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Highlights

• Proposed method reduces Kalman filter estimation bias caused by noisy speech input

• The Kalman filter gain is adaptively and dynamically tuned by a robustness metric

• The proposed method is significantly preferred over the other treatment types
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Robustness metric-based tuning of the augmented

Kalman filter for the enhancement of speech corrupted

with coloured noise

Aidan E.W. George12, Stephen So1, Ratna Ghosh3, Kuldip K. Paliwal4

Abstract

In this paper, we describe a tuning method based on a robustness metric and extended to work

with the augmented Kalman filter for enhancing coloured-noise-corrupted speech. The method pro-

posed within utilises the robustness metric to provide dynamic and adaptive tuning of the Kalman

filter gain in order to reduce the residual noise that results from poor speech model estimates.

An analysis of the Kalman filter recursion equations is presented that augments the robustness

metric equations to include coloured noise model parameters. Objective and blind AB subjective

listening tests were performed on the NOIZEUS speech corpus for both white and coloured noises

with the results being compared with the MMSE method. In the blind AB subjective testing, the

15 English-speaking listeners showed preference for the proposed method over both the MMSE and

oracle Kalman filter methods (where clean speech parameters were used). These results imply that

the proposed tuned Kalman filter produces more perceptibly-acceptable enhanced speech than the

oracle Kalman filter, which is considered the ideal for this enhancement technique.

Keywords: Robustness metric, Kalman filter, Speech enhancement

1 Introduction

The undesirable presence of background noise in digitally-recorded speech causes unreliability in

speech processing applications. For example, the presence of noise in speech that has been coded for

mobile telephony is known to result in a loss of quality and intelligibility [1]. Speech enhancement

aims to reduce the impact of noise to improve the quality or intelligibility of processed speech.

Many speech enhancement methods have been reported in the literature, which include the Wiener

filter [2], spectral subtraction [3], Minimum Mean Square Error - Short-Time Spectral Amplitude

(MMSE-STSA) estimation [4], subspace methods [5], the Kalman filter [6], Deep Neural Networks

[7, 8], and wiener filtering utilising wavelet thresholding on multi-tapered spectra (W-WT) [9].

These methods typically process speech in the frequency (acoustic) or time domain, but the appli-

cation of speech enhancement algorithms in the subband domain ([10, 11]) and modulation domain

have also been recently investigated (e.g. spectral subtraction [12], MMSE [13] and Kalman filter-

ing [14]). The focus of this paper is on single-channel speech enhancement, where only the additive

noise corrupted speech is available.

1School of Engineering, Gold Coast campus, Griffith University, QLD, 4222, Australia.
2Corresponding email: aidan.george@griffithuni.edu.au
3Instrumentation and Electronics Engineering, Jadavpur University, Kolkata 700098, India
4Signal Processing Laboratory, Griffith University, Nathan campus, QLD, 4111, Australia
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The Kalman filter is an unbiased linear MMSE estimator originally developed for control system

applications [15] and was first applied to speech enhancement by Paliwal and Basu [6]. The Kalman

filter expands on the stationary signal input operating conditions of the Wiener filter to include

non-stationary signals by the use of dynamic models. When a noisy speech signal (also known as the

observation or measurement) is provided, the Kalman filter estimates the clean speech state vector

by combining the noisy measurement with speech model predictions. The prediction component

is determined by LPA (Linear Prediction Analysis) to form a speech production model that is

representative of the vocal tract for the particular sound. Typically, the autocorrelation method

[16] is used to estimate, from a frame of speech, the linear prediction coefficients (or LPCs) and

the excitation variance for the speech model. The Kalman filter produces an a posteriori 1 state

vector estimated through the use of the Kalman filter recursive equations.

The main limitation with the Kalman filter is that the oracle case, in which the model pa-

rameters of clean speech are available, rarely occurs in practice. As a result, the speech model

parameters need to be estimated from the noise corrupted speech. Depending on the level and type

of background noise, the speech model parameters will be inevitably biased, which results in the

presence of residual noise in the enhanced speech. The effect of the bias was investigated in [17],

where an offset in the temporal trajectory of the Kalman filter gain was observed and was partic-

ularly evident during regions that were absent of speech. This Kalman filter gain offset resulted in

a portion of the measurement noise to be included in the output.

Reduction of the estimation bias has been previously investigated, in particular the use of

recursive algorithms. Iterative algorithms typically estimate the speech model parameters from

speech that has been pre-processed by another enhancement algorithm. For instance, the iterative

Kalman filter [18] recursively applies the Kalman filter algorithm to provide an enhanced speech

model source, and this enhanced speech model is used for filtering the original noise corrupted

speech signal. Similarly, in the Kalman-PSC filtering algorithm [19], the LPCs are estimated from

speech that has been processed by the Phase Spectrum Compensation (PSC) algorithm [20]. An

alternate method was reported in [17], where the application of tapered windows prior to LPC

estimation in the first iteration was shown to be beneficial in reducing estimation bias in the

iterative Kalman filter. However, the bias reduction provided was of a static nature and often led

to the introduction of speech distortion that is characteristic of ‘over-suppression’, particularly in

the regions containing the harmonic structure of voiced speech [17].

In this paper, a non-iterative Kalman filtering algorithm will be presented that dynamically

tunes the Kalman filter gain in order to reduce the estimation bias and its adverse effects. The

basis for the Kalman filter gain modification is a robustness metric that was first proposed in

the instrumentation literature [21], which quantifies the level of robustness of the Kalman filter’s

speech model at each time sample. Also complementing the understanding of the Kalman filter’s

operation is the shift of focus from estimating state vectors to that of estimating scalar outputs,

as detailed in [17]. Adopting this paradigm shift to the Kalman filter enables a more detailed

and insightful understanding of its operation. We have previously reported the application of the

robustness and sensitivity metrics in improving the Kalman filter for white noise [22, 23, 24]. The

proposed algorithm produces a non-iterative Kalman filter that achieves competitive performance

with current speech enhancement methods for speech corrupted with coloured noise. A detailed

derivation of the metrics for speech corrupted with coloured noise will be presented within this

paper. Objective and subjective listening tests were performed using the NOIZEUS speech corpus

[1] to evaluate the proposed algorithm and compare its performance against conventional Kalman

filtering (both oracle and non-oracle) as well as the MMSE-STSA method [4].

1An a posteriori estimate is formed after a measurement or observation is made.
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The rest of the paper is organised as follows: in Sections 2, and 3, the recursive Kalman filtering

equations will be presented to formalise the mathematical notation utilised in this paper. These

equations will then be re-written to show the scalar version of the Kalman filter recursive equations,

which are more applicable to speech enhancement. The robustness measure will also be derived, and

its application to tuning the Kalman filter will be discussed. Section 5 contains the objective and

subjective results that compare proposed Kalman filter with other speech enhancement methods.

Section 6 will feature the discussion and conclusion as well as final insights for this method and

future directions.

2 Coloured noise speech enhancement using the Kalman fil-

ter

2.1 The Kalman recursive equations

The additive noise model that is generally assumed in the problem of speech enhancement can be

expressed as follows:

y(n) = x(n) + v(n) (1)

where x(n) and v(n) are the clean speech and corrupting (or measurement) noise, respectively, and

y(n) is the noise-corrupted speech that is the only signal available in practice.

In the Kalman filter that is used for speech enhancement [17], a pth order linear predictor is

used to model the speech signal:

x(n) = −
p∑

k=1

akx(n− k) + w(n) (2)

where {ak; k = 1, 2, . . . , p} are the linear prediction coefficients (or LPCs) and w(n) is the excitation

(or process) noise. The speech state vector x(n) is given by:

x(n) =




x(n)

x(n− 1)

x(n− 2)
...

x(n− p+ 1)




(3)

and the state transition matrix A:

A =




−a1 −a2 . . . −ap−1 −ap
1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




(4)

The speech production model in Eq. (2) is re-written in terms of these state-space variables:

x(n) = Ax(n− 1) + dxw(n) (5)

where dx = [1 0 0 . . . 0]T .

Traditionally, the Kalman filter formulation assumes that the measurement noise, v(n), is a

zero-mean, white Gaussian noise that is uncorrelated with x(n). In this study, we will utilise
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the augmented-matrix Kalman filter formulation for the handling of speech that is corrupted by

coloured noise, as described in [18]. The coloured measurement noise is modelled by a qth order

linear prediction:

v(n) = −
q∑

k=1

bkv(n− k) + u(n) (6)

where {bk; k = 1, 2, . . . , q} are the measurement noise LPCs and u(n) represents the random com-

ponent of the measurement noise. We define the measurement noise state vector, v(n), and state

transition matrix, B, as follows:

v(n) =




v(n)

v(n− 1)

v(n− 2)
...

v(n− q + 1)




(7)

B =




−b1 −b2 . . . −bq−1 −bq
1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




(8)

This allows us to form a state-space equation for the coloured measurement noise:

v(n) = Bv(n− 1) + dvu(n) (9)

where dv = [1 0 0 . . . 0]T . The state-space equations for the speech and measurement noise can

then be combined into augmented form:

[
x(n)

v(n)

]
=

[
A 0

0 B

][
x(n− 1)

v(n− 1)

]
+

[
dx 0

0 dv

][
w(n)

u(n)

]
(10)

or

x̄(n) = Āx̄(n− 1) + D̄w̄(n) (11)

Likewise, the additive noise measurement equation Eq. (1) can be represented in terms of the

augmented states:

y(n) =
[
cTx cTv

] [x(n)

v(n)

]
(12)

or

y(n) = c̄T x̄(n) (13)

where cx = [1 0 0 . . . 0]T and cv = [1 0 0 . . . 0]T are p × 1 and q × 1 vectors, respectively.

Equations (11) and (13) together form the augmented state-space representation of the Kalman

filter when the noise is coloured.

The Kalman filter recursively computes an unbiased and linear MMSE estimate ˆ̄x(n|n) of the

augmented state vector x̄(n) at given time n, given the noisy measurement y(n), by using the
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following equations:

P̄ (n|n− 1) = ĀP̄ (n− 1|n− 1)Ā
T

+ D̄Q̄D̄
T

(14)

K̄(n) = P̄ (n|n− 1)c̄
[
c̄T P̄ (n|n− 1)c̄

]−1
(15)

ˆ̄x(n|n− 1) = Āˆ̄x(n− 1|n− 1) (16)

ˆ̄x(n|n) = ˆ̄x(n|n− 1) + K̄(n)
[
y(n)− c̄T ˆ̄x(n|n− 1)

]
(17)

P̄ (n|n) =
[
I − K̄(n)c̄T

]
P̄ (n|n− 1) (18)

In these equations, Q̄ is the process noise covariance matrix and is given by:

Q̄ =

[
σ2
w 0

0 σ2
u

]
(19)

where σ2
w and σ2

u are the process noise variances of the speech and measurement noise, respectively.

During the operation of the Kalman filter, the noise-corrupted speech, y(n), is windowed into

non-overlapped and short (e.g. 20 ms) frames and the LPCs and excitation variance, σ2
w, are

estimated for each frame. These LPCs remain constant during the Kalman filtering of speech

samples in the frame, while the Kalman filter gain K̄(n), a posteriori error covariance, P̄ (n|n),

and state vector estimate, ˆ̄x(n|n), are continually updated on a sample-by-sample basis. The

measurement noise model parameters, {bk; k = 1, 2, . . . , q} and σ2
u, are estimated during frames

where there is no speech.

2.2 Paradigm shift from estimated state vectors to estimated speech

samples

The conventional view of the Kalman filter is that it recursively estimates [using Eq. (17)] the

augmented state vector, x̄(n|n), by correcting the a priori2 state vector estimate, ˆ̄x(n|n− 1), with

a weighted innovation signal. However, in the context of speech enhancement, we are ultimately

interested in the estimated clean speech sample x̂(n|n) (which is a scalar), rather than the state

vector. The remaining elements in the state vector are generally unused in the output, except

in special cases such as the delayed Kalman filter [6]. Therefore, as was noted in [17, 21], it is

necessary for us to shift the focus of the Kalman filtering formulation from that of estimating state

vectors to estimating speech samples. The derivation that follows will show that the equations

for computing the estimated speech sample can be expressed as purely scalar quantities. For the

purposes of simplifying the mathematical notation, we will drop the use of the bar for representing

augmented vector and matrix variables (e.g. c̄ ≡ c) except Ā, and also drop the use of the hat for

estimated vectors [and hence for example, ˆ̄x(n|n− 1) ≡ x̄(n|n− 1) ≡ x(n|n− 1)].

We begin the formulation by defining the innovation signal q(n) and its covariance matrix S(n).

q(n) = y(n)− cTx(n|n− 1) (20)

The innovation signal is a random process that contains the new information that is provided by

the new measurement y(n). The covariance matrix S(n) of the innovation signal is given by:

S(n) = cTP (n|n− 1)c

= cT ĀP (n− 1|n− 1)Ā
T
c + cTDQDT c (21)

where we have substituted Eq. (14). Using some matrix algebra, the second term in the summation

2An a priori estimate is one that is based on prior knowledge (eg. a model) in the absence of a measurement.
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above can be reduced down to:

cTDQDT c = σ2
w + σ2

u (22)

Let us consider the first term of Eq. (21). We first break up the product of terms:

cT Ā =
[
cTx cTv

] [A 0

0 B

]

=
[
cTxA cTvB

]
(23)

The a posteriori error covariance matrix, P (n− 1|n− 1), can be expressed as:

P (n− 1|n− 1) = E{e(n− 1|n− 1)eT (n− 1|n− 1)}

= E

{[
ex(n− 1|n− 1)

ev(n− 1|n− 1)

] [
eTx (n− 1|n− 1) eTv (n− 1|n− 1)

]}

=

[
P xx(n− 1|n− 1) P xv(n− 1|n− 1)

P vx(n− 1|n− 1) P vv(n− 1|n− 1)

]

=

[
P xx(n− 1|n− 1) 0

0 P vv(n− 1|n− 1)

]
(24)

(since x(n) and v(n) are zero-mean and uncorrelated)

where,

P xx(n− 1|n− 1) =E
{
ex(n− 1|n− 1)eTx (n− 1|n− 1)

}

P xv(n− 1|n− 1) =E
{
ex(n− 1|n− 1)eTv (n− 1|n− 1)

}

P vv(n− 1|n− 1) =E
{
ev(n− 1|n− 1)eTv (n− 1|n− 1)

}

and E{•} is the expectation operator.

Substituting this into the first term of Eq. (21), we can express it as a summation:

cT ĀP (n− 1|n− 1)Ā
T
c = cTxAP xx(n− 1|n− 1)AT cx + cTvBP vv(n− 1|n− 1)BT cv

= α2(n) + β2(n) (25)

Where, α2(n) = cTxAP xx(n− 1|n− 1)AT cx

β2(n) = cTvBP vv(n− 1|n− 1)BT cv

In this equation, α2(n) and β2(n) represent the transmission of a posteriori error variances (of

the speech and measurement noise samples, respectively) by the augmented dynamic model from

the previous time sample. Therefore, the innovation covariance can be written in terms of scalar

quantities only:

S(n) = α2(n) + β2(n) + σ2
w + σ2

u (26)

We can see that the innovation covariance consists of three error variance components: (1) the

variance of the transmitted errors from the previous sample due to prediction by the dynamic

model [α2(n) + β2(n)]; (2) the variance of the error in the speech production model σ2
w; and (3)

the variance of the error in the measurement noise model σ2
u.

Next, we will formulate the estimated clean speech sample x̂(n|n), which is the output of the

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Kalman filter:

x̂(n|n) = gT x̂(n|n) (27)

where g =




1

0

0

0
...

0




(28)

Substituting Eq. (17) into Eq. (27), we obtain:

x̂(n|n) = gT x̂(n|n− 1) + gTK(n)
[
y(n)− cT x̂(n|n− 1)

]

= gT x̂(n|n− 1) + gTK(n)y(n)− gTK(n)cT x̂(n|n− 1)

= x̂(n|n− 1) +K0(n)y(n)−K0(n)[x̂(n|n− 1) + v(n|n− 1)]

= [1−K0(n)]x̂(n|n− 1) +K0(n)[y(n)− v(n|n− 1)] (29)

where the Kalman gain scalar term, K0(n), can be expressed as:

K0(n) = gTK(n)

= gTP (n|n− 1)cS−1(n)

=
[
gTAP (n− 1|n− 1)AT c + gTDQDT c

]
S−1(n) (30)

Let us simplify the bracketed expression of Eq. (30). Using the steps similar to the derivation of

Eqs. (22) and (25), it can be shown that:

gTAP (n− 1|n− 1)AT c = gTAP (n− 1|n− 1)ATg = cTxAP xxA
T cx

= α2(n) (31)

gTDQDT c = gTDQDTg = σ2
w (32)

and so,

gTP (n|n− 1)g = gTP (n|n− 1)c = cTP (n|n− 1)g = α2(n) + σ2
w (33)

Bringing these results together, the scalar Kalman gain term K0(n) can be expressed as:

K0(n) =
α2(n) + σ2

w

α2(n) + β2(n) + σ2
w + σ2

u

(34)

Therefore, using Eqs. (29) and (34), we can now re-write the state vector-based Kalman update

equation (17) in terms of the estimated speech sample:

x̂(n|n) =
β2(n) + σ2

u

α2(n) + β2(n) + σ2
w + σ2

u

x̂(n|n− 1) +
α2(n) + σ2

w

α2(n) + β2(n) + σ2
w + σ2

u

[y(n)− v(n|n− 1)]

(35)

In order to check the validity of this equation, it is useful to compute the output for two extreme

cases. The first case is when there is speech but no noise present in the measurement, i.e. v(n) = 0.

In this case, we can establish that β2(n) = 0 and σ2
u = 0, so the output of the Kalman filter

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Spectrograms and plots of the Kalman filter gain for speech file sp26.wav
(”She had a smart way of wearing clothes”): (a) clean speech; (b) speech corrupted
with F16 noise at 5 dB (PESQ = 2.11); (c) output of the Kalman filter (oracle case)
when input is noise-corrupted speech (PESQ = 2.38); (d) plot of scalar Kalman filter
gain K0(n) with clean speech input.
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becomes:

x̂(n|n) = 0 +
α2(n) + σ2

w

α2(n) + σ2
w

[y(n)− 0]

= y(n)

This is a valid result because the measurement signal is clean, so there is no requirement to use

the dynamic model. In other words, the scalar Kalman filter gain, K0(n), is equal to one. In the

second extreme case, we assume that there is noise present but no speech in the measurement, i.e.

x(n) = 0. This corresponds to the silent regions of speech, where α2(n) = 0 and σ2
w = 0:

x̂(n|n) =
β2(n) + σ2

u

β2(n) + σ2
u

x̂(n|n− 1) + 0

= 0 since ak = 0 for k = 1, 2, . . . , p (36)

Therefore, in the silent regions, the Kalman filter gain, K0(n), is equal to zero in order to remove

the noisy measurement from the output. Figure 1 shows spectrograms of the output of the Kalman

filter in the oracle case for speech that has been corrupted with F16 noise from the NOISEX-92

database. In Figure 1(d), the scalar Kalman filter gain, K0(n), has been plotted for the clean

speech input to the Kalman filter. When Kalman filtering speech with no noise present, we can see

that the scalar Kalman filter gain approaches one for the duration of the speech regions, as noted

before. For the opposing case where only noise is present, we can see K0(n) is approximately zero

in these regions of silence (i.e. where there is only noise but no speech present).

2.3 The effect of biased estimates of speech production model parame-

ters

The derivations in the previous section are based on the availability of accurate estimates of the

speech production model parameters, as in the case of clean speech. Such parameter estimates

enable us to express the Kalman filter gain and the output in terms of purely scalar quantities.

However, since clean speech is not available in practice, the parameters for the speech production

model need to be estimated from the noise-corrupted speech, y(n). The presence of noise causes

the estimates of the LPCs, {ak}, and process noise variance, σ2
w, to be biased. Figure 2(c) shows

the spectrogram of the output of the Kalman filter for the non-oracle case. It can be seen that

there is a degree of residual noise in the enhanced output, even in the silent regions where there is

no speech present. When compared with that for the oracle case (Figure 1(d)), the scalar Kalman

filter gain in Figure 2(d) appears to be offset in the positive direction, which increases the overall

contribution of the noisy measurement signal in the output.

In order to analyze this effect, let us consider the biased process noise variance obtained when

using noise corrupted speech as the input, σ̃2
w, for the linear prediction model of speech. Assuming

that x(n) and v(n) are zero mean and not correlated, σ̃2
w can be estimated from the noise-corrupted

speech y(n) as [17]:

σ̃2
w = Ryy(0) +

p∑

k=1

ãkRyy(k)

Where, Ryy(k) = Rxx(k) +Rvv(k)

= Rxx(0) +

p∑

k=1

ãkRxx(k) +Rvv(0) +

p∑

k=1

ãkRvv(k) (37)

where Rxx(k), Rvv(k), Ryy(k) are the autocorrelation coefficients of x(n), v(n), and y(n), respec-

tively, and ãk are the biased LPCs.
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Figure 2: Spectrograms and plots of the Kalman filter gain for speech file sp26.wav
(”She had a smart way of wearing clothes”): (a) clean speech; (b) speech corrupted
with F16 noise at 5 dB (PESQ = 2.11); (c) output of the Kalman filter (non-oracle
case) (PESQ = 2.24); (d) plot of scalar Kalman filter gain K0(n).
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Figure 3: Plot of scalar Kalman filter gains for different coloured noises when no speech
is present

In this case, the Kalman update equation (35) becomes:

x̂(n|n) =
β2(n) + σ2

u

α̃2(n) + β2(n) + σ̃2
w + σ2

u

x̂(n|n− 1) +
α̃2(n) + σ̃2

w

α̃2(n) + β2(n) + σ̃2
w + σ2

u

[y(n)− v(n|n− 1)]

(38)

Let us consider the case where there is measurement noise but no speech is present [i.e. x(n) = 0,

hence Rxx(k) = 0 for all k and σ̃2
w = σ2

u (since we are now modelling the measurement noise)]:

x̂(n|n) =
β2(n) + σ2

u

α̃2(n) + β2(n) + 2σ2
u

x̂(n|n− 1) +
α̃2(n) + σ2

u

α̃2(n) + β2(n) + 2σ2
u

[y(n)− v(n|n− 1)] (39)

When compared with the same equation for the oracle case [Eq. (36)], we can see the effect of using

the biased estimates of the speech model parameters. The output sample comprises some fraction

[represented by the scalar Kalman filter gain K0(n)] of the measurement noise innovation signal.

This case was simulated by Kalman filtering the noise only, where it was observed that the values

of α̃2(n), β2(n), and σ2
u tended to be quite similar. If we assume that α̃2(n) ≈ β2(n) ≈ σ2

u, then

K0(n) ≈ 0.5. We can see in Figure 3, which shows the scalar Kalman filter gain plots for three

coloured noises (F16, destroyer engine, pink) that K0(n) fluctuates around 0.5 when there is no

speech present. This result is similar to that reported in [17] for the white noise case, where bk = 0

for all k, hence β2(n) = 0, v(n|n− 1) = 0, and α̃2(n) = 0.

We observe from the previous discussion that there are two biased quantities that result from

poor estimates of parameters due to the presence of additive noise: (1) biased speech LPC esti-

mates {ãk}, which are associated with the distortion in the power spectrum of the speech; and (2)

biased process noise variance σ̃2
w, which causes an increase in the calculated mean squared error or

uncertainty in the model. The biased LPC estimates lead to a higher value of K0(n), as compared

to the oracle case. Hence, a low value of [1−K0(n)] multiplies the strong predicted component of

speech x̂(n|n − 1), leading to speech distortion in the signal regions. In addition, as shown in the

case of noise only, the presence of the biased process noise variance, σ̃2
w, results in an offset in the

value of K0(n) during the silent regions. This causes a fraction of the noise in the measurement

signal to be included in the output of the Kalman filter. It is therefore desirable to correct the bias

in the Kalman filter gain.
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3 Kalman filter tuning using the robustness metric

3.1 Robustness in the Kalman filter

The Kalman filter is said to robust due to its ability to deal with uncertainties or inaccuracies in the

parameters of its dynamic model. These may occur when there is a mismatch between the model-

based prediction and the signal to be estimated, either because the dynamic model is not adequate

for predicting the signal or since the signal characteristics have somewhat deviated from those

used to estimate the model parameters. A robust Kalman filter would mitigate the uncertainty

or variance in the model parameters by offsetting their contribution to the a posteriori estimate,

in favour of the measurement signal. In speech enhancement, the uncertainty or variance of the

model relates to the inability of the low-order speech production model to estimate the clean speech.

Hence, in the case of voiced speech that has a harmonic structure, such a robust filter would tend

to rely less on the low-order speech model, which is based on short-term autocorrelations, since it

is unable to capture the long-term correlation information. In contrast, the mean square prediction

error, which is also the process noise variance σ2
w, becomes high for this voiced speech. Hence,

the Kalman filter enters into a robust mode of operation with high filter gain K0(n) and so the

measurement y(n) is favoured.

The changes in Kalman filter gain due to the presence of voiced speech can be clearly observed

in Figure 1(d) for the oracle case, where the Kalman filter becomes more robust in the voiced

speech regions and less in the silent regions, where uncertainty in the speech model is close to zero.

In other words, the Kalman filter becomes more sensitive in the silent regions. Generally speaking,

sensitivity relates to the degree to which a controller changes in accordance to variations in its

dynamic model. In the speech enhancement context, a sensitive Kalman filter would favour its

dynamic model in response to an unreliable or heavily noise-corrupted (or low signal-to-noise ratio)

measurement.

For the practical case where LPCs are estimated from noise-corrupted speech, the Kalman filter

is operating in a ‘semi’-robust mode during the silent regions due to use of poor LPC estimates, as

was shown in Figure 2(d). This leads to residual noise in the output and degrades the enhancement

performance of the Kalman filter. What we require is a performance index, or metric, that quantifies

the level of robustness in the Kalman filter, so that it can be used to tune its operation. One such

set of metrics for the robustness and sensitivity of the Kalman filter was proposed in [21], which

we will analyze and adopt for use in the speech enhancement context in the next section.

3.2 Metrics for measuring robustness and sensitivity in the Kalman filter

We begin the derivation by looking at the mean squared error [expressed as gTP (n|n)g] of the

output sample x̂(n|n):

gTP (n|n)g = gT [I −K(n)cT ]P (n|n− 1)g [from (18)]

= gTP (n|n− 1)g − gTK(n)cTP (n|n− 1)g. (40)

Using (33), gTK(n) = K0(n) and (34) in (40), we have

gTP (n|n)g = α2(n) + σ2
w −

[α2(n) + σ2
w]2

α2(n) + β2(n) + σ2
w + σ2

u

(41)
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Moving the first term on the right hand side to the left and dividing by α2(n) + σ2
w, we get:

gTP (n|n)g − α2(n)

α2(n) + σ2
w

=
σ2
w

α2(n) + σ2
w

− α2(n) + σ2
w

α2(n) + β2(n) + σ2
w + σ2

u

P0,0(n|n)− α2(n)

α2(n) + σ2
w

=
σ2
w

α2(n) + σ2
w

+
σ2
u + β2(n)

α2(n) + β2(n) + σ2
w + σ2

u

− 1

P0,0(n|n)− α2(n)

α2(n) + σ2
w

+ 1 =
σ2
w

α2(n) + σ2
w

+
σ2
u + β2(n)

α2(n) + β2(n) + σ2
w + σ2

u

∆P (n|n) + 1 = J2(n) + J1(n) (42)

Applying the definitions of the sensitivity metric, J1(n), and robustness metric, J2(n), to the case

of the speech model and coloured noise model considered in this work, we have:

J1(n) =
σ2
u + β2(n)

α2(n) + β2(n) + σ2
w + σ2

u

(43)

J2(n) =
σ2
w

α2(n) + σ2
w

(44)

We can see that J2(n) is computed as the proportion of the process noise variance σ2
w with respect

to the total a priori prediction error [σ2
w + α2(n)]. The higher the process noise variance is, with

respect to the transmitted errors of the output speech sample α2(n), the closer J2(n) approaches

unity. This makes sense because as was mentioned, robustness of the Kalman filter relates to its

ability to deal with inaccuracies in the model and use more of the measurement. In this case,

a large prediction error, σ2
w, increases the Kalman filter gain (Eq. 34), hence using more of the

measurement y(n), and thereby operating in a more robust mode. Since the process noise variance

represents the model-based prediction error, J2(n) is termed the robustness metric [21].

When interpreting the sensitivity metric, J1(n) is the proportion of the innovation covariance (in

the denominator) that is attributed to the measurement noise. Therefore, when the measurement

noise variance σ2
u is high or when there is a large transmitted error in the Kalman filter estimate

of the measurement noise β2(n), in comparison with the errors related to the speech model (α2(n)

and σ2
w), the Kalman filter will become more sensitive to variations in its dynamic model, i.e. it

will favour the predicted estimate over the measurement.

3.3 Kalman filter gain tuning using the robustness metric J2(n)

Figure 4 shows plots of J2(n) and K0(n) for the oracle and non-oracle cases of the Kalman filter.

Let us consider the first 0.2 seconds where there is no speech. We can see in Figure 4(b) that the

robustness metric is very high for the non-oracle case in this silent region, which indicates that the

Kalman filter is operating in its robust mode. Since the LPC estimates are computed from the

white noise only, then α2(n) ≈ 0, and hence according to Eq. (44), J2(n) ≈ 1. The scalar Kalman

filter gain K0(n) in Figure 4(a) is hovering between 0.5 and 1, which is detrimental to the overall

quality of the enhanced speech, since residual measurement noise is being passed through to the

output.

For the coloured noise case, the behaviour of the robustness metric differs from that seen in the

white noise scenario, as represented by the green line in Figure 4(d). The robustness metric does

not hover near unity in the coloured noise case, because α2(n) = β2(n) in the silence regions (since

measurement noise is the only signal present), hence according to Eq. (44), the denominator will

be larger than the numerator. It is possible to reduce this ‘coloured’ effect by applying a whitening

filter Hw(z) to the speech prior to the estimation of the LPC parameters:

Hw(z) = 1 +

q∑

k=1

bkz
−k (45)
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Figure 4: Plot of Kalman filter gain and the robustness metric for the sp26 speech file
for the oracle and non-oracle case: (a) scalar Kalman filter gain K0(n) for white noise
at 5 dB SNR; (b) robustness metric J2(n) for white noise; (c) scalar Kalman filter gain
K0(n) for F16 noise at 5 dB SNR; (d) robustness metric J2(n) for F16 noise.

We note that the whitening filter is applied to the speech for LPC estimation only. The whitening

filter has two desirable effects on the coloured-noise Kalman filter. Firstly, as represented by the

thick red line in Figure 4(d), the behaviour of J2(n) becomes similar to that seen for the white noise

scenario. In other words, J2(n) hovers close to unity in the silence regions due to the approximate

‘whiteness’ of the noise (α2(n) ≈ 0). Secondly, the whitening filter assists in reducing the bias in

the LPC coefficients {ãk} and therefore enables the Kalman filter to have a better speech model.

In light of the observations made on the behaviour of the robustness metric for the white

noise and coloured-noise Kalman filter with pre-whitened LPC estimation, we propose to modify

the scalar Kalman filter gain, so that it is similar to the oracle Kalman filter gain, by using the

following equation, which we will justify intuitively as well as mathematically:

K ′0(n) = K0(n)[1− J2(n)] (46)

3.3.1 The dynamic behaviour of the robustness metric

Intuitively, the robustness metric can be used to scale the Kalman filter gain dynamically over

time. Because all terms in Eq. (44) are squared quantities, it is clear that J2(n) will always be

bounded between 0 and 1. In the silence regions, where the non-oracle Kalman filter is operating

in an ‘artificially’ high robust mode, the scaling factor 1− J2(n) will be approximately zero, hence

according to Eq. (46), the Kalman filter gain will be suppressed. However, it is not entirely clear

whether this is suitable for the speech-dominant regions, since J2(n) can be seen in Figure 4(b) to

be always larger than 0.8 and subsequently, the Kalman filter gain would be scaled by a factor of

0.2 or less. For voiced speech, a low Kalman filter gain would result in diminished harmonic and

voicing characteristics in the enhanced speech output.

We should point out that the J2(n) plot in Figure 4(b) was obtained from the Kalman filter

whose gain was unmodified. Due to the recursive nature of the Kalman filter equations, it is

instructive to examine the effects of applying the gain tuning in the subsequent time step. Let us
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Figure 5: Plot of Kalman filter gain and the robustness metric for the sp26 speech file
for the non-oracle and proposed modified case: (a) scalar Kalman filter gain K0(n)
for white noise at 5 dB SNR; (b) robustness metric J2(n) for white noise; (c) scalar
Kalman filter gain K0(n) for F16 noise at 5 dB SNR; (d) robustness metric J2(n) for
F16 noise.

apply the Kalman filter gain tuning to the a posteriori mean squared error at time sample n:

gTP ′(n|n)g = gTP (n|n− 1)g − [1− J2(n)]gTK(n)gTP (n|n− 1)g

= α2(n) + σ2
w −

α2(n)

α2(n) + σ2
w

[α2(n) + σ2
w]2

α2(n) + β2(n) + σ2
w + σ2

u

= α2(n) + σ2
w −

α2(n)[α2(n) + σ2
w]

α2(n) + β2(n) + σ2
w + σ2

u

(47)

Comparing the third term on the right-hand-side of Eqs. (41) and (47), we note that the modified

a posteriori mean squared error of the latter equation is larger than that of the former by the

following amount:

gTP ′(n|n)g − gTP (n|n)g =
σ2
w[α2(n) + σ2

w]

α2(n) + β2(n) + σ2
w + σ2

u

(48)

This difference is dependent on the values of σ2
w and α2(n). For voiced speech, σ2

w is expected to be

quite high. Since the computation of α2(n + 1) is dependent on gTP ′(n|n)g, therefore according

to Eq. (44), we should expect J2(n+ 1) to be smaller than what the robustness metric would have

been, had no Kalman filter gain modification been made.

The effect of the Kalman filter gain modification can also be seen by substituting Eqs. (34)

and (44) into Eq. (46):

K ′0(n) =

[
1− σ̃2

w

α̃2(n) + σ̃2
w

]
α̃2(n) + σ̃2

w

α̃2(n) + β2(n) + σ̃2
w + σ2

u

=
α̃2(n)

α̃2(n) + β2(n) + σ̃2
w + σ2

u

(49)

where we can see that the term σ̃2
w (and its associated bias) has disappeared. Using K ′0(n) in place

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TF
re
q
u
en
cy

(H
z)

(a)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

F
re
q
u
en
cy

(H
z)

(e)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

F
re
q
u
en
cy

(H
z)

(b)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

F
re
q
u
en
cy

(H
z)

(f)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

F
re
q
u
en
cy

(H
z)

(c)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

F
re
q
u
en
cy

(H
z)

(g)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

Time (s)

F
re
q
u
en
cy

(H
z)

(d)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

Time (s)

F
re
q
u
en
cy

(H
z)

(h)

0 0.5 1 1.5 2
0

1000

2000

3000

4000

Figure 6: Comparing the spectrograms of the enhanced speech from non-oracle and
proposed methods, where input speech was ‘She had a smart way of wearing clothes’:
(a) clean speech; (b) speech corrupted with white noise at 5 dB (PESQ = 1.86); (c)
output of the Kalman filter (non-oracle case with no gain modification) (PESQ = 2.03);
(d) output of the proposed Kalman filter with gain modification (PESQ = 2.26); (e)
clean speech; (f) speech corrupted with F16 noise (PESQ = 2.11); (g) output of the
Kalman filter (non-oracle case with no gain modification) (PESQ = 2.24); (h) output
of the proposed Kalman filter with gain modification (PESQ = 2.43).
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of K0(n) in (29), the resulting Kalman update equation is thus obtained from (35) as:

x̂(n|n) =
β2(n) + σ2

u + σ̃2
w

α̃2(n) + β2(n) + σ̃2
w + σ2

u

x̂(n|n− 1) +
α̃2(n)

α̃2(n) + β2(n) + σ̃2
w + σ2

u

[y(n)− v(n|n− 1)]

(50)

We have used the tilde notation to indicate the biased estimates in the non-oracle case. If we

consider the case where only white (or whitened)3 noise is present, then α̃2(n) ≈ 0 and σ̃2
w = σ2

u

(assuming p = q), so Eq. (50) becomes:

x̂(n|n) ≈ x̂(n|n− 1) (51)

Therefore, the residual measurement noise in the output speech is suppressed. For voiced speech,

the Kalman filter gain is expected to be lower due to the loss of the σ̃2
w term in the numerator as

a result of the gain modification. Despite this, the prediction error in the speech model will partly

manifest itself in the transmitted a posteriori error α̃2(n), which will be large for voiced speech.

Figure 5 compares the Kalman filter gain and robustness metric between the non-oracle case and

the proposed gain modification case. The comparison of J2(n) shows that once the Kalman filter

gain modification is included, the robustness metric exhibits larger variations, especially within the

speech frames. This is a desirable property since we do not want the Kalman filter gain to be overly

suppressed in the voiced speech regions. As a result of the J2(n) remaining close to unity in the

silence regions, it can be seen that the Kalman filter gain, K0(n), has been suppressed, thereby

reducing the amount of residual measurement noise passing through to the enhanced speech output.

Figure 6 compares the spectrograms for the non-oracle and proposed Kalman filter for speech

that has been corrupted by white noise and coloured F16 noise at 5 dB SNR. We can see from Figures

6(d) and (h) that the enhanced speech from the proposed method does not suffer from residual

noise in the silence regions, as opposed to the non-oracle method with no gain modification.

4 Experimental Setup

4.1 Corpus

The NOIZEUS speech corpus, which is comprised of 30 phonetically balanced sentences belonging

to six speakers (three male, three female) and sampled at 8 kHz [1], was utilised for the experiments

presented in this paper. For the objective experiments, a stimuli set was generated that has been

corrupted by a range of additive coloured noises at four SNR levels (0, 5, 10, and 15 dB). For the

subjective experiments, a stimuli set of two sentences (one for each gender) was corrupted by 5 dB

additive coloured (factory2) noise.

4.2 Speech Quality measurement

Objective evaluation of speech quality was performed via three metrics: the PESQ (Perceptual

Evaluation of Speech Quality) score [25], and Segmental SNR (SSNR) and Log-Likelihood Ratio

(LLR) [1]. For each metric, mean scores for each input SNR, noise type and treatment type were

calculated across all 30 sentences of the NOIZEUS speech corpus.

For the subjective listening experiments, blind AB listening tests were used to determine subjective

treatment type preference. A total of four speech enhancement treatment types as well as the clean

and noisy speech were played as stimuli pairs to a listener. This represented a total of 60 stimuli

pairs (30 for each sentence) played in random order to each listener, except for comparisons between

3We assume that a whitening filter has been applied before LPC parameter estimation.
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the same treatment type. The listener was provided with the following options for each stimuli

pair: either the first or second stimuli was perceptually better, or a third response indicating that

there was no perceived difference between them. Fifteen english speaking participants completed

the listening tests, and subjective results are provided in terms of their average preference score.

4.3 Speech Treatment Types

The proposed algorithm will be compared to the original and oracle Kalman filter as well as the

MMSE-STSA method [4]. Stimuli for the following six treatment types were constructed.

1. Clean: Original clean speech.

2. Noisy: Speech corrupted with specified level of additive coloured noise.

3. KF-Oracle: Kalman filter with LPCs estimated from clean speech, 20ms, p = 10, q = 40,

no overlap [6].

4. KF-Normal: Kalman filter with LPCs estimated from corrupted speech, 20ms, p = 10,

q = 40, no overlap [18].

5. MMSE: MMSE-STSA method with only corrupted speech, 20ms, p = 10, q = 40, no overlap,

no SPU (Speech Presence Uncertainty) [4].

6. KF-Proposed: Proposed Kalman filter with robust metric tuning and LPCs estimated from

whitened corrupted speech, 20ms, p = 10, q = 40, no overlap.

7. W-WT: Wiener filtering based wavelet-thresholding multi-taper spectra with only corrupted

speech, 20ms, 16 tapers [9].

5 Results and Discussion

Table 1: Average PESQ results for the comparison of speech enhancement methods
over the NOIZEUS speech corpus corrupted with additive factory2 coloured noise.

Method
Input SNR (dB)

0 5 10 15

Noisy 1.98 2.32 2.63 2.96
KF-Oracle 2.51 2.83 3.11 3.43
KF-Normal 2.11 2.45 2.76 3.11
KF-Proposed 2.35 2.70 3.04 3.38
MMSE 2.41 2.72 3.01 3.30
W-WT 1.92 2.36 2.72 3.15

Table 2: Average PESQ results for the comparison of speech enhancement methods
over the NOIZEUS speech corpus corrupted with additive F16 coloured noise.

Method
Input SNR (dB)

0 5 10 15

Noisy 1.76 2.08 2.39 2.74
KF-Oracle 2.30 2.58 2.85 3.17
KF-Normal 1.89 2.22 2.53 2.88
KF-Proposed 2.15 2.48 2.82 3.14
MMSE 2.21 2.54 2.84 3.14
W-WT 1.70 2.13 2.50 2.89
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Table 3: Average Segmental SNR results for the comparison of speech enhancement
methods over the NOIZEUS speech corpus corrupted with additive factory2 coloured
noise.

Method
Input SNR (dB)

0 5 10 15

Noisy -4.53 -1.71 1.48 4.99
KF-Oracle 3.52 5.39 7.44 10.10
KF-Normal -2.51 0.31 3.33 6.68
KF-Proposed 0.45 1.96 3.26 4.69
MMSE -0.57 2.19 4.86 7.43
W-WT 0.58 2.68 5.07 7.88

Table 4: Average Segmental SNR results for the comparison of speech enhancement
methods over the NOIZEUS speech corpus corrupted with additive F16 coloured noise.

Method
Input SNR (dB)

0 5 10 15

Noisy -4.69 -1.88 1.24 4.73
KF-Oracle 3.07 4.75 6.75 9.39
KF-Normal -2.70 -0.07 2.82 6.16
KF-Proposed -0.04 1.57 3.20 4.84
MMSE -0.96 1.57 4.01 6.66
W-WT -0.15 2.02 4.61 7.48

Table 5: Average LLR results for the comparison of speech enhancement methods over
the NOIZEUS speech corpus corrupted with additive factory2 coloured noise.

Method
Input SNR (dB)

0 5 10 15

Noisy 0.88 0.68 0.51 0.38
KF-Oracle 0.41 0.32 0.26 0.19
KF-Normal 0.81 0.61 0.46 0.33
KF-Proposed 0.91 0.66 0.49 0.38
MMSE 0.72 0.52 0.40 0.29
W-WT 1.25 1.00 0.81 0.60

Table 6: Average LLR results for the comparison of speech enhancement methods over
the NOIZEUS speech corpus corrupted with additive F16 coloured noise.

Method
Input SNR (dB)

0 5 10 15

Noisy 1.09 0.91 0.73 0.54
KF-Oracle 0.52 0.44 0.36 0.27
KF-Normal 1.01 0.83 0.66 0.48
KF-Proposed 1.03 0.81 0.63 0.48
MMSE 0.87 0.68 0.52 0.37
W-WT 1.43 1.23 1.03 0.83

Tables 1 and 2 show the average PESQ scores for all treatment types for stationary coloured

noises, demonstrating that all enhancement methods improved upon the speech quality of the
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noisy signal (Noisy). When comparing the PESQ results for the Kalman filter treatment types

(KF-Normal, KF-Oracle, and KF-Proposed), we can see the negative effect of estimation bias

that is introduced by utilising the noise corrupted speech model. This is shown by the PESQ of

KF-Proposed improving upon those of KF-Normal and being similar but less than the KF-Oracle

results. Comparing KF-proposed to the current methods of MMSE and W-WT, it is seen to achieve

consistent improvement over W-WT while it can be considered competitive when comparing it to

the MMSE treatment type. In light of these results, it should be noted that PESQ was originally

developed for speech coding where the distortions are different to those encountered in speech

enhancement.

Tables 3 and 4 show the segmental SNR results for the same two coloured noises. Overall, the

KF-Oracle has the highest results. For the lower values of input SNR, the KF-Proposed results are

higher than those of the MMSE and KF-Normal treatment types while being competitive with W-

WT. As the input SNR increases, which means that the input speech is less noisy, the KF-Proposed

SSNRs do not increase as much as the other treatment types. The SSNR metric is sensitive to

the energy within the signal frames, such that deviations of energy between the two will have a

large effect on the output. The KF-Proposed method alters the Kalman filter gain and it has been

mentioned to have an over suppression effect on the speech. This produces an adverse effect on

the SSNR as the signal energy will be reduced, and thus the SSNR will be impacted. Tables 5

and 6 display the LLR results for both factory2 and F16 coloured noises. It is observable that the

KF-Proposed is consistently lower than W-WT while being competitive with the MMSE treatment

type. It was found, that both SSNR and LLR objective results do not correlate with the subjective

testing.
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Figure 7: The mean subjective preference score with a 95% confidence interval for the
treatment types applied on sp10 (male speaker) from the Noizeus database.

Figures 7 and 8 contain the mean preference scores as well as the 95% confidence interval for blind

AB listening tests performed on male and female spoken phrases, respectively. Both figures show

KF-Proposed as the most preferred treatment type (excluding clean). The analysis of variance
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Table 7: ANOVA table for the male stimuli subjective preference scores (α = 0.05).
df - Degrees of Freedom, SS - Sum of Squares, MS - Mean Squares, Fstatistic - F
statistic, Fα - F critical [26]. The null hypothesis H0 (means are all equal) is rejected
(Fα = 2.324).

Source df SS MS F -statistic
Treatment 5.000 661.867 132.373 62.952
Error 84.000 176.633 2.103
Total 89.000 838.500

Table 8: ANOVA table for the female stimuli subjective preference scores (α = 0.05).
df - Degrees of Freedom, SS - Sum of Squares, MS - Mean Squares, Fstatistic - F
statistic, Fα - F critical [26]. The null hypothesis H0 (all means are equal) is rejected
(Fα = 2.324).

Source df SS MS F -statistic
Treatment 5.000 618.033 123.607 63.908
Error 84.000 162.467 1.934
Total 89.000 780.500

Table 9: Differences between mean subjective scores and significance of pairwise com-
parisons using Tukey’s Honestly Significant Difference test of the male stimuli. Differ-
ences larger than 1.092 are significant (marked with *) at the α = 0.05 level.

KF KF KF
MMSE Noisy

Normal Oracle Proposed
Clean 7.27* 5.23* 3.43* 5.77* 8.30*

KF-Normal 2.03* 3.83* 1.50* 1.03
KF-Oracle 1.80* 0.53 3.07*

KF-Proposed 2.33* 4.87*
MMSE 2.53*

Table 10: Differences between mean subjective scores and significance of pairwise com-
parisons using Tukey’s Honestly Significant Difference test of the female stimuli. Dif-
ferences larger than 1.047 are significant (marked with *) at the α = 0.05 level.

KF KF KF
MMSE Noisy

Normal Oracle Proposed
Clean 6.87* 5.73* 3.70* 5.50* 8.20*

KF-Normal 1.13* 3.17* 1.37* 1.33*
KF-Oracle 2.03* 0.23 2.47*

KF-Proposed 1.80* 4.50*
MMSE 2.70*
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Figure 8: The mean subjective preference score with a 95% confidence interval for the
treatment types applied on sp29 (female speaker) from the Noizeus database.

(ANOVA) results are presented in Tables 7 and 8 where the degrees of freedom (df), F-statistic

(Fstatistic), sum of squares (SS), and mean squares (MS) [26] are listed. For both tables, the

F-statistic is larger than its respective F-critical mean (Fα) at α = 0.05, thus the null hypothesis

is rejected, which indicates that the different sets of data are not from the same source.

Tables 9 and 10 contains the results of the Tukey Honestly Significant Difference test, in which

the KF-Proposed data is seen to be significantly different from all other treatment types for both

male and female utterances. Therefore, the KF-Proposed method is shown to be significantly

preferred by human listeners in comparison to the other enhancement methods.

Looking again at Figures 7 and 8, it is evident that the KF-Oracle treatment type has a

lower preference score. As the speech model of KF-Oracle is derived from the clean speech, the

performance is typically preferred, and objectively the KF-Oracle treatment achieves higher PESQ

scores. Through informal questioning of the listeners, it was discovered that the abrupt change

between noisy speech segments and regions of silence was perceived to be more annoying than the

other treatment types, where there are less abrupt changes in the background noise. This is due to

the effects of the Kalman filter gain. Since the low order speech model is unable to estimate the long

term information of speech, the Kalman filter gain adds a portion of the noisy observation to the

a priori estimate to best represent that speech segment. In the regions where only noise is present,

the oracle Kalman filter functions optimally in suppressing all noise, as seen in Figures 9 (c) and 10

(c), which is dispersed between segments of speech causing the boundaries to perceptually sound

disruptive.

When comparing the spectrograms of the Kalman filter treatment types seen in Figure 9, the

noise reduction seen when going from KF-Normal to KF-Proposed and KF-Oracle is visibly im-

proved. KF-Oracle has better noise reduction during regions containing noise only and the spec-

trogram is visibly darker during regions of speech when compared to KF-Proposed. The lessening
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Figure 9: Spectrograms for the treatment types for sp10 corrupted with 5dB factory2
coloured noise: (a) clean, (b) noise corrupted, (c) oracle Kalman filter (speech model
estimated from clean source), (d) Kalman filter (speech model estimated from corrupted
source) (e) proposed Kalman filter, (f) MMSE.

of the spectral intensity of the speech sections is due to the bias tuning algorithm, which reduces

the noise within the speech regions but also suppresses the speech spectral amplitude. However

the subjective testing suggested that this was considered more of an improvement than a distortion

since the impact of the noise within the speech region is reduced.
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Figure 10: Spectrograms for the treatment types for sp29 corrupted with 5dB factory2
coloured noise. (a) clean, (b) noise corrupted, (c) oracle Kalman filter (speech model
estimated from clean source), (d) Kalman filter (speech model estimated from corrupted
source) (e) proposed Kalman filter, (f) MMSE.

5.1 Evaluation on speech corrupted with white noise

In this section, we evaluate the proposed method for speech that has been corrupted with white

noise. The coloured noise Kalman filter is expected to appropriately handle the white case as well.

Table 11 shows the average PESQ results for the treatment types applied on speech that has been

corrupted with white noise. Both the MMSE and KF-Proposed results are of similar values to the

KF-Oracle treatment type, and they also have a large objective improvement over the KF-Normal

treatment. The KF-Proposed also has a consistently improved result when comparing to W-WT
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Table 11: Average PESQ results for the comparison of speech enhancement methods
over the NOIZEUS speech corpus corrupted with additive white noise.

Method
Input SNR (dB)

0 5 10 15

Noisy 1.57 1.83 2.13 2.47
KF-Oracle 2.11 2.34 2.63 2.95
KF-Normal 1.69 2.00 2.32 2.66
KF-Proposed 1.93 2.30 2.63 2.93
MMSE 1.96 2.33 2.64 2.94
W-WT 1.74 2.14 2.46 2.80

Table 12: Average Segmental SNR results for the comparison of speech enhancement
methods over the NOIZEUS speech corpus corrupted with additive white noise.

Method
Input SNR (dB)

0 5 10 15

Noisy -4.81 -2.00 1.13 4.59
KF-Oracle 2.99 4.63 6.71 9.23
KF-Normal -2.86 -0.20 2.73 6.05
KF-Proposed -0.16 1.62 3.80 5.93
MMSE -0.83 1.54 4.00 6.49
W-WT 0.73 3.12 5.92 8.59

Table 13: Average LLR results for the comparison of speech enhancement methods
over the NOIZEUS speech corpus corrupted with additive white noise.

Method
Input SNR (dB)

0 5 10 15

Noisy 1.47 1.34 1.17 0.97
KF-Oracle 0.84 0.77 0.68 0.57
KF-Normal 1.42 1.27 1.09 0.89
KF-Proposed 1.35 1.18 1.00 0.82
MMSE 1.26 1.08 0.88 0.69
W-WT 1.63 1.54 1.39 1.20

treatment type as well. This again indicates that even though the KF-Proposed does not re-estimate

the speech model source, similar results are obtainable by reducing the detrimental estimation bias

incurred when utilising the noisy source for the estimation of the speech model. Tables 12 and 13

contain the average SSNR and LLR results for the white noise corrupted speech. It can once again

be seen that the KF-Proposed is competitive with MMSE while both are objectively improved

when comparing to W-WT.

5.2 The Effect of the Whitening Filter

In this experiment, a whitening filter was applied, as in Figure 11, on the noisy frame during the

estimation of the speech model for the proposed Kalman filter. The noise estimate is obtained by

recording data during the region of silence where only noise is present. One hypothesis is whether

the improvements seen in the results of the KF-Proposed algorithm are due to the effect of the

whitening filter only instead of the proposed algorithm. Hence, further investigation was performed
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Table 14: Average PESQ results for the comparison of speech enhancement methods
over the NOIZEUS speech corpus corrupted with additive factory2 coloured noise.

Method
Input SNR (dB)

0 5 10 15

Noisy 1.98 2.33 2.63 2.96
KF-Oracle 2.51 2.83 3.12 3.44
KF-Normal 2.11 2.45 2.76 3.11
KF-Proposed 2.35 2.70 3.04 3.38
KF-Whitened 2.15 2.48 2.82 3.19

to determine whether applying the whitening filter (q = 40) alone can account for the improvements

observed in the objective results.

Comparing the average PESQ results within Tables 14 and 15, it is observable that the whitening

filter is not the major contributor to the objective improvement of KF-Proposed. Only a small

improvement in PESQ score was recorded when comparing KF-Whitened to KF-Normal, while

the PESQ score improvement from KF-Whitened to KF-Proposed is larger. This shows that the

improvements in the KF-Proposed method are primarily due to the bias reduction algorithm in

conjunction with the whitening filter.

Table 15: Average PESQ results for the comparison of speech enhancement methods
over the NOIZEUS speech corpus corrupted with additive F16 coloured noise.

Method
Input SNR (dB)

0 5 10 15

Noisy 1.76 2.08 2.39 2.74
KF-Oracle 2.30 2.58 2.85 3.17
KF-Normal 1.89 2.22 2.53 2.88
KF-Proposed 2.15 2.48 2.82 3.14
KF-Whitened 1.94 2.26 2.58 2.95
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6 Conclusion

In this paper, a Kalman filter has been proposed that dynamically tunes the Kalman filter gain

in order to minimise the effects of estimation bias in the speech model to provide competitive

performance with current speech enhancement methods.

The robustness metric, that was earlier reported in the instrumentation literature for quantifying

the level of robustness of the Kalman filter, was adapted to the speech enhancement context and

applied to dynamically tune the Kalman filter gain. This tuning was shown to reduce the level of

residual noise, thus improving the enhancement ability of the Kalman filter.

The PESQ objective results show that the proposed Kalman filter is on par with the speech en-

hancement performance of the MMSE method and improves upon Wiener WT algorithm. In terms

of enhancement performance, the proposed Kalman filter significantly improves upon the non-tuned

Kalman filter and is just below the oracle Kalman filter.

The subjective results, from the blind AB listening tests, show a significant preference of the

proposed method over all other treatment types, including the oracle Kalman filter, due to the

perceived reduction of noise during the regions of speech.
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