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Abstract
Designing protein sequences that can fold into a given structure is a well-known inverse protein-

folding problem. One important characteristic to attain for a protein design program is the ability

to recover wild-type sequences given their native backbone structures. The highest average

sequence identity accuracy achieved by current protein-design programs in this problem is around

30%, achieved by our previous system, SPIN. SPIN is a program that predicts sequences compati-

ble with a provided structure using a neural network with fragment-based local and energy-based

nonlocal profiles. Our new model, SPIN2, uses a deep neural network and additional structural fea-

tures to improve on SPIN. SPIN2 achieves over 34% in sequence recovery in 10-fold cross-

validation and independent tests, a 4% improvement over the previous version. The sequence pro-

files generated from SPIN2 are expected to be useful for improving existing fold recognition and

protein design techniques. SPIN2 is available at http://sparks-lab.org.
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1 | INTRODUCTION

Proteins consist of any combination of 20 amino acid residues, which

provides a vast sequence space. For a protein sequence of 100 amino

acids, the number of possible sequences is astronomically large: 20100

or 2 3 10130, a number larger than the number of atoms in the uni-

verse. The majority of these artificial sequences do not have well-

defined structures, including many biologically active proteins (intrinsi-

cally disordered or unstructured proteins).1 For proteins with struc-

tures, Anfinsen’s dogma states that their folded shapes are determined

through their primary sequence.2 Thus, it must also be possible to ana-

lyze this inversely, in that a protein’s sequence can be deduced by ana-

lyzing its native structure. From this we can begin to explore the

possibility of tailor-making proteins to fit a desired structure and

function.

Many protein design programs have been designed based on this

dogma. A typical program starts from a target backbone structure and

a random sequence.3–7 Random mutations to the sequence are coupled

with a global energy minimization technique to search for sequences

with the lowest energy. More sophisticated methods account for back-

bone flexibility in protein design.8–10 Nevertheless, key to the success

of any of these models is an accurate energy function.11 However,

existing energy functions for protein design are not yet sufficiently

accurate,11,12 although recent progress has been made.13,14

The effect of an insufficient energy function can be seen in the

accuracies of current systems. One important measure for the quality
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of a design program is its ability to recover wild-type sequences given

their native backbone structures. The average sequence recovery

achieved by the current top-performing protein-design programs is

only around 30%.

Energy functions for protein design are usually a composite of

single-body, two-body, and/or multi-body energetic terms. A single-

body (profile-based) method can obtain structure-compatible sequen-

ces directly from structurally homologous fragments.15 This method by

Zhou and Zhou15 was subsequently improved using neural-networks

trained on local fragment-derived and nonlocal energy-based profiles

for SPIN.16 The sequence recovery increased from 24% for the

fragment-based technique to 30% for SPIN. Here, we develop SPIN2

by employing additional features and a deep-learning neural network.

The average sequence recovery reaches >34%, comparable or better

than existing top-performing protein design programs.

2 | MATERIALS AND METHODS

2.1 | Datasets

We used the same benchmark that was established for developing the

SPIN program.16 This data set consists of 2032 proteins with resolu-

tions better than 3.0 Å, and pairwise sequence identity <30%. The set

was further randomly divided into a training set (1532 proteins) and a

test set (500 proteins) labeled TR1532 and TS500, respectively. Struc-

tural fragments for generating fragment-derived sequence profiles are

from a completely independent template library of 2282 proteins

(TL2282) with <30% sequence identity to TR1532 and TS500.

2.2 | Previously-employed features

SPIN employed only three sets of features: backbone torsion angles,

local fragment-derived profiles, and global energy-based features.

Backbone torsion angles are the rotational angles (/ and w angles) in

NACa and CaAC bonds, respectively. The local fragment-derived

sequence profiles12 were obtained by comparing 5-residue structural

segments from i to i14, where i 2 1;2; . . . ; L24f g in the target struc-

ture of length L, to 5-residue fragments in template library TL2282.

The sequences of the most structurally similar fragments (measured in

Root Mean Squared Deviation) were utilized to calculate the probabil-

ity of an amino acid residue at each sequence position and establish a

sequence profile. For each sequence position, this profile has a twenty

substitution probabilities corresponding to the 20 residue types.

The global energy-based features, on the other hand, are interac-

tion energies between a residue type j at position i, its side-chain

rotamer, k, and the rest of the backbone positions occupied by the ala-

nine residue. The lowest energies for all rotameric states and the ener-

gies of the six most frequent rotameric states for each residue type

were employed as nonlocal energy-based features. Here, the bbdep02

rotamer library,17 and a knowledge-based energy function based on

the distance-scaled finite-ideal gas reference state were employed.18,19

2.3 | New local features employed

In addition to torsion angles / and w, we have incorporated two other

backbone angles u and i. Local angle u is based on neighboring Ca

atoms (Cai–1ACaiACai11) and the NiACaiACi bond angle, while dihe-

dral angle i is based on four neighboring Ca atoms (Cai–1ACaiACai11

ACai12). Unlike in SPIN, all angles were represented by their sine and

cosine—both of which are required to map all possible angles to a

unique representation. Sine and cosine features also allow identical or

nearby angles that are numerically distant when represented in degrees

or radians, such as –p/p or 21798/1798, to map to similar locations in

feature space. Pairwise atomic distances within a single residue and

between the two neighboring residues (excluding covalently bonded

atoms) were also utilized.

2.4 | New nonlocal features employed

We calculated contact numbers, defined as the number of neighboring

alpha carbons, between 5 and 20 Å in 1 Å steps from a given Ca atom.

This feature provides information about the local density at specific

positions and measures how deeply a position is buried. The distance-

dependent contact number at each distance bin was obtained, provid-

ing 16 features. In addition, we also obtained two distances within a

single residue (intra-residue distances) of NAO and CaAO, and 30

inter-residue atomic distances between the four main-chain atoms of

FIGURE 1 The general architecture of the deep neural network
used in this project. Stacked auto-encoders begin encoding the first

layer, then the first two layers and so on

TABLE 1 Performance comparison between SPIN and SPIN2 in
terms of percent of sequence recovery

Method TR1532a TS500b Top 2 matchc

SPIN 30.7% 30.3% 43.8%

SPIN2 34.4% 34.4% 49.1%

a10-fold cross-validation.
bIndependent test.
cMatch of wild-type sequence to one of the top-2 predicted residue
types for TS500.
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the current and two nearest neighboring residues (eg, Ni–1ANi,

Ni–1ACai, Ni–1AOi, Ni–1ACi, NiANi11, NiACai11, NiAOi11, NiACi11).

This results in a total of 54 new features: 6 Ca-based angles, 16

contact numbers, 2 intra-residue distances, and 30 neighboring residue

distances. When combined with the 136 previously employed features

(2 sine and cosine sets of 2 backbone torsions, 20 fragment-derived

features, and 112 energy-based features), it gives us a total of 190 fea-

tures into our network. These features were utilized without a window

as we found that additional neighboring information did not further

improve our results with the classifier used.

2.5 | Deep neural network

This study employed a Deep Neural Network (DNN). DNN’s are fully-

connected artificial neural networks with three or more hidden layers.

In this study, we employed a network with three hidden layers with

500 sigmoided nodes each (Figure 1). The output layer had 20 softmax

nodes representing the 20 types of amino acid residues. The network

was developed in Matlab using the DeepLearnToolbox.20

Using several hidden layers enables our model to create several

layers of data abstraction (or representation) necessary to effectively

model complex underlying relationships in the input data. This layer

depth is what enables our model to truly utilize deep learning, one of

the most powerful learning tools in the literature.21 However, with

each additional hidden layer, the computational complexity of training

larger and larger models requires much larger amounts of input data.

Thus, three hidden layers have been empirically chosen as good com-

promise between high-level feature abstraction and limited input data.

In this study, neuron weights in the DNN were initialized using

stacked sparse auto-encoders. An auto-encoder is a neural network

pretraining method which trains a layer of hidden units to replicate the

input, in order to obtain an effective initialization of the neural network

weights. We also employed a sparsity penalty to prevent the network

learning of the identity function.22 Stacked auto-encoders simply train

each hidden layer in the network using individual auto-encoders, with

each auto-encoder using all of the pretrained weights of the previous

layers’ auto-encoders. Following initialization of all hidden layers, back-

propagation was used to fine-tune the network from the training set

TR1532.

In addition to initialization of the network weights, L2 regulariza-

tion was employed to prevent overfitting of the training data and to

improve generalization of the network. Increasing the depth of a neural

network often leads to overfitting, so regularization is key to obtaining

a general and meaningful output for unseen input data. When

employed in iterative training methods, L2 regularization has the effect

of proportionally reducing each weight toward zero at every update. It

is thus commonly referred to as a shrinking factor.

2.6 | Evaluation

To study the effectiveness and generality of our proposed technique,

this study adopted two evaluation methods. First, 10-fold cross-valida-

tion was used for training. We applied 10-fold cross-validation by ran-

domly dividing the TR1532 train set into ten different subsets and

using nine of these subsets as training data and the remaining subset in

testing. This was repeated ten times for a given model, such that all ten

subsets were used exactly once for testing. The combined results

formed the final training accuracy. These cross-validation scores were

then used to select a final model, which was subsequently trained on

the entirety of the TR1532 set and tested on the independent test set

(TS500). The robustness of this method in avoiding overfitting was con-

firmed by the similarity between the cross-validation and independent

test set scores.

3 | RESULTS AND DISCUSSION

Table 1 compares the performance of SPIN2 (this work) and the previ-

ous SPIN method. There is an overall 4% improvement from SPIN to

SPIN2 in sequence recovery of wild-type sequences for both 10-fold

cross-validation and the independent test set. The performance

increase between SPIN and SPIN2 for TS500 obtains a P values of <1

3 1010 based on a confidence interval of 99%, rejecting the null

TABLE 2 Contribution of each feature group to SPIN2 in term of
percent of sequence recovery

Feature Excluded TR1532a TS500b

None 34.40% 34.43%

Energy-based 30.30% 30.06%

Inter-residue distance 32.41% 32.39%

Fragment-based 33.25% 33.28%

Angles 33.94% 33.95%

Intra-residue distance 34.16% 34.16%

Contact number 34.24% 34.35%

a10-fold cross-validation.
bIndependent test.

FIGURE 2 Average sequence identity between predicted and
wild-type sequences as a function of protein length (10-fold cross-
validation on TR1532, open symbols, and independent test on
TS500, filled symbols) by SPIN and SPIN2
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hypothesis.23 The consistency between 10-fold cross-validation and

the independent test set confirms the robustness of the method. For

the top-two match (matching wild-type sequence to one of the top-

two predicted residue types) there is a 5.3% improvement.

To determine the source of the improvements, we investigated the

effectiveness of each of the employed feature groups on the achieved

results. Table 2 examines the importance of each feature group after

excluding them one-by-one. Energy-based profiles developed for SPIN

made the highest contribution, followed by local distances between the

main atoms of the current and neighboring residues (inter-residue dis-

tances), then fragment-based profiles, and finally contact numbers.

Contact numbers did contribute the least to the overall accuracy, but

still improved them marginally. Interestingly, local distances contributed

more information than angles in determining the sequences of the

proteins.

Figure 2 compares the fragment-based method SPIN and the

updated SPIN2 by examining sequence recovery as a function of pro-

tein sequence length. SPIN2 consistently improves over SPIN at all pro-

tein lengths. Moreover, 10-fold cross-validation (TR1532) and the

independent test set (TS500) yielded consistent results, indicating the

robustness of SPIN2 for different datasets.

Figure 3 compares recovery and precision for individual amino

acids. For all amino acid types, SPIN2 improves over SPIN in either

precision (65% of amino acids) or recovery (75% of amino acids). We

note that glycine and proline have the highest recovery rates and preci-

sion, compared to all other residue types. This is understandable

because glycine does not have side-chain and it can visit backbone

angles that are not reachable by other amino acids due to steric con-

straints. On the other hand, the cyclic structure of proline side-chain

limits the backbone / angle at about 265 degree.24 After excluding

glycine and proline, SPIN2 continues to improve over SPIN in either

precision (67% of 18 amino acids) or recovery (72% of 18 amino acids).

The results of the feature-omission analysis produced no other

apparent residue-specific patterns except that the accuracy of proline

residues is most affected by removing inter-residue features, the accu-

racy of cystine residues are impacted by intra-residue, rotomer-based,

and residue angle features, and finally, the accuracy of tryptophan is

greatly boosted by having fragment-based features. As is expected,

these are some of the residues that show the greatest improvements

over SPIN in Figure 3.

4 | CONCLUSIONS

This article illustrates the power of deep learning, and it’s applicability

in the field of protein sequence design. SPIN2 has pushed the limit of

sequence recovery for profile-based techniques to >34% through the

use of deep learning and an extended feature set. SPIN2’s improve-

ments over our previous predictor have been illustrated in both our

datasets, and for the majority of amino acids. The more accurate

structure-derived sequence profiles produced by SPIN2 will be useful

for further enhancing fold recognition15,25 and improving protein

design.12

As deep learning methods allow for a high level of feature abstrac-

tion, adding new features allows the network to explore the deep hid-

den relationships between our features. The features added to our

network from SPIN2 all contribute meaningfully to the accuracies of

our predictions, which may not have been the case for a smaller net-

work incapable of modeling deep patterns in the data.

Finally, without the need for energy minimization, SPIN2 is highly

efficient in predicting sequence profiles; only a few minutes are

required on an Intel(R) Xeon(R) CPU E5-2670 0 at 2.60 GHz (an aver-

age over a few small proteins of <100 residues).
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