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a b s t r a c t 

Recently, the focus of speech enhancement research has shifted from minimum mean-square error (MMSE) ap- 

proaches, like the MMSE short-time spectral amplitude (MMSE-STSA) estimator, to state-of-the-art masking- and 

mapping-based deep learning approaches. We aim to bridge the gap between these two differing speech enhance- 

ment approaches. Deep learning methods for MMSE approaches are investigated in this work, with the objective 

of producing intelligible enhanced speech at a high quality. Since the speech enhancement performance of an 

MMSE approach improves with the accuracy of the used a priori signal-to-noise ratio (SNR) estimator, a resid- 

ual long short-term memory (ResLSTM) network is utilised here to accurately estimate the a priori SNR. MMSE 

approaches utilising the ResLSTM a priori SNR estimator are evaluated using subjective and objective measures 

of speech quality and intelligibility. The tested conditions include real-world non-stationary and coloured noise 

sources at multiple SNR levels. MMSE approaches utilising the proposed a priori SNR estimator are able to achieve 

higher enhanced speech quality and intelligibility scores than recent masking- and mapping-based deep learn- 

ing approaches. The results presented in this work show that the performance of an MMSE approach to speech 

enhancement significantly increases when utilising deep learning. 
Availability : The proposed a priori SNR estimator is available at: https://github.com/anicolson/DeepXi . 
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. Introduction 

The minimum mean-square error short-time spectral amplitude
MMSE-STSA) estimator is the benchmark against which other
peech enhancement methods are evaluated against ( Ephraim and
alah, 1984 ). Other prominent MMSE approaches to speech enhance-
ent include the minimum mean-square error log-spectral amplitude

MMSE-LSA) estimator ( Ephraim and Malah, 1985 ) and the Wiener
lter (WF) approach ( Loizou, 2013 ). While once at the forefront of
peech enhancement research, less attention has been paid to the
forementioned MMSE approaches as of late. The research focus of the
peech enhancement community has turned to deep learning methods. 

Deep learning methods have recently been employed for speech
nhancement, and have demonstrated state-of-the-art performance
 Zhang et al., 2018 ). Neural networks have been used as non-linear
aps from noisy speech spectra to clean speech spectra. A denoising

utoencoder (DAE) was pretrained for this task using noisy and clean
peech pairs ( Lu et al., 2013 ). A non-causal neural network clean
peech spectrum estimator was proposed that produced enhanced
peech with high objective quality scores ( Xu et al., 2015 ), which
ater incorporated multi-objective learning and ideal binary mask
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IBM)-based post-processing ( Xu et al., 2017 ). Neural networks have
lso been utilised to estimate time-frequency masks. A long short-term
emory (LSTM) network was used recently to estimate the ideal ratio
ask (IRM) ( Chen and Wang, 2017 ). 

We aim to bridge the gap between MMSE and deep learning
pproaches to speech enhancement, with the objective of produc-
ng enhanced speech that achieves higher quality and intelligibility
cores than that of recent masking- and mapping-based deep learning
pproaches. Here, the performance improvement that deep learning
ethods can provide to the aforementioned MMSE approaches is

nvestigated. Each MMSE approach requires the a priori signal-to-noise
atio (SNR) estimate of a noisy speech spectral component. The a priori

NR is formally described in Section 2.2 . Since the performance of an
MSE approach to speech enhancement improves with the accuracy of

he used a priori SNR estimator, deep learning methods are used here
o accurately estimate the a priori SNR. 

A priori SNR estimation is a difficult task, especially when consider-
ng the multitude of different noise sources. The decision-directed (DD)
pproach ( Ephraim and Malah, 1984 ) to a priori SNR estimation was
ntroduced with the MMSE-STSA estimator, and uses a weighted aver-
ge of the a priori SNR estimate from the previous and current frames.
th.edu.au (K.K. Paliwal). 

e 2019 

https://doi.org/10.1016/j.specom.2019.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/specom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2019.06.002&domain=pdf
https://www.github.com/anicolson/DeepXi
mailto:aaron.nicolson@griffithuni.edu.au
mailto:k.paliwal@griffith.edu.au
https://doi.org/10.1016/j.specom.2019.06.002


A. Nicolson and K.K. Paliwal Speech Communication 111 (2019) 44–55 

T  

w  

(  

(  

c  

c  

u  

s  

s  

e  

a

 

(  

M  

b  

a  

e  

R  

D  

p  

w  

t  

s  

t  

t  

c  

a  

e
 

u  

g  

c  

u  

b  

s  

p  

o  

s
 

s  

(  

t  

t  

S  

o  

a

2

2

 

f  

f  

s  

F  

n  

m  

e  

s

𝑥  

w  

n  

i  

Fig. 1. Block diagram of the short-time Fourier AMS speech enhancement 

framework. 
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he DD approach suffers from a frame delay problem ( Cappe, 1994 ),
hich is addressed by the two-step noise reduction (TSNR) technique
 Plapous et al., 2004 ). Harmonic regeneration noise reduction (HRNR)
 Plapous et al., 2005 ) further improves upon the TSNR technique by
omputing an a priori SNR estimate from enhanced speech with artifi-
ially restored harmonics. Other a priori SNR estimates are computed
sing a maximum-likelihood approach. Selective cepstro-temporal
moothing (SCTS) ( Breithaupt et al., 2008 ) performs adaptive temporal
moothing on the cepstral representation of the maximum-likelihood
stimate of the clean speech power spectrum, in order to estimate the
 priori SNR. 

It has been demonstrated that residual long short-term memory
ResLSTM) networks are proficient acoustic models ( Kim et al., 2017 ).
otivated by this, a causal ResLSTM network, and a non-causal residual

idirectional LSTM (ResBLSTM) network ( Schuster and Paliwal, 1997 )
re used here for a priori SNR estimation. Unlike previous a priori SNR
stimators, the proposed estimators do not require a noise estimator.
ecently, a recurrent neural network (RNN) was used to aid the
D approach in a priori SNR estimation ( Xia and Stern, 2018 ). The
roposed estimators differ by directly estimating the a priori SNR. This
as accomplished by using the oracle case as the training target, where

he oracle case is defined as the a priori SNR computed from the clean
peech and noise. It was found that mapping the oracle a priori SNR
arget values to the interval [0,1] improved the rate of convergence of
he used stochastic gradient descent algorithm. We propose to use the
umulative distribution function (CDF) of the oracle a priori SNR in dB
s the map. By using the CDF, large sections of the distribution are not
xcluded. 

In this work, MMSE approaches utilising deep learning are evaluated
sing subjective and objective measures of speech quality and intelli-
ibility. The tested conditions include real-world non-stationary and
oloured noise sources at multiple SNR levels. The MMSE approaches
tilising deep learning are compared to recent masking- and mapping-
ased deep learning approaches to speech enhancement. Frame-wise
pectral distortion (SD) levels are used to evaluate the accuracy of the
roposed a priori SNR estimators. The speech enhancement performance
f the mapped a priori SNR, the IRM, and the clean speech magnitude
pectrum as the training target is also evaluated. 

The paper is organised as follows: background knowledge is pre-
ented in Section 2 , including the analysis, modification, and synthesis
AMS) procedure, and MMSE approaches to speech enhancement;
he mapped a priori SNR training target is described in Section 3 ;
he ResLSTM and ResBLSTM a priori SNR estimators are described in
ection 4 ; the experiment setup is described in Section 5 , including the
bjective and subjective testing procedures; the results and discussion
re presented in Section 6 ; conclusions are drawn in Section 7 . 

. Background 

.1. AMS speech enhancement framework 

The short-time Fourier analysis, modification, and synthesis (AMS)
ramework is used here to produce the enhanced speech. The AMS
ramework ( Allen, 1977; Allen and Rabiner, 1977 ) consists of three
tages: (1) the analysis stage, where noisy speech undergoes short-time
ourier transform (STFT) analysis; (2) the modification stage, where the
oisy speech STFT is compensated for noise distortion to produce the
odified STFT; and (3) the synthesis stage, where the inverse STFT op-

ration is followed by overlap-add synthesis to construct the enhanced
peech. A block diagram of the AMS framework is shown in Fig. 1 . 

An uncorrelated additive noise model is assumed: 

 ( 𝑚 ) = 𝑠 ( 𝑚 ) + 𝑑( 𝑚 ) , (1)

here x ( m ), s ( m ), and d ( m ) denote the noisy speech, clean speech, and
oise, respectively, and m denotes the discrete-time index. Noisy speech
s analysed frame-wise using the running STFT ( Vary and Martin, 2006 ):
 c  

45 
( 𝑛, 𝑘 ) = 

𝑁 𝑙 −1 ∑
𝑚 =0 

𝑥 ( 𝑚 + 𝑛𝑁 𝑠 ) 𝑤 ( 𝑚 ) 𝑒 − 𝑗2 𝜋𝑚𝑘 ∕ 𝑁 𝑙 , (2)

here n denotes the frame index, k denotes the discrete-frequency index,
 l denotes the frame length in discrete-time samples, N s denotes the

rame shift in discrete-time samples, and w ( m ) is the analysis window
unction. 

In polar form, the STFT of the noisy speech is expressed as 

( 𝑛, 𝑘 ) = |𝑋( 𝑛, 𝑘 ) |𝑒 𝑗 ∠𝑋 ( 𝑛,𝑘 ) , (3)

here | X ( n, k )| and ∠X ( n, k ) denote the short-time magnitude and phase
pectrum of the noisy speech, respectively. The noisy speech magnitude
pectrum is enhanced, while the noisy speech phase spectrum remains
nchanged. The enhanced speech magnitude spectrum is an estimate
f the clean speech magnitude spectrum, and is denoted by |�̂� ( 𝑛, 𝑘 ) |.
he modified STFT is constructed by combining the enhanced speech
agnitude spectrum with the noisy speech phase spectrum: 

 ( 𝑛, 𝑘 ) = |�̂� ( 𝑛, 𝑘 ) |𝑒 𝑗 ∠𝑋 ( 𝑛,𝑘 ) . (4)

The enhanced speech is constructed by applying the inverse STFT
peration to the modified STFT, followed by least-squares overlap-add
ynthesis ( Griffin and Lim, 1984; Crochiere, 1980 ): 

 ( 𝑚 ) = 

∞∑
𝑛 =−∞

𝑤 ( 𝑚 − 𝑛𝑁 𝑠 ) 𝑦 𝑓 ( 𝑛, 𝑚 − 𝑛𝑁 𝑠 ) 

∞∑
𝑛 =−∞

𝑤 

2 ( 𝑚 − 𝑛𝑁 𝑠 ) 
, (5)

here 𝑦 𝑓 ( 𝑛, 𝑚 − 𝑛𝑁 𝑠 ) is the framed enhanced speech, after the inverse
TFT operation has been applied to the modified STFT. 

.2. A priori SNR 

An MMSE approach to speech enhancement utilises the a priori SNR
o compute a gain function. The gain function is subsequantly applied
o the magnitude spectrum of the noisy speech, which produces the
nhanced speech magnitude spectrum. The a priori SNR of a noisy
peech spectral component is defined as 

( 𝑛, 𝑘 ) = 

𝜆𝑠 ( 𝑛, 𝑘 ) 
𝜆𝑑 ( 𝑛, 𝑘 ) 

, (6)

here 𝜆𝑠 ( 𝑛, 𝑘 ) = E{ |𝑆( 𝑛, 𝑘 ) |2 } is the variance of the clean speech spectral
omponent, and 𝜆 ( 𝑛, 𝑘 ) = E{ |𝐷( 𝑛, 𝑘 ) |2 } is the variance of the noise
𝑑 
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Fig. 2. (Top) The distribution of 𝜉dB ( n , 64), over a sample of the training set. 

(Bottom) The CDF of 𝜉dB ( n , 64), assuming that 𝜉dB ( n , 64) is distributed normally 

(the sample mean and variance were found over the sample of the training set). 
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1 The sample mean and variance of 𝜉dB ( n, k ) for the k th noisy speech spectral 

component were found over 1 250 noisy speech signals created from the training 

clean speech and noise sets ( Section 5 ). 250 randomly selected (without replace- 

ment) clean speech signals from the training clean speech set were mixed with 

random sections of randomly selected (without replacement) noise signals from 

the training noise set. Each of these were mixed at five different SNR levels: − 5 
to 15 dB, in 5 dB increments. 

2 𝜉( 𝑛, 𝑘 ) values are obtained by applying the inverse of Eq. (13) 
(
𝜉dB ( 𝑛, 𝑘 ) = 

𝜎
√
2 erf −1 

(
2 ̂̄𝜉( 𝑛, 𝑘 ) − 1 

)
+ 𝜇

)
, followed by 10 ( ̂𝜉dB ( 𝑛,𝑘 )∕10) to the ̂̄𝜉( 𝑛, 𝑘 ) values. 
pectral component. As the clean speech and noise are unobserved dur-
ng speech enhancement, the a priori SNR must be estimated from the
bserved noisy speech. When training a supervised learning algorithm
o estimate the a priori SNR, the clean speech and noise are given (the
racle case). As a result, the variance of the clean speech and noise
pectral components are replaced by the squared magnitude of the clean
peech and noise spectral components, respectively. The oracle case
as been called the local a priori SNR previously ( Plapous et al., 2006 ).

.3. MMSE approaches to speech enhancement 

The minimum mean-square error short-time spectral amplitude
MMSE-STSA) estimator ( Ephraim and Malah, 1984 ) optimally esti-
ates (in the mean-square error (MSE) sense) the magnitude spectrum

f the clean speech. It uses both the a priori and a posteriori SNR of a
iven noisy speech spectral component to compute the gain function.
he a posteriori SNR is given by 

( 𝑛, 𝑘 ) = 

|𝑋( 𝑛, 𝑘 ) |2 
𝜆𝑑 ( 𝑛, 𝑘 ) 

. (7)

he MMSE-STSA estimator gain function is given by 

 MMSE-STSA 

( 𝑛, 𝑘 ) = 

√
𝜋

2 

√
𝜈( 𝑛, 𝑘 ) 
𝛾( 𝑛, 𝑘 ) 

exp 
(− 𝜈( 𝑛, 𝑘 ) 

2 

)
×

(
(1 + 𝜈( 𝑛, 𝑘 )) 𝐼 0 

(
𝜈( 𝑛, 𝑘 ) 

2 

)
+ 𝜈( 𝑛, 𝑘 ) 𝐼 1 

(
𝜈( 𝑛, 𝑘 ) 

2 

))
, (8)

here I 0 ( · ) and I 1 ( · ) denote the modified Bessel functions of zero and
rst order, respectively, and 𝜈( n, k ) is given by 

( 𝑛, 𝑘 ) = 

𝜉( 𝑛, 𝑘 ) 
𝜉( 𝑛, 𝑘 ) + 1 

𝛾( 𝑛, 𝑘 ) . (9)

The minimum mean-square error log-spectral amplitude (MMSE-
SA) estimator minimises the MSE between the clean and enhanced
peech log-magnitude spectra ( Ephraim and Malah, 1985 ). The
MSE-LSA gain function is given by 

 MMSE-LSA 

( 𝑛, 𝑘 ) = 

𝜉( 𝑛, 𝑘 ) 
𝜉( 𝑛, 𝑘 ) + 1 

exp 
{ 

1 
2 ∫

∞

𝜈( 𝑛,𝑘 ) 

𝑒 − 𝑡 

𝑡 
𝑑𝑡 

} 

. (10)

he integral in Eq. (10) is known as the exponential integral. 
The Wiener filter (WF) approach to estimating the clean speech

agnitude spectrum ( Loizou, 2013 ) minimises the MSE between the
lean and enhanced speech complex discrete Fourier transform (DFT)
oefficients. The gain function for the WF approach is given by 

 WF ( 𝑛, 𝑘 ) = 

𝜉( 𝑛, 𝑘 ) 
𝜉( 𝑛, 𝑘 ) + 1 

. (11)

he recently popularised ideal ratio mask (IRM) ( Chen and Wang, 2017 )
s the square-root WF (SRWF) approach gain function ( Lim and Oppen-
eim, 1979 ) computed from given clean speech and noise: 

 SRWF ( 𝑛, 𝑘 ) = 

√ 

𝜉( 𝑛, 𝑘 ) 
𝜉( 𝑛, 𝑘 ) + 1 

. (12)

. Mapped a priori SNR training target 

In preliminary experiments, it was found that mapping the oracle
 priori SNR (in dB) training target values for the k th noisy speech
pectral component, 𝜉dB ( n, k ), to the interval [0, 1] improved the rate
f convergence of the used stochastic gradient descent algorithm. The
umulative distribution function (CDF) of 𝜉dB ( n, k ) was used as the
ap. It is assumed that 𝜉dB ( n, k ) is distributed normally with mean 𝜇k 

nd variance 𝜎2 
𝑘 
: 𝜉dB ( 𝑛, 𝑘 ) ∼  ( 𝜇𝑘 , 𝜎2 𝑘 ) . Thus, the map is given by 

̄( 𝑛, 𝑘 ) = 

1 
2 

[ 

1 + erf 

( 

𝜉dB ( 𝑛, 𝑘 ) − 𝜇𝑘 

𝜎𝑘 

√
2 

) ] 

, (13)

here 𝜉( 𝑛, 𝑘 ) is the mapped a priori SNR. 
46 
The statistics of 𝜉dB ( n, k ) for the k th noisy speech spectral component
ere found over a sample of the training set. 1 As an example, the dis-

ribution of 𝜉dB ( n , 64) found over the aforementioned sample is shown
n Fig. 2 (top). It can be seen that it follows a normal distribution. A
oorly chosen logistic map will force large sections of the distribution
o the endpoints of the target interval, [0,1]. The CDF of 𝜉dB ( n , 64)
ver the sample is shown in Fig. 2 (bottom), and is used to map the
istribution of 𝜉dB ( n , 64) to the interval [0,1]. 

. ResLSTM & ResBLSTM a priori SNR estimators 

A residual long short-term memory (ResLSTM) network ( Kim et al.,
017 ) is used to estimate the a priori SNR for the MMSE approaches, as
hown in Fig. 3 (top). A ResLSTM consists of multiple residual blocks,
ith each block learning a residual function with reference to its input
 He et al., 2015 ). Residual connections allow for deep, powerful archi-
ectures ( He et al., 2016 ). The input to the ResLSTM is the magnitude
pectrum of the n th noisy speech frame, |𝑋( 𝑛, 𝑘 ) |, for 𝑘 = 0 , 1 , …, 𝑁 𝑙 ∕2 ,
here N l is the frame length in discrete-time samples. The ResLSTM
stimates the a priori SNR 

2 for each of the noisy speech magnitude
pectrum components. 

The ResLSTM consists of 5 residual blocks, with each block
ontaining a long short-term memory (LSTM) cell ( Hochreiter and
chmidhuber, 1997; Gers et al., 1999 ), F , with a cell size of 512.
STM cells are capable of learning both short and long-term temporal
ependencies. Using LSTM cells within the residual blocks enables
he ResLSTM to be a proficient sequence-based model. The residual
onnection is from the input of the residual block to after the LSTM
ell activation ( Wu et al., 2016 ). FC is a fully-connected layer with 512
𝑘 𝑘 
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Fig. 3. ResLSTM (top) and ResBLSTM (bottom) a priori SNR 

estimators. FC is a fully-connected layer. The output layer, 

O , is a fully-connected layer with sigmoidal units. F and B , 

denote forward and backward LSTM cells, respectively. 
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ectified Linear Units (ReLUs) ( Nair and Hinton, 2010 ). Layer normali-
ation is used before the activation function of FC ( Ba et al., 2016 ). The
utput layer, O , is a fully-connected layer with sigmoidal units. 

Shown in Fig. 3 (bottom) is the non-causal residual bidirectional
ong short-term memory (ResBLSTM) network a priori SNR estimator.
he ResBLSTM is identical to the ResLSTM, except that the residual
locks include both a forward and backward LSTM cell ( F and B , respec-
ively) ( Schuster and Paliwal, 1997 ), each with a cell size of 512. While
he concatenation of the forward and backward cell activations before
he residual connection is standard for a ResBLSTM ( Hanson et al.,
018 ), the summation of the activations is used in this work. 3 This was
o maintain a cell and residual connection size of 512, and to avoid
he use of long short-term memory projection (LSTMP) cells ( Sak et al.,
014 ). The residual connection was applied from the input of the
esidual block to after the summation of the forward and backward cell
ctivations. 

Details about the training strategy for the ResLSTM and ResBLSTM
 priori SNR estimators are given in Section 5.3 . Training time, memory
sage, and speech enhancement performance were considered when se-
ecting the hyperparameters for the ResLSTM and ResBLSTM networks. 4 

. Experiment setup 

.1. Signal processing, noise estimation, and a posteriori SNR estimation 

The Hamming window function was used for analysis and synthesis
 Picone, 1993; Huang et al., 2001; Paliwal and Wojcicki, 2008 ),
ith a frame length of 32 ms ( 𝑁 𝑙 = 512 ) and a frame shift of 16 ms
 𝑁 𝑠 = 256 ). The a priori SNR was estimated from the 257-point single-
ided noisy speech magnitude spectrum, which included both the
C frequency component and the Nyquist frequency component. The
MSE-based noise estimator with speech presence probability (SPP)

rom Gerkmann and Hendriks (2012) was used by the DD, TSNR, HRNR,
nd SCTS a priori SNR estimation methods. The a posteriori SNR was
stimated using both the observed noisy speech and the noise estimator
hen the DD approach, TSNR, HRNR, and SCTS a priori SNR estimation
ethods were used. When the ResLSTM and ResBLSTM a priori SNR

stimators were used, the a posteriori SNR was estimated from the a
riori SNR estimate using the following relationship: ̂𝛾( 𝑛, 𝑘 ) = 𝜉( 𝑛, 𝑘 ) + 1 .

.2. Training set 

The train-clean-100 set from the Librispeech corpus ( Panayotov et al.,
015 ) (28 539 utterances), the CSTR VCTK Corpus ( Veaux et al., 2017 )
42 015 utterances), and the si ∗ and sx ∗ training sets from the TIMIT
orpus ( Garofolo et al., 1993 ) (3 696 utterances) were included in the
lean speech training set. The QUT-NOISE dataset ( Dean et al., 2010 ),
he Nonspeech dataset ( Hu, 2004 ), the Environmental Background
oise dataset ( Saki et al., 2016; Saki and Kehtarnavaz, 2016 ), the noise
3 Following the intuition that residual networks behave like ensembles of rel- 

tively shallow networks ( Veit et al., 2016 ), the summation of the forward and 

ackward activations can be viewed as an ensemble of the activations with no 

eighting. 
4 The time taken for the completion of one training epoch for the ResLSTM 

nd the ResBLSTM networks was approximately 9 and 18 hours, respectively 

NVIDIA GTX 1080 Ti GPUs were used). 

 

d  

1

d

47 
et from the MUSAN corpus ( Snyder et al., 2015 ), multiple FreeSound
acks, 5 and coloured noise recordings (with an 𝛼 value ranging from − 2
o 2 in increments of 0.25) were included in the noise training set (2 382
ecordings). All clean speech and noise signals were single-channel,
ith a sampling frequency of 16 kHz. The noise corruption procedure

or the training set is described in Section 5.3 . 

.3. Training strategy 

The following strategy was employed for neural network training: 

• Cross-entropy as the loss function. 
• The Adam algorithm ( Kingma and Ba, 2014 ) for gradient descent

optimisation. 
• 5% of the clean speech training set was used as a validation set. 
• For each mini-batch, each clean speech signal was mixed with a ran-

dom section of a randomly selected noise signal from the noise train-
ing set at a randomly selected SNR level ( − 10 to 20 dB, in 1 dB in-
crements) to create the noisy speech signals. 

• A mini-batch size of 10 noisy speech signals. 
• The selection order for the clean speech signals was randomised be-

fore each epoch. 
• A total of 10 epochs were used to train the ResLSTM and ResBLSTM

networks. 
• The LSTM-IRM estimator ( Chen and Wang, 2017 ) was replicated

here, and used the noisy speech magnitude spectrum (as described
in Section 5.1 ) as its input. It was trained for 10 epochs using the
aforementioned training set. 

.4. Test set 

Four recordings of four real-world noise sources, including two
on-stationary and two coloured, were included in the test set. The two
eal-world non-stationary noise sources included voice babble from the
SG-10 noise dataset ( Steeneken and Geurtsen, 1988 ) and street music 6 

rom the Urban Sound dataset ( Salamon et al., 2014 ). The two real-
orld coloured noise sources included F16 and factory (welding) from

he RSG-10 noise dataset ( Steeneken and Geurtsen, 1988 ). 10 clean
peech signals were randomly selected (without replacement) from the
SP speech corpus 7 ( Kabal, 2002 ) for each of the four noise signal.
o create the noisy speech, a random section of the noise signal was
ixed with the clean speech at the following SNR levels: − 5 to 15 dB,

n 5 dB increments. This created a test set of 200 noisy speech files. The
oisy speech signals were single channel, with a sampling frequency of
6 kHz. 

.5. Spectral distortion 

The frame-wise spectral distortion (SD) ( Paliwal and Atal, 1991 ) is
efined as the root-mean-square difference between the a priori SNR
5 Freesound packs that were used: 147, 199, 247, 379, 622, 643, 1 133, 1 563, 

 840, 2 432, 4 366, 4 439, 15 046, 15 598, 21 558. 
6 Street music recording number 26 270 was used from the Urban Sound 

ataset. 
7 Only adult speakers were included from the TSP speech corpus. 

https://freesound.org/
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Table 1 

A priori SNR estimation SD levels for each of the a priori SNR estimators. The 

lowest SD for each noise source and at each SNR level is shown in boldface. 

The tested conditions include real-world non-stationary ( voice babble and street 

music ) and coloured ( F16 and factory ) noise sources at multiple SNR levels. 

Noise 𝜉( 𝑛, 𝑘 ) SNR level (dB) 

− 5 0 5 10 15 

Voice 

babble 

DD ( Ephraim and Malah, 1984 ) 18.5 17.7 17.2 17.0 17.2 

TSNR ( Plapous et al., 2004 ) 18.4 17.5 17.0 16.9 17.1 

HRNR ( Plapous et al., 2005 ) 19.5 18.9 18.5 18.4 18.6 

SCTS ( Breithaupt et al., 2008 ) 17.5 16.8 16.5 16.5 16.9 

ResLSTM 14.5 13.9 13.3 12.8 12.4 

ResBLSTM 12.7 12.1 11.6 11.2 10.9 

Street 

music 

DD ( Ephraim and Malah, 1984 ) 19.9 18.6 17.6 17.0 16.8 

TSNR ( Plapous et al., 2004 ) 19.7 18.4 17.4 16.8 16.6 

HRNR ( Plapous et al., 2005 ) 19.8 18.7 17.9 17.5 17.5 

SCTS ( Breithaupt et al., 2008 ) 18.6 17.4 16.6 16.2 16.2 

ResLSTM 13.5 13.1 12.7 12.3 12.0 

ResBLSTM 11.8 11.4 11.1 10.7 10.5 

F16 

DD ( Ephraim and Malah, 1984 ) 22.1 20.5 19.2 18.2 17.5 

TSNR ( Plapous et al., 2004 ) 21.8 20.2 18.9 17.9 17.2 

HRNR ( Plapous et al., 2005 ) 20.7 19.4 18.4 17.7 17.3 

SCTS ( Breithaupt et al., 2008 ) 20.8 19.2 18.0 17.1 16.6 

ResLSTM 13.3 12.7 12.3 12.0 11.7 

ResBLSTM 11.5 11.0 10.7 10.4 10.2 

Factory 

DD ( Ephraim and Malah, 1984 ) 24.0 22.2 20.7 19.4 18.5 

TSNR ( Plapous et al., 2004 ) 23.7 22.0 20.4 19.2 18.3 

HRNR ( Plapous et al., 2005 ) 23.0 21.4 20.1 19.1 18.4 

SCTS ( Breithaupt et al., 2008 ) 22.4 20.7 19.3 18.2 17.4 

ResLSTM 13.8 13.2 12.7 12.4 12.1 

ResBLSTM 13.0 12.2 11.7 11.3 11.0 
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e  
stimate in dB, 𝜉dB ( 𝑛, 𝑘 ) , and the oracle case in dB, 𝜉dB ( n, k ), for the n th

rame 8 : 

 

2 
𝑛 
= 

1 
𝑁 𝑙 ∕2 + 1 

𝑁 𝑙 ∕2 ∑
𝑘 =0 

[ 𝜉dB ( 𝑛, 𝑘 ) − 𝜉dB ( 𝑛, 𝑘 ) 
]2 . (14)

verage SD levels were obtained over the test set. 

.6. Objective evaluation 

Objective measures were used to evaluate both the quality and in-
elligibility of the enhanced speech. Each objective measure evaluated
he enhanced speech with respect to the corresponding clean speech.
verage objective scores were obtained over the test set. The objective
easures that were used included: 

• The mean opinion score of the objective listening quality (MOS-LQO)
( ITU-T Recommendation P.800.1, 2006 ) was used for objective
quality evaluation, where the wideband perceptual evaluation of
quality (Wideband PESQ) ( ITU-T Recommendation P.862.2, 2007 )
was the objective model used to obtain the MOS-LQO. 

• The short-time objective intelligibility (STOI) measure was used for
objective intelligibility evaluation ( Taal et al., 2010; 2011 ). 

.7. Subjective evaluation 

Subjective testing was used to evaluate the quality of the enhanced
peech produced by the speech enhancement methods. The mean sub-
ective preference (%) was used as the subjective quality measure. Mean
ubjective preference (%) scores were determined from a series of AB
istening tests ( So and Paliwal, 2011 ). Each AB listening test involved
 stimuli pair. Each stimulus was either clean, noisy, or enhanced
peech. The enhanced speech stimuli were produced by the MMSE-LSA
stimator utilising the DD approach, Xu2017 ( Xu et al., 2015; 2017 ),
nd the MMSE-LSA estimator utilising the ResBLSTM a priori SNR
stimator. Therefore, each stimulus belonged to one of the following
lasses: clean speech, noisy speech, enhanced speech produced by the
MSE-LSA estimator utilising the DD approach, Xu2017 enhanced

peech, or enhanced speech produced by the MMSE-LSA estimator
tilising the ResBLSTM a priori SNR estimator. 

After listening to a stimuli pair, the listeners’ preference was deter-
ined by selecting one of three options. The first and second options

ndicated a preference for one of the two stimuli, while the third option
ndicated an equal preference for both stimuli. Pair-wise scoring was
sed, with a score of +1 awarded to the preferred class, and 0 to the
ther. If the listener had an equal preference for both stimuli, each
lass was awarded a score of +0.5. Participants could re-listen to the
timuli pair before selecting an option. 

Two utterances 9 from the test set were used as the clean speech
timuli: utterance 35 _ 10 , as uttered by male speaker MF , and utter-
nce 01 _ 03 , as uttered by female speaker FA. Voice babble from the
est set was mixed with the clean speech stimuli at an SNR level
f 5 dB, producing the noisy speech stimuli. The enhanced speech
timuli for each of the speech enhancement methods was produced
rom the noisy speech stimuli. For each utterance, all possible stimuli
air combinations were presented to the listener (i.e. double-blind
esting). Each participant listened to a total of 40 stimuli pair com-
inations. A total of five English-speaking listeners participated.
ach listening test was conducted in a separate session, in a quiet
oom using closed circumaural headphones at a comfortable listening
evel. 
8 𝜉dB ( n, k ) and 𝜉𝑑𝐵 ( 𝑛, 𝑘 ) values that were less than − 40 dB, or greater than 

0 dB were clipped to − 40 dB and 60 dB, respectively. 
9 Using the entirety of the test set was not feasible. 
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48 
. Results and discussion 

.1. A priori SNR estimation accuracy 

The a priori SNR estimation SD levels for each of the a priori SNR
stimators is shown in Table 1 . The SD levels are used to evaluate the
ccuracy of each a priori SNR estimator. For real-world non-stationary
oise sources, the ResLSTM a priori SNR estimator produced lower
D levels than the previous a priori SNR estimation methods (DD,
SNR, HRNR, and SCTS), with an average SD reduction of 4.7 dB when
ompared to the DD approach. The ResBLSTM a priori SNR estimator
chieved an average SD reduction of 6.4 dB when compared to the DD
pproach, showing improved accuracy when causality is not a require-
ent. The proposed a priori SNR estimators also produced the lowest

D levels for the real-world coloured noise sources. The ResLSTM and
esBLSTM a priori SNR estimators achieved an average SD reduction of
.6 and 8.9 dB, respectively, when compared to the DD approach. 

The proposed a priori SNR estimators significantly outperform the
revious a priori SNR estimation methods. Evaluating the results pre-
ented by Xia and Stern (2018) , the RNN-assisted DD approach (a deep
earning-based a priori SNR estimator) could only outperform the DD
pproach at higher SNR levels (5 dB and greater for signal-to-distortion
atio (SDR)). Here, the ResLSTM and ResBLSTM a priori SNR estimators
ignificantly outperform the DD approach for all conditions. 

.2. MMSE approaches utilising deep learning 

.2.1. MMSE-STSA estimator utilising deep learning 

The objective quality and intelligibility scores for the MMSE-STSA
stimator utilising each of the a priori SNR estimators are shown
n Figs. 4 and 5 , respectively. The MMSE-STSA estimator achieved
he highest objective quality scores when deep learning was used,
or both the real-world non-stationary and coloured noise sources.
he MMSE-STSA estimator utilising the ResLSTM and ResBLSTM a

riori SNR estimators achieved an average MOS-LQO improvement
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Fig. 4. MMSE-STSA estimator objective quality (MOS-LQO) scores for each a priori SNR estimator. The tested conditions include real-world non-stationary ( voice 

babble and street music ) and coloured ( F16 and factory ) noise sources at multiple SNR levels. 

Fig. 5. MMSE-STSA estimator objective intelligibility (STOI) scores for each a priori SNR estimator. The tested conditions include real-world non-stationary ( voice 

babble and street music ) and coloured ( F16 and factory ) noise sources at multiple SNR levels. 

Fig. 6. MMSE-LSA estimator objective quality (MOS-LQO) scores for each a priori SNR estimator. The tested conditions include real-world non-stationary ( voice 

babble and street music ) and coloured ( F16 and factory ) noise sources at multiple SNR levels. 

Fig. 7. MMSE-LSA estimator objective intelligibility (STOI) scores for each a priori SNR estimator. The tested conditions include real-world non-stationary ( voice 

babble and street music ) and coloured ( F16 and factory ) noise sources at multiple SNR levels. 
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f 0.30 and 0.52, respectively, compared to when the DD approach
as used. The highest objective intelligibility scores were achieved by

he MMSE-STSA estimator when deep learning was used, for both the
eal-world non-stationary and coloured noise sources. The MMSE-STSA
stimator utilising the ResLSTM and ResBLSTM a priori SNR estimators
chieved an average STOI improvement of 5.8% and 8.2%, respectively,
ompared to when the DD approach was used. The MMSE-STSA esti-
ator utilising either of the proposed a priori SNR estimators achieved
igher objective intelligibility scores than noisy speech, a feat that it
truggled to achieve consistently with the other a priori SNR estimation
ethods. It can be seen that there is a correlation between a priori SNR
49 
stimation accuracy (given by the SD levels) and speech enhancement
erformance (given by the objective quality and intelligibility scores). 

.2.2. MMSE-LSA estimator utilising deep learning 

The objective quality and intelligibility scores for the MMSE-LSA
stimator utilising each of the a priori SNR estimators are shown in
igs. 6 and 7 , respectively. The MMSE-LSA estimator achieved the
ighest objective quality scores when deep learning was used, for
oth the real-world non-stationary and coloured noise sources. The
MSE-LSA estimator utilising the ResLSTM and ResBLSTM a priori

NR estimators achieved an average MOS-LQO improvement of 0.23
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Fig. 8. WF approach objective quality (MOS-LQO) scores for each a priori SNR estimator. The tested conditions include real-world non-stationary ( voice babble and 

street music ) and coloured ( F16 and factory ) noise sources at multiple SNR levels. 

Fig. 9. WF approach objective intelligibility (STOI) scores for each a priori SNR estimator. The tested conditions include real-world non-stationary ( voice babble and 

street music ) and coloured ( F16 and factory ) noise sources at multiple SNR levels. 
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Table 2 

The average improvement over the MMSE approach in the 

preceding row is shown for both objective quality (MOS- 

LQO) and intelligibility (STOI). 

𝜉𝜉𝜉 Gain MOS-LQO STOI 

ResLSTM 

WF – –

MMSE-STSA + 0.10 + 1.76% 

MMSE-LSA + 0.02 − 0.15% 

ResBLSTM 

WF + 0.07 + 1.37% 

MMSE-STSA + 0.13 + 1.19% 

MMSE-LSA + 0.02 − 0.08% 
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nd 0.45, respectively, compared to when the DD approach was used.
he objective intelligibility scores show that deep learning enabled the
MSE-LSA estimator to produce the most intelligible enhanced speech,

or both the real-world non-stationary and coloured noise sources. The
MSE-LSA estimator utilising the ResLSTM and ResBLSTM a priori SNR

stimators achieved an average STOI improvement of 5.8% and 8.3%,
espectively, compared to when the DD approach was used. 

.2.3. WF approach utilising deep learning 

The objective quality and intelligibility scores for the WF approach
tilising each of the a priori SNR estimators are shown in Figs. 8 and 9 ,
espectively. The WF approach achieved the highest objective quality
cores when deep learning was used, for both the real-world non-
tationary and coloured noise sources. The WF approach utilising the
esLSTM and ResBLSTM a priori SNR estimators achieved an average
OS-LQO improvement of 0.13 and 0.32, respectively, compared to
hen the DD approach was used. The objective intelligibility scores

how that deep learning enabled the WF approach to produce the most
ntelligible enhanced speech, for both the real-world non-stationary
nd coloured noise sources. The WF approach utilising the ResLSTM
nd ResBLSTM a priori SNR estimators achieved an average STOI
mprovement of 5.5% and 8.5%, respectively, compared to when the
D approach was used. 

.2.4. Comparison of MMSE approaches 

A comparison of each MMSE approach utilising the proposed a

riori SNR estimators is shown in Table 2 . It can be seen that both the
MSE-STSA and MMSE-LSA estimators outperformed the WF approach.
s described previously, the MMSE-STSA and MMSE-LSA estimators
re optimal MMSE clean speech magnitude spectrum estimators, 10 

hereas the WF approach is the optimal MMSE clean speech complex
FT coefficient estimator. The target in this work is the clean speech
agnitude spectrum, which favours the MMSE-STSA and MMSE-LSA

stimators. This gives reason as to why the MMSE-STSA and MMSE-LSA
stimators outperformed the WF approach. The MMSE-LSA estimator
10 Specifically, the MMSE-LSA estimator is the optimal clean speech log - 

agnitude spectrum estimator. 

p

o

[

50 
as selected for the speech enhancement comparison in Section 6.4 as
t achieved the highest average objective quality score, and the second
ighest average objective intelligibility score. 

.3. Comparison of training targets 

Here, the speech enhancement performance of the (mapped) a priori

NR, the IRM, and the clean speech magnitude spectrum as the training
arget is evaluated. The training strategy described in Section 5.3 was
sed to train an identical ResLSTM network for each training target. 11 

he SRWF approach, MMSE-STSA estimator, and the MMSE-LSA esti-
ator are used to evaluate the a priori SNR training target. The SRWF

pproach is used instead of the WF approach as it has the same form
s the IRM. The objective quality and intelligibility scores achieved
y each training target are shown in Figs. 10 and 11 , respectively.
he a priori SNR training target achieved the highest objective quality
cores, for both the real-world non-stationary and coloured noise
ources (except for voice babble at 15 dB). However, the IRM training
arget achieved the highest objective intelligibility scores, for both the
eal-world non-stationary and coloured noise sources (except for factory

t 0 dB). 
11 The cross-entropy loss function was used when optimising for the mapped a 

riori SNR and the IRM. In contrast, the quadratic loss function was used when 

ptimising for the clean speech MS, as its values are not bounded to the interval 

0,1]. 
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Fig. 10. Objective quality (MOS-LQO) scores for each training target. The tested conditions include real-world non-stationary ( voice babble and street music ) and 

coloured ( F16 and factory ) noise sources at multiple SNR levels. 

Fig. 11. Objective intelligibility (STOI) scores for each training target. The tested conditions include real-world non-stationary ( voice babble and street music ) and 

coloured ( F16 and factory ) noise sources at multiple SNR levels. 

Table 3 

The average improvement over the training target in 

the preceding row is shown for both objective quality 

(MOS-LQO) and intelligibility (STOI). 

Target MOS-LQO STOI 

| S | – –

IRM + 0.33 + 3.49% 

𝜉 SRWF + 0.01 − 0.89% 

𝜉 MMSE-STSA + 0.03 − 0.09% 

𝜉 MMSE-LSA + 0.02 − 0.15% 
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12 Five past and five future frames are used as part of its input feature vector. 
It can be seen in Table 3 and in Figs. 10 and 11 that the a priori SNR
nd the IRM both outperform the clean speech magnitude spectrum
s the training target. These results are consistent with those reported
n the literature. A study on training targets by Wang et al. (2014) found
hat the IRM as the training target produces significantly higher objec-
ive quality and intelligibility scores than the clean speech magnitude
pectrum (as indicated by FFT-MAG in Wang et al., 2014 ) for both real-
orld non-stationary and coloured noise sources at multiple SNR levels
 − 5, 0, and 5 dB). It has also been shown by Zhao et al. (2016) that
igher objective intelligibility scores are obtained when the IRM is used
nstead of the clean speech magnitude spectrum as the training target,
or voice babble at multiple SNR levels ( − 5, 0, and 5 dB) (as shown by
ig. 2 in Wang et al., 2014 ). 

As can be seen in Table 3 , there is a trade-off between enhanced
peech quality and intelligibility when selecting between the IRM
nd the a priori SNR as the training target. If it is desired to produce
nhanced speech that is more intelligible, the IRM should be chosen
s the training target. If it is desired for the enhanced speech to have
 higher quality, the a priori SNR should be chosen as the training
arget. A further trade-off between enhanced speech quality and intel-
igibility can be made through the selection of the MMSE approach.
mongst the MMSE approaches, the SRWF approach produces the
ost intelligible enhanced speech, but with the worst quality. On the

ontrary, the MMSE-LSA estimator produces the least intelligible en-
anced speech, but with the highest quality. The MMSE-STSA estimator
ffers a compromise between the SRWF approach and the MMSE-LSA
stimator. 
51 
.4. Comparison of speech enhancement methods 

Here, an MMSE approach utilising deep learning is compared to
oth a masking- and a mapping-based deep learning approach to speech
nhancement. The MMSE-LSA estimator, utilising the ResLSTM and
esBLSTM a priori SNR estimators, is compared to the LSTM-IRM esti-
ator from Chen and Wang (2017) , and the non-causal neural network

lean speech spectrum estimator 12 that uses multi-objective learning
nd IBM-based post-processing from Xu et al. (2015, 2017) , referred to
s Xu2017 in this subsection. The MMSE-LSA estimator utilising the DD
pproach is also compared, to represent earlier speech enhancement
ethods. 

.4.1. Objective scores 

The objective quality and intelligibility scores achieved by each of
he speech enhancement methods for each tested condition are shown in
igs. 12 and 13 , respectively. The MMSE-LSA estimator utilising the non-
ausal ResBLSTM a priori SNR estimator produced enhanced speech with
igher objective quality and intelligibility scores than the LSTM-IRM
stimator and Xu2017 for both real-world non-stationary and coloured
oise sources. The MMSE-LSA estimator utilising the causal ResLSTM a

riori SNR estimator achieved higher objective intelligibility scores than
u2017 for all conditions, and the LSTM-IRM estimator for all noise
ources other than voice babble . It also achieved higher objective quality
cores than the LSTM-IRM estimator for all conditions, and Xu2017 for
treet music at high SNR levels, for F16 at low SNR levels, and for factory

t all SNR levels. It is important to stress that Xu2017 is a non-causal
ystem, whilst the ResLSTM a priori SNR estimator is a causal system. 

Table 4 details the average improvement that the proposed a priori

NR estimators hold over the other speech enhancement methods.
he MMSE-LSA estimator utilising the causal ResLSTM a priori SNR
stimator achieved the highest average objective quality and intelli-
ibility scores amongst the causal speech enhancement methods. It
lso achieved a higher average intelligibility score than Xu2017 (a
on-causal system). The MMSE-LSA estimator utilising the non-causal
esBLSTM a priori SNR estimator achieved the highest average objective
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Fig. 12. Objective quality (MOS-LQO) scores for the MMSE-LSA estimator utilising the DD approach, the LSTM-IRM estimator, Xu2017, and the MMSE-LSA estimator 

utilising both the ResLSTM and ResBLSTM a priori SNR estimators. The tested conditions include real-world non-stationary ( voice babble and street music ) and coloured 

( F16 and factory ) noise sources at multiple SNR levels. 

Fig. 13. Objective intelligibility (STOI) scores for the MMSE-LSA estimator utilising the DD approach, the LSTM-IRM estimator, Xu2017, and the MMSE-LSA estimator 

utilising both the ResLSTM and ResBLSTM a priori SNR estimators. The tested conditions include real-world non-stationary ( voice babble and street music ) and coloured 

( F16 and factory ) noise sources at multiple SNR levels. 

Table 4 

The average improvement over the speech enhancement method in the pre- 

ceding row is shown for both objective quality (MOS-LQO) and intelligibility 

(STOI). 

Method Casual MOS-LQO STOI 

MMSE-LSA; DD 𝜉 ( Ephraim and Malah, 1984 ) Yes – –

LSTM-IRM est. ( Chen and Wang, 2017 ) Yes + 0.01 + 4.52% 

MMSE-LSA; ResLSTM 𝜉 Yes + 0.22 + 1.28% 

Xu2017 ( Xu et al., 2015; 2017 ) No + 0.01 − 2.59% 

MMSE-LSA; ResBLSTM 𝜉 No + 0.21 + 5.08% 
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Fig. 14. Mean subjective preference (%) scores for the MMSE-LSA estimator 

utilising the DD approach (MMSE-LSA (DD)), Xu2017, and the MMSE-LSA es- 

timator utilising the ResBLSTM a priori SNR estimator (MMSE-LSA (DL), where 

DL stands for deep learning). The subjective testing procedure is described in 

Section 5.7 . Voice babble at an SNR level of 5 dB was the condition used for the 

subjective tests. 
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u  

i  
uality and intelligibility scores amongst all the speech enhancement
ethods. 

The advantages and disadvantages of each deep learning approach
o speech enhancement can be seen in Table 4 , as well as Figs. 12 and
3 . The advantage of Xu2017 is that it can produce enhanced speech
ith high objective quality scores. However, it produces enhanced

peech with low objective intelligibility scores. The reverse is true
or the LSTM-IRM estimator. It produces enhanced speech with low
bjective quality scores, but high objective intelligibility scores. On
he other hand, the MMSE-LSA estimator utilising the proposed a priori

NR estimators is able to produce enhanced speech with both high
bjective quality and intelligibility scores. 

When considering the training target results from Section 6.3 , it
an be deduced that most of the performance improvement gained by
he MMSE-LSA estimator utilising the ResLSTM a priori SNR estimator
ver the LSTM-IRM estimator is due to the differing model and training
trategy, 13 and not the training target. However, the opposite is likely
rue for Xu2017. The results from Section 6.3 indicate that most of the
erformance improvement gained by the MMSE-LSA estimator utilising
he ResBLSTM a priori SNR estimator over Xu2017 is due to the training
arget, and not the model, training strategy, or post-processing. 
13 The LSTM-IRM estimator from Chen and Wang (2017) uses the quadratic loss 

unction instead of the cross entropy loss function employed by the proposed a 

riori SNR estimators. 
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52 
.4.2. Subjective quality scores 

Subjective quality scores were obtained for the MMSE-LSA estimator
tilising the DD approach, Xu2017, and the MMSE-LSA estimator util-
sing the ResBLSTM a priori SNR estimator. Details about the subjective
esting procedure and the subjective test set are given in Section 5.7 .
oice babble at an SNR level of 5 dB was the condition used for the subjec-

ive tests. The mean subjective preference (%) for each of the speech en-
ancement methods is shown in Fig. 14 . It can be seen that the enhanced
peech produced by the MMSE-LSA estimator utilising the ResBLSTM
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Fig. 15. (a) Clean speech magnitude spectrogram of female FF ut- 

tering sentence 32 _ 10 , “Men think and plan and sometimes act ”

from the test set. (b) A recording of voice babble mixed with (a) 

at an SNR level of 5 dB. (c) Enhanced speech magnitude spectro- 

gram produced by the MMSE-LSA estimator utilising the DD ap- 

proach. (d) Enhanced speech magnitude spectrogram produced by 

Xu2017. (e) Enhanced speech magnitude spectrogram produced 

by the MMSE-LSA estimator utilising the ResBLSTM a priori SNR 

estimator. 
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2  
 priori SNR estimator (marked as MMSE-LSA (DL), where DL stands
or deep learning) was preferred by listeners over Xu2017 enhanced
peech. 

.4.3. Enhanced speech spectrograms 

Shown in Fig. 15 is the resultant enhanced speech magnitude
pectrograms produced by the MMSE-LSA estimator utilising the DD
pproach, Xu2017, and the MMSE-LSA estimator utilising the Res-
LSTM a priori SNR estimator. The clean and noisy speech magnitude
pectrograms are shown in Fig. 15 (a) and (b), respectively. The
MSE-LSA estimator utilising the ResBLSTM a priori SNR estimator was

ble to suppress most of the noise with little formant distortion ( Fig. 15
e)). Xu2017 incorrectly suppressed some formant information ( Fig. 15
53 
d)). The MMSE-LSA estimator utilising the DD approach demonstrated
oor noise suppression ( Fig. 15 (e)). 

.5. Areas requiring further investigation 

One factor that affects the performance of the MMSE-STSA and
MSE-LSA estimators is the a posteriori SNR estimation accuracy. In this
ork, the a posteriori SNR estimate is computed using the a priori SNR

stimate. Further performance gains may be achieved if deep learning
ethods are used to estimate the a posteriori SNR directly. Another area

or investigation is the loss function. A recent trend has been to include
he STOI measure in the loss function ( Fu et al., 2018; Zhao et al.,
018 ). The speech enhancement performance of the proposed a priori
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NR estimators may be improved if a perceptually motivated measure
s integrated into the loss function. 

. Conclusion 

Deep learning methods for MMSE approaches to speech enhance-
ent are investigated in this work. A causal ResLSTM and a non-causal
esBLSTM are used here to accurately estimate the a priori SNR for the
MSE approaches. It was found that MMSE approaches utilising deep

earning are able to produce enhanced speech that achieves higher
uality and intelligibility scores than recent masking- and mapping-
ased deep learning approaches, for both real-world non-stationary and
oloured noise sources. MMSE approaches utilising deep learning are
urrently being investigated for robust automatic speech recognition
ASR). 
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