack of data on base
triples in bpRNA for pretraining and the number of both triplets
and quartets is only 1194 in the structural training set TR1.

To further confirm the performance, SPOT-RNA was applied
to 39 RNA structures determined by NMR (TS2). Unlike X-ray
structures, structures determined by NMRs resulted from mini-
mization of experimental distance-based constraints. These 39
NMR structures, smaller with average length of 51 nucleotides,
have only a total of 21 base pairs in pseudoknots. As a result, they
are much easier to predict for all methods (MCC < 0.7 except
SPOT-RNA for TS1 but >0.74 for most methods in TS2). Despite
of this, SPOT-RNA continues to have the best performance
(Fig. 3, Supplementary Table 6, and Supplementary Fig. 4) as
compared with other 12 predictors. Furthermore, the perfor-
mance of SPOT-RNA was tested on 6 recently released non-
redundant (to TR0 and TR1) RNAs in PDB. SPOT-RNA
performs the best or the same as the best in 4 and the second best
in 1 of the 6 RNAs (Fig. 6).

One limitation of SPOT-RNA is that it was trained by RNAs
shorter than 500 nucleotides due to our hardware limitation.
Within 500 nucleotides, SPOT-RNA provides a consistent
improvement over existing techniques (Supplementary Fig. 1).
However, for really long RNA chains (>1000), a purely machine-
learning-based technique is not as accurate as some of the
folding-algorithm-based methods such as mxfold as shown in
Supplementary Fig. 1. The lack of training for long RNAs is the
main reason. Currently, even if there is no hardware limitation,
the number of high-resolution RNA structures with >500
nucleotides in PDB structures are too few to provide adequate
training. Thus, at this stage, SPOT-RNA is most suitable for RNA
length of <500.

In addition to prediction accuracy, high computational effi-
ciency is necessary for RNA secondary-structure prediction
because genome-scale studies are often needed. We found that the
CPU time for predicting all 62 RNAs in the test set TS1 on a
single thread of 32-core Intel Xenon(R) E5-2630v4 CPU is 540 s,
which is faster than Knotty (2800 s) but slower than IPknot (1.2
s), ProbKnot (13 s), and pkiss (112 s). However, our distributed
version can be easily run on multiple CPU threads or on GPUs.
For example, by running SPOT-RNA on a single Nvidia GTX
TITAN X GPU, the computation time for predicting all 62 RNAs
would be reduced to 39 s. Thus, SPOT-RNA can feasibly be used
for genome-scale studies.

This work has used a single RNA sequence as the only input. It
is quite remarkable that relying on a single sequence alone can
obtain a more accurate method than existing folding methods in
secondary-structure prediction. For protein contact map predic-
tion, evolution profiles generated from PSIBLAST40 and
HHblits49 as well as direct coupling analysis among homologous
sequences50 are the key input vectors responsible for the recent
improvement in highly accurate prediction. Thus, one expects
that a similar evolution-derived sequence profile generated from
BLAST-N and direct/evolution-coupling analysis would further
improve secondary-structure prediction for nonlocal base pairs in
long RNAs, in particular. Indeed, recently, we have shown that
using evolution-derived sequence profiles significantly improves
the accuracy of predicting RNA solvent accessibility and
flexibility38,39. For example, the correlation coefficient between
predicted and actual solvent accessibility increases from 0.54 to
0.63 if a single sequence is replaced by a sequence profile from
BLAST-N38. However, the generation of sequence profiles and
evolution coupling is computationally time consuming. The
resulting improvement (or lack of improvement) is stronglyT
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depending on the number of homologous sequences available in
current RNA sequence databases. If the number of homologous
sequences is too low (which is true for most RNAs), it may
introduce more noise than the signal to prediction as demon-
strated in protein secondary structure and intrinsic disorder
prediction51,52. Moreover, synthetic RNAs will not have any
homologous sequences. Thus, we present the method with single-
sequence information as input in this study. Using sequence
profiles and evolutionary coupling as input for RNA secondary-
structure prediction is working in progress.

Another possible method for further improving SPOT-RNA is
to employ the predicted probability as a restraint for folding with
an appropriate scoring function. Such a dual-approach method
will likely improve SPOT-RNA as folding optimization may have
a better capability to capture nonlocal interactions between WC
pairs for long RNAs, in particular as shown in Supplementary
Fig. 1. However, a simple integration may not yield a large
improvement for shorter chains (<500). In mxfold, combining
machine-learning and thermodynamic models leads to 0.6% in
one test set and 5% in another test set33. Moreover, most ther-
modynamic methods simply ignore noncanonical base pairs and
many do not even account for pseudoknots. mxfold, for example,
employs a pseudoknot-free thermodynamic method to combine
with its machine-learning model. Thus, balancing the perfor-
mance for canonical, noncanonical, and pseudoknots will require
a careful selection of appropriate scoring schemes. A simple
integration may lead to high performance in one type of base pair
at the expense of other types of base pairs. Nevertheless, we found
that if we simply keep only the base pair with the highest pre-
dicted probability in predicted triple interactions, SPOT-RNA
would be improved by another 3% in F1 score (from 0.69 to 0.71
in TS1), confirming that there is some room for improvement.
We will defer this for future studies.

The significantly improved performance in secondary-
structure prediction should allow large improvement in mod-
eling RNA 3D structures. This is because the method predicts
not only canonical base pairs but also provides important ter-
tiary contacts of noncanonical and non-nested base pairs. Thus,
it can serve as a more accurate, quasi-three-dimensional frame
to enable correct folding into the right RNA tertiary structure.
The usefulness of 2D structure prediction for 3D structure
modeling has been demonstrated in RNA Puzzles (blind RNA
structure prediction)53. Moreover, improvement in predicting
secondary structural motifs (stems, loops, and bulges, see
Table 4) would allow better functional inference54,55, sequence
alignment56, and RNA inhibitor design57. The method and

datasets are available as a server and stand-alone software
publicly at http://sparks-lab.org/jaswinder/server/SPOT-RNA/
and https://github.com/jaswindersingh2/SPOT-RNA/.

Methods
Datasets. The datasets for initial training were obtained from bpRNA-1m (Ver-
sion 1.0)34, which consists of 102,348 RNA sequences with annotated secondary
structure. Sequences with sequence similarity of more than 80% were removed by
using CD-HIT-EST37. About 80% sequence-identity cutoff was the lowest cutoff
allowed by CD-HIT-EST and has been used previously as an RNA nonredundancy
cutoff38,39. After removing sequence similarity, 14,565 sequences remained. RNA
sequences with RNA structures from the PDB5 available in this dataset were also
removed as we prepared separate datasets based on RNAs with PDB structure
only5. Moreover, due to hardware limitations for training on long sequences, the
maximum sequence length was restricted to 500. After preprocessing, this dataset
contains 13,419 sequences. These sequences were randomly split into 10,814 RNAs
for training (TR0), 1300 for validation (VL0), and 1,305 for independent test (TS0).
Supplementary Table 7 shows the number of RNA sequences and their
Watson–Crick (A–U and G–C), Wobble (G–U), and noncanonical base-pair count
as well as the number of base pairs associated with pseudoknots. The average
sequence lengths in TR0, VL0, and TS0 are all roughly 130. Here, base pairs
associated with pseudoknots are defined as the minimum number of base pairs that
can be removed to result in a pseudoknot-free secondary structure. Pseudoknot
labels were generated by using software bpRNA34 (available at https://github.com/
hendrixlab/bpRNA).

The datasets for transfer learning were obtained by downloading high-
resolution (<3.5Å) RNAs from PDB on March 2, 20195. Sequences with similarity
of more than 80% among these sequences were removed with CD-HIT-EST37.
After removing sequence similarity, only 226 sequences remained. These sequences
were randomly split into 120, 30, and 76 RNAs for training (TR1), validation
(VL1), and independent test (TS1), respectively. Furthermore, any sequence in TS1
having sequence similarity of more than 80% with TR0 was also removed, which
reduced TS1 to 69 RNAs. As CD-HIT-EST can only remove sequences with
similarity more than 80%, we employed BLAST-N40 to further remove potential
sequence homologies with training data with a large e-value cutoff of 10. This
procedure further decreased TS1 from 69 to 67 RNAs.

To further benchmark RNA secondary-structure predictors, we employed 641
RNA structures solved by NMR. Using CD-HIT-EST with 80% identity cutoff
followed by BLAST-N with e-value cutoff of 10 against TR0, TR1, and TS1, we
obtained 39 NMR-solved structures as TS2.

The secondary structure of all the PDB sets was derived from their respective
structures by using DSSR58 software. For NMR- solved structures, model
1 structure was used as it is considered as the most reliable structure among all. The
numbers of canonical, noncanonical, and pseudoknot base pairs, and base
multiplets (triplets and quartets) for all the sets are listed in Supplementary Table 7.
These datasets along with annotated secondary structure are publicly available at
http://sparks-lab.org/jaswinder/server/SPOT-RNA/ and https://github.com/
jaswindersingh2/SPOT-RNA.

RNA secondary-structure types. For the classification of different RNA
secondary-structure types, we used the same definitions as previously used by
bpRNA34. A stem is defined as a region of uninterrupted base pairs, with no
intervening loops or bulge. A hairpin loop is a sequence of unpaired nucleotides
with both ends meeting at the two strands of a stem region. An internal loop is
defined as two unpaired strands flanked by closing base pairs on both sides. A
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Fig. 3 Performance comparison of SPOT-RNA with 12 other predictors by using PR curve and boxplot on the test set TS2. a Precision-recall curves on the
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Fig. 4 Comparison of SPOT-RNA prediction with the native structure of a Synthetic Construct, Glutamine II Riboswitch, and Hatchet Ribozyme. The
secondary structure of a synthetic construct RNA (chain H in PDB ID 6dvk), the Glutamine II Riboswitch RNA (chain A in PDB ID 6qn3), and Synthetic
Construct Hatchet Ribozyme (chain U in PDB ID 6jq6) represented by 2D diagram with canonical base pair (BP) in black color, noncanonical BP in green
color, pseduoknot BP and lone pair in blue color, and wrongly predicted BP in magenta color: a predicted structure by SPOT-RNA (at top), with 97%
precision and 77% sensitivity, as compared with the native structure (at bottom) for the Synthetic Construct RNA, b the predicted structure by SPOT-RNA
(at top) with 100% precision and 81% sensitivity, as compared with the native structure (at bottom) for the Riboswitch, c the predicted structure by SPOT-
RNA (at top) with 100% precision and 59% sensitivity, as compared with the native structure (at bottom) for the synthetic construct Hatchet ribozyme.
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bulge is a special case of the internal loop where one of the strands is of length zero.
A multiloop consists of a cycle of more than two unpaired strands, connected by
stems. The distribution of different secondary-structure types in TR1, VL1, and
TS1 (excluding multiplet base pairs) is shown in Supplementary Table 8. These
secondary-structure classifications were obtained by using a secondary-structure
analysis program bpRNA34.

Deep neural networks. We employed an ensemble of deep-learning neural net-
works for pretraining. The ensemble is made of 5 top-ranked models based on their
performance on VL0 with the architecture shown in Fig. 1, similar to what was
used previously for protein contact prediction in SPOT-Contact29.

The architecture of each model consists of ResNet blocks followed by a 2D-
BLSTM layer and a fully connected (FC) block. An initial convolution layer for pre-
activation was used before our ResNet blocks as proposed in He et al.30. The initial
convolution layer is followed by NA ResNet blocks (Block A in Fig. 1). Each ResNet
block consists of two convolutional layers with a kernel size of 3 ´ 3 and 5 ´ 5,
respectively, and a depth of DRES. The exponential linear units (ELU)

59 activation
function and the layer normalization technique60 were used. A dropout rate of 25%
was used before each convolution layer to avoid overfitting during training61. In
some models, we used dilated convolutions that are reported to better learn longer-
range dependencies62. For the dilated convolutional layers, the dilation factor was
set to 2i%n , where i is the depth of the convolution layer, n is a fixed scalar, and % is
the modulus operator.

The next block in the architecture was a 2D-BLSTM31,32. The output from the
final ResNet block was activated (with ELU) and normalized (using layer
normalization) before being given as an input to the 2D-BLSTM. The number of
nodes in each LSTM direction cell was DBL . After the 2D-BLSTM, NB FC layers
with DFC nodes were used, as per Block B in Fig. 1. The output of each FC layer was
activated with the ELU function and normalized by using the layer normalization
technique. A dropout rate of 50% was utilized for the hidden FC layers to avoid
overtraining. The final stage of the architecture consisted of an output FC layer
with one node and a sigmoidal activation function. The sigmoid function converts
the output into the probability of each nucleotide being paired with other
nucleotides. The number of outputs was equal to the number of elements in the
upper triangular matrix of size L ´ L, where L is the length of the sequence.

Each model was implemented in Google’s Tensorflow framework (v1.12)63 and
trained by using the ADAM optimization algorithm64 with default parameters. All
models were trained on Nvidia GTX TITAN X graphics processing unit (GPU) to

speed up training65. We trained multiple deep-learning models, based on the
architecture shown in Fig. 1, on TR0 by performing a hyperparameter grid search
over NA, DRES, DBL, NB, and DFC. NA , DRES, DBL, NB, DFC were searched from 16
to 32, 32 to 72, 128 to 256, 0 to 4, and 256 to 512, respectively. These models were
optimized on VL0 and tested on TS0. Transfer learning was then used to further
train these models on TR1. During transfer learning, VL1 was used as the
validation set and TS1 was used as an independent test set.

Transfer learning. Transfer learning35 involves further training a large model that
was trained on a large dataset for a specific task to some other related task with
limited data. In this project, we used our large dataset bpRNA for initial training,
and then transfer learning was employed by using the small PDB dataset as shown
in Fig. 1. All of the weights/parameters that were learnt on TR0 were retrained for
further training on TR1. During transfer learning, training and validation labels
were formatted in exactly the same way as the initial training as a 2-dimensional
(2D) L ´ L upper triangular matrix where L is the length of the RNA sequence. All
of the labels used during the transfer learning were derived from high-resolution X-
ray structures in the PDB. Some approaches in transfer learning freeze weights for
specific layers and train for other layers. Here, we trained all the weights of the
models without freezing any layer, as this provided better results. Previous work on
protein molecular recognition features (MoRFs) prediction36 also showed that
using transfer learning by retraining through all of the weights provides a better
result than freezing some of the layers during retraining.

During transfer learning on TS1, we used the same hyperparameters (number
of layers, depth of layers, kernel size, dilation factor, and learning rate) that were
used for the TS0-trained models. All the models were validated for VL1, and based
on the performance of these models on VL1, the 5 best models were selected for the
ensemble. The parameters of these models are shown in Supplementary Table 9.

Input. The input to SPOT-RNA is an RNA sequence represented by a binary one-
hot vector of size L ´ 4, where L is the length of the RNA sequence and 4 cor-
responds to the number of base types (A, U, C, G). In one-hot encoding, a value of
1 was assigned to the corresponding base-type position in the vector and 0 else-
where. A missing or invalid sequence in residue value of −1 was assigned in one-
hot encoded vector.

This one-dimensional (L ´ 4) input feature is converted into two dimensional
(L ´ L ´ 8) by the outer concatenation function as described in RaptorX-
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Fig. 5 Comparison of SPOT-RNA prediction with the native structure of a Pistol Ribozyme, Mango aptamer, and Adenovirus Virus-associated RNA. The
secondary structure of a Pistol Ribozyme (chain A and B in PDB ID 6r47), the Mango Aptamer (chain B in PDB ID 6e8u), and the adenovirus virus-
associated RNA (chain C in PDB ID 6ol3) represented by arc diagrams with canonical base pair (BP) in blue color, noncanonical, pseduoknot BP and lone
pair in green color, and wrongly predicted BP in magenta color: a predicted structure by SPOT-RNA (on left), with 93% precision and 41% sensitivity, as
compared with the native structure (on right) for the Pistol Ribozyme, b the predicted structure by SPOT-RNA (on left) with 100% precision and 26%
sensitivity, as compared with the native structure (on right) for the Mango aptamer, c the predicted structure by SPOT-RNA (on left) with 66% precision
and 60% sensitivity, as compared with the native structure (on right) for the adenovirus virus-associated RNA.
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Contact28. The input is standardized to have zero mean and unit variance
(according to the training data) before being fed into the model.

Output. The output of our model is a 2-dimensional (2D) L ´ L upper
triangular matrix where L is the length of the RNA sequence. This upper tri-
angular matrix represents the likelihood of each nucleotide to be paired with any
other nucleotide in a sequence. A single threshold value is used to decide
whether a nucleotide is in pair with any other nucleotides. The value of the
threshold was chosen in such a way that it optimizes the performance on the
validation set.

Performance measure. RNA secondary-structure prediction is a binary classifi-
cation problem. We used sensitivity, precision, and F1 score for performance
measure where sensitivity is the fraction of predicted base pairs in all native base
pairs (SN ¼ TP=ðTPþ FNÞ), precision is the fraction of correctly predicted base
pairs (PR ¼ TP=ðTPþ FPÞ), and F1 score is their harmonic mean
(F1 ¼ 2ðPR � SNÞ=ðPR þ SNÞ). Here, TP, FN, and FP denote true positives, false
negatives, and false positives, respectively. In addition to the above metrics that
emphasize on positives, a balanced measure, Matthews correlation coefficient
(MCC)66 was also used. MCC is calculated as

MCC ¼ TP ´TN� FP ´ FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp ; ð1Þ

where TN denotes true negatives. MCC measures the correlation between the
expected class and the obtained class. Moreover, a precision-recall (sensitivity)
curve is used to compare our model with currently available RNA secondary-
structure predictors. To show the statistical significance of improvement by
SPOT-RNA over the second-best predictor, a paired t test was used on F1 score
to obtain P value67. The smaller the P value is, the more significant the difference
between the two predictors. As the output of the SPOT-RNA is a base-pair
probability, we can use the ensemble defect as an additional performance metric.
The ensemble defect describes the similarity between predicted base-pair
probability and target structure68. It can be calculated by appending an extra
column to the predicted probability matrix and target matrix for unpaired bases.

If P and S are predicted and target structures, respectively, and P′ and S′ are
predicted and target structures after appending the extra column, the ensemble
defect (ED) is given by

ED ¼ 1� 1
L

X

i ¼ 1 : L

j ¼ 1 : Lþ 1

P
0
ijS

0
ij;

ð2Þ

where L is the length of the sequence. The smaller the value of ED is, the higher
the structural similarity between predicted base-pair probability and target
structure.

Methods comparison. We compared SPOT-RNA with 12 best available pre-
dictors. We downloaded the stand-alone version of mxfold33 (available at https://
github.com/keio-bioinformatics/mxfold), ContextFold16 (available at https://www.
cs.bgu.ac.il/negevcb/contextfold/), CONTRAfold14 (available at http://contra.
stanford.edu/contrafold/), Knotty24 (available at https://github.com/HosnaJabbari/
Knotty), IPknot23 (available at http://rtips.dna.bio.keio.ac.jp/ipknot/), RNAfold11

(available at https://www.tbi.univie.ac.at/RNA/), ProbKnot22 (available at http://
rna.urmc.rochester.edu/RNAstructure.html), CentroidFold15 (available at https://
github.com/satoken/centroid-rna-package), RNAstructure12 (available at http://
rna.urmc.rochester.edu/RNAstructure.html), RNAshapes13 (available at https://
bibiserv.cebitec.uni-bielefeld.de/rnashapes), pkiss13 (available at https://bibiserv.
cebitec.uni-bielefeld.de/pkiss), and CycleFold27 (available at http://rna.urmc.
rochester.edu/RNAstructure.html). In most of the cases, we used default para-
meters for secondary-structure prediction except for pkiss. In pkiss, we used
Strategy C that is slow but thorough in comparison with Strategies A and B that are
fast but less accurate. For CONTRAfold and CentroidFold their performance
metrics are derived from their predicted base-pair probabilities with threshold
values from maximizing MCC.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Fig. 6 Performance comparison of all predictors on 6 recently released (after March 9, 2019) crystal structures. a F1 score of predicted structure on a
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Data availability
The data used by SPOT-RNA for initial training (bpRNA)34 and transfer learning (PDB)5

along with their annotated secondary structure are publicly available at http://sparks-lab.
org/jaswinder/server/SPOT-RNA/ and https://github.com/jaswindersingh2/SPOT-RNA.

Code availability
SPOT-RNA predictor is available as a server at http://sparks-lab.org/jaswinder/server/
SPOT-RNA/ and stand-alone software at https://github.com/jaswindersingh2/SPOT-
RNA to run on a local computer. The web server provides an arc diagram and a 2D
diagram of predicted RNA secondary structure through Visualization Applet for RNA
(VARNA)69 tool along with a dot plot of SPOT-RNA-predicted base-pair probabilities.
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