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A B S T R A C T   

Accurately modelling the long-term dependencies of noisy speech is critical to the performance of a speech 
enhancement system. Current deep learning approaches to speech enhancement employ either a recurrent neural 
network (RNN) or a temporal convolutional network (TCN). However, RNNs and TCNs both demonstrate de-
ficiencies when modelling long-term dependencies. Enter multi-head attention (MHA) — a mechanism that has 
outperformed both RNNs and TCNs in tasks such as machine translation. By using sequence similarity, MHA 
possesses the ability to more efficiently model long-term dependencies. Moreover, masking can be employed to 
ensure that the MHA mechanism remains causal — an attribute critical for real-time processing. Motivated by 
these points, we investigate a deep neural network (DNN) that utilises masked MHA for causal speech 
enhancement. The conditions used to evaluate the proposed DNN include real-world non-stationary and coloured 
noise sources at multiple SNR levels. Our extensive experimental investigation demonstrates that the proposed 
DNN can produce enhanced speech at a higher quality and intelligibility than both RNNs and TCNs. We conclude 
that deep learning approaches employing masked MHA are more suited for causal speech enhancement than 
RNNs and TCNs. Availability—MHANet is available at https://github.com/anicolson/DeepXi   

1. Introduction 

A speech enhancement algorithm aims to improve the perceived 
quality and intelligibility of noisy speech (Loizou, 2013). It accom-
plishes this by suppressing background noise without distorting the 
speech. Many speech processing systems, such as automatic speech 
recognition (ASR) systems, speaker verification systems, and mobile 
communication systems typically rely on the enhancement of noisy 
speech for robustness. For example, a leading method to increase the 
robustness of an ASR system is to pre-process noisy speech with a speech 
enhancement algorithm (Nicolson and Paliwal, 2019b). 

Currently, deep learning approaches to speech enhancement are at 
the forefront of the field. Deep neural networks (DNNs) are utilised to 
provide a non-linear map from a given noisy speech representation to a 
target representation. They have been used to map the noisy speech 
magnitude spectrum to the clean speech magnitude spectrum (Xu et al., 
2014), or noisy speech time-domain frames to clean speech time-domain 
frames (Tamura and Waibel, 1988). Utilising time-domain frames en-
ables the reconstruction of the distorted phase. DNNs have also been 
used to map the noisy speech spectrum to a time-frequency mask 
(Narayanan and Wang, 2013), or the a priori SNR (Nicolson and Paliwal, 
2019a). Time-frequency masks, such as the ideal-ratio mask (IRM), are 

applied as a suppression function to the noisy speech magnitude spec-
trum (Narayanan and Wang, 2013). It was found that the IRM is able to 
outperform the clean speech magnitude spectrum when used as the 
training target (Wang et al., 2014). A priori SNR estimates are used by 
minimum mean-square error (MMSE) estimators of the clean speech 
spectrum (Ephraim and Malah, 1985). It was found that the a priori SNR 
as the training target produces higher objective quality scores than the 
IRM (Nicolson and Paliwal, 2020a). DNNs have also been tasked with 
computational auditory scene analysis (CASA), whereby a noisy speech 
magnitude spectrum component is classified as either noise or speech 
dominant (Narayanan and Wang, 2013; Nicolson and Paliwal, 2018). 
This is accomplished by using the ideal binary mask (IBM) as the 
training target, where a value of one and zero corresponds to a speech 
and noise dominant component, respectively. However, it was found 
that the IRM is able to significantly outperform the IBM (Wang et al., 
2014). 

A multitude of deep learning approaches have been successfully 
applied to speech enhancement. One recent approach is the use of 
teacher-student learning (Subramanian et al., 2018). An already trained, 
large teacher DNN is used to guide the training of a smaller, student DNN. 
In Tu et al. (2019), a causal student DNN is trained to estimate the 
improved speech presence probability (ISPP) with guidance from a 
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non-causal IRM estimator teacher DNN. An advantage of the 
teacher-student approach is that the student model can be compactly 
designed. Another approach is to optimise a DNN with respect to one or 
more objective measures (Fu et al., 2019; Koizumi et al., 2018). While it 
will perform well on the optimised objective measures, there is a risk 
that the DNN will not generalise to other measures. Another recent 
approach is the use of generative adversarial networks (GANs) for 
speech enhancement (SEGAN) (Pascual et al., 2017). One disadvantage 
of a SEGAN is that its generator does not have direct access to the clean 
speech during training, diminishing its performance at lower 
signal-to-noise ratio (SNR) levels. To mitigate this issue, a high-level 
GAN (HLGAN) was proposed, where a high-level loss function allows 
the generator to access both the clean and noisy speech during training 
(Zhao et al., 2019). 

Many DNN types are used for deep learning approaches to speech 
enhancement. Feed-forward neural networks (FNNs) were amongst the 
first DNNs used for speech enhancement (Tamura, 1989; Fei Xie and Van 
Compernolle, 1994; Xu et al., 2014). They were adapted to input a 
window of several past, present, and future frames (Xu et al., 2015) and 
were able to significantly outperform previous speech enhancement 
algorithms such as the decision-directed (DD) approach (Ephraim and 
Malah, 1984). However, FNNs are only capable of modelling local de-
pendencies. Speech exhibits non-linguistic long-term dependencies, 
such as gender, dialect, speaking rate, and emotional state (Bengio et al., 
1994; Pisoni, 1993). Moreover, it has been demonstrated that modelling 
the non-linguistic information of speech can improve speech enhance-
ment performance (Potamitis et al., 2002; Rao Naidu and Srinivasan, 
2012). While coloured noise sources display only local dependencies (e. 
g. a fan), non-stationary noise sources inherently display long-term de-
pendencies (e.g. music). The preceding points indicate that modelling 
the long-term dependencies of the target speech and background noise is 
important for speech enhancement. 

With the ability to model long-term dependencies, recurrent neural 
networks (RNNs) employing long short-term memory (LSTM) have 
demonstrated a higher speech enhancement performance than FNNs 
(Chen and Wang, 2017; Liu et al., 2018). The cell state of LSTM grants it 
the ability to remember important information about the noise and 
speech (Gers et al., 1999). However, RNNs require a large number of 
parameters and lengthy training times. Moreover, the memory of LSTM 
is limited, making it prone to forgetting distant information (Li et al., 
2018). Temporal convolutional networks (TCNs) were soon able to 
match the speech enhancement performance of RNNs while consuming 
significantly fewer parameters and requiring markedly less time to train 
(Rethage et al., 2018). TCNs utilise causal dilated kernels to garner a 
fixed-size receptive field over previous frames, allowing the modelling 
of long-term dependencies (Bai et al., 2018). However, the performance 
of a TCN is adversely affected when events occur out of expected order 
due to the positional nature of the kernels. 

Recently, the Transformer network outperformed both RNN and 
TCN-based models on a machine translation task (Vaswani et al., 2017). 
Derivatives of the Transformer network have also been applied to tasks 
such as language modelling (Devlin et al., 2019), speech recognition 
(Sperber et al., 2018), and medical diagnoses (Wang et al., 2019). The 
key module of the Transformer network is multi-head attention (MHA). 

MHA utilises multiple heads, with each employing an attention mech-
anism. The sequence similarity between all time-steps is used by the 
attention mechanism to compute a new representation, granting it the 
ability to model long-term dependencies. Additionally, when the 
sequence length is less than the size of the layer, the attention mecha-
nism boasts less complexity per layer than its RNN and TCN-based 
counterparts. This is shown in Table 1, where self-attention is the 
attention type used by the encoder of the Transformer network. 

As described in Vaswani et al. (2017), a key factor affecting the 
ability of a DNN to learn long-term dependencies is the number of 
sequential operations required to connect input and output time-steps of 
a layer. The fewer the number of operations required to connect any 
combination of input and output time-step, the easier it is to learn 
long-term dependencies (Kolen and Kremer, 2001). The maximum 
number of sequential operations required to connect any two input and 
output time-steps of a layer is shown in Table 1. It can be seen that the 
maximum number of sequential operations for self-attention is constant, 
whereas the maximum number of sequential operations for recurrent 
and convolutional layers depends on L. This means that the distance 
between an input and an output time-step does not affect self-attention. 
This key advantage allows MHA to more efficiently model long-term 
dependencies than RNNs and TCNs (Vaswani et al., 2017). 

One aspect to consider when developing a deep-learning approach to 
speech enhancement is causality. Most speech processing applications 
require real-time processing (Zhao et al., 2019; McGraw et al., 2016; 
Prabhavalkar et al., 2016; Chan and Lane, 2016). The responsiveness of 
a real-time system is negatively affected when utilising non-causal 
modules, as future frames are required. Moreover, the demand for 
embedded real-time systems in mobile devices is increasing as more 
sophisticated processors are employed (Yun et al., 2018; Wang et al., 
2020). Therefore, most speech processing applications require a causal 
deep learning approach to speech enhancement. All of the aforemen-
tioned DNN types possess the ability to be causal. An FNN is causal if its 
input includes only current and previous time-steps. For RNNs, only 
unidirectional RNNs can be used, as opposed to bidirectional RNNs 
(Schuster and Paliwal, 1997). For TCNs, kernels that consider only 
current and previous time-steps are permitted. For MHA, causality is 
upheld when similarities considering future time-steps are masked. 

In this work, we investigate masked MHA for causal speech 
enhancement. This is motivated by the following points: 1) modelling 
the long-term dependencies of noisy speech is critical for speech 
enhancement, and 2) MHA possesses the ability to more efficiently 
model long-term dependencies than RNNs and TCNs. This indicates that 
MHA has the potential to outperform RNNs and TCNs at the task of 
speech enhancement. The blocks of the proposed MHA network 
(MHANet) are identical to those used in the encoder of the Transformer 
network, except that masking is applied to ensure causality. Unlike the 
Transformer network, the MHANet does not utilise positional encoding, 
as we find that there is sufficient information about the order of events 
encoded into the noisy speech. In this work, the MHANet is tasked with 
estimating the a priori SNR for an MMSE approach. 

In research proposed simultaneously to this work, MHA with no 
masking was used for speech enhancement (Jin et al., 2020; Liao et al., 
2019). In Kim et al. (2020), the encoder of the Transformer network was 
used to estimate the IRM, called the Transformer with 
Gaussian-weighted self-attention (T-GSA). A Gaussian weighting was 
applied to the attention weights to attenuate according to the distance 
between the current frame and past/future frames. T-GSA is jointly 
optimised for two objective measures, namely the perceptual evaluation 
of speech quality (PESQ) (Rix et al., 2001) and the signal-to-distortion 
ratio (SDR). In Koizumi et al. (2020), a network comprising of 
two-dimensional convolutional units, bidirectional LSTM cells, and 
MHA modules was used to estimate a complex-valued time-frequency 
(TF) mask. Speaker aware features were also employed, along with 
multi-task learning of speech enhancement and speaker identification. 
Furthermore, the network is jointly optimised for cross-entropy and 

Table 1 
Computational complexity per layer and maximum number of sequential oper-
ations required to connect any two input and output time-steps of a layer 
(Vaswani et al., 2017). The sequence length, the kernel size, and the layer size is 
denoted by L, k,and d, respectively.  

Layer Complex. per layer Max. seq. operations 

Self-atten. O(L2⋅d) O(1)

Convolut. O(k⋅L⋅d2) O(logk(L))

Recurrent O(L⋅d2) O(L)
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SDR. Both of these networks utilise non-causal MHA modules and were 
both able to outperform bidirectional RNN, convolutional neural 
network (CNN), and GAN-based speech enhancement systems. 

In this paper, we first describe the employed speech enhancement 
framework in Section 2. The proposed MHANet is described in Section 3. 
In Section 4, the validation error of the MHANet is compared to that of 
an RNN and a TCN. In Section 5, the sequence similarity of the heads 
from the MHANet are observed, in order to understand what the heads 
attend to during speech enhancement. In Sections 6 and 7, the speech 
enhancement performance and the execution time of the MHANet is 
compared to both RNNs and TCNs. The MHANet is also compared to 
multiple recent causal and non-causal deep learning approaches to 
speech enhancement in Section 8. Conclusions are drawn in Section 9. 

2. Background 

2.1. Analysis, modification, & synthesis framework 

The short-time Fourier analysis, modification, and synthesis (AMS) 
framework is used here for speech enhancement (Allen, 1977; Allen and 
Rabiner, 1977). The AMS framework consists of three stages: (1) the 
analysis stage, where noisy speech undergoes short-time Fourier trans-
form (STFT) analysis; (2) the modification stage, where the noisy speech 
magnitude spectrum is modified; and (3) the synthesis stage, where the 
enhanced speech is synthesised by applying the inverse STFT (ISTFT). 

In the time-domain, the noisy speech signal, x[n], is given by: 

x[n] = s[n] + d[n], (1)  

where s[n], and d[n] denote the clean speech and uncorrelated additive 
noise, respectively, and n denotes the discrete-time index. The noisy 
speech is analysed frame-wise using the running STFT (Vary and Martin, 
2006): 

X[l, k] =
∑Nd − 1

n=0
x[n+ lNs]w[n]e− j2πnk/Nd , (2)  

where l denotes the frame index, k denotes the discrete-frequency index, 
Nd denotes the frame duration in discrete-time samples, Ns denotes the 
frame shift in discrete-time samples, and w[n] is an analysis window 
function. 

In polar form, the noisy speech spectrum is expressed as 

X[l, k] = |X[l, k]|ej∠X[l,k], (3)  

where |X[l, k]| and ∠X[l, k] denote the noisy speech magnitude and phase 
spectrums, respectively. The modified magnitude spectrum is then 
formed by enhancing the noisy speech magnitude spectrum. The 
modified magnitude spectrum is an estimate of the clean speech 
magnitude spectrum, and is denoted by |Ŝ[l,k]|. The modified spectrum is 
constructed by combining the modified magnitude spectrum with the 
noisy speech phase spectrum: 

Y[l, k] = |Ŝ[l, k]|ej∠X[l,k]. (4) 

The synthesis stage involves applying the ISTFT to the modified 
spectrum. First, the inverse discrete Fourier transform is applied to the 
modified spectrum: 

yf [l, n] =
1

Nd

∑Nd − 1

k=0
Y[l, k]ej2πnk/Nd , (5)  

where yf [l, n] is the framed enhanced speech. The overlap-add method is 
subsequently applied to produce the final enhanced speech (Crochiere, 
1980): 

y[n] =

∑∞

l=− ∞
yf [l, n − lNs]

∑∞

l=− ∞
w[n − lNs]

, (6)  

where w[n] is a synthesis window function. 
In this work, the Hann window function is used for analysis and 

synthesis, with a frame-duration of 32 ms (Nd = 512) and a frame-shift 
of 16 ms (Ns = 256). The 257-point single-sided noisy speech magnitude 
spectrum, which includes both the DC frequency component and the 
Nyquist frequency component is used as the input to the MHANet. 

2.2. Deep Xi framework 

In this work, the proposed MHANet is compared to both RNNs and 
TCNs within the Deep Xi framework. Deep Xi is a deep learning 
approach to a priori SNR estimation (Nicolson and Paliwal, 2019a), and 
is depicted in Fig. 1. The Deep Xi framework consists of two stages. For 
the first stage, a DNN estimates a mapped version of the a priori SNR, 
̂ξ l = {

̂ξ[l, 0],̂ξ[l, 1],…,
̂ξ[l,K − 1]}, from the noisy speech magnitude 

spectrum, |Xl| = {|X[l, 0]|, |X[l, 1]|,…, |X[l,K − 1]|}, where K is the number 
of discrete-frequency bins for each frame (K = Nd/2+ 1). For the second 
stage, the a priori SNR estimate, ̂ξ l, is computed from the mapped a priori 

SNR estimate, ̂ξ l. The mapped a prioriSNR, ξl, and the computation of the 
a priori SNR estimate during the second stage is described in Section 
2.2.2. The a priori SNR estimated using the Deep Xi framework is used by 
an MMSE clean speech magnitude spectrum estimator, as described in 
Section 2.2.1. 

2.2.1. MMSE approaches to speech enhancement 
The a priori SNR estimated using the Deep Xi framework is used by an 

MMSE approach to estimate the clean speech magnitude spectrum for 
Eq. (4). An example is the MMSE log-spectral amplitude (MMSE-LSA) 
estimator (Ephraim and Malah, 1985): 

|Ŝ[l, k]| = |X[l, k]|
ξ[l, k]

ξ[l, k] + 1
exp

{
1
2

∫ ∞

ν[l,k]

e− t

t
dt
}

, (7)  

where ν[l, k] = ξ[l,k]
ξ[l,k]+1 γ[l, k], ξ[l, k] is the a priori SNR and γ[l, k] is the a 

posteriori SNR. The a priori SNR is defined as 

ξ
[

l, k
]

=
λs[l, k]
λd[l, k]

, (8)  

where λs[l, k] = E{S[l, k]2} is the variance of the clean speech spectral 
component, and λd[l, k] = E{D[l, k]2} is the variance of the noise spectral 
component. The a posteriori SNR is defined as 

γ[l, k] =
|X[l, k]|2

λd[l, k]
. (9)  

For the Deep Xi framework, the maximum likelihood a posteriori SNR 
estimate is used: γ̂[l,k] = ξ[l,k] + 1. 

2.2.2. Mapped a priori SNR training target 
The training target for the DNN in Fig. 1 is the mapped a priori SNR 

(Nicolson and Paliwal, 2019a), which is a mapped version of the 
instantaneous a priori SNR. During the training phase, the clean speech 
and noise in Eq. (8) are known completely. This means that λs[l, k] and 

Fig. 1. Deep Xi a priori SNR estimation framework.  
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λd[l, k] can be replaced with the squared magnitude of the clean speech 
and noise spectral components, respectively, giving the instantaneous a 
priori SNR. 

In Nicolson and Paliwal (2019a), the instantaneous a priori SNR in 
dB, ξdB[l, k] = 10log10(ξ[l, k]), was mapped to the interval [0, 1] in order 
to improve the rate of convergence of the used stochastic gradient 
descent algorithm. The cumulative distribution function (CDF) of 
ξdB[l, k] was used as the map. It can be seen (Nicolson and Paliwal, 
2019a, Fig.2 (top)) that the distribution of ξdB[l, k] for a given frequency 
component follows a normal distribution. It was thus assumed in Nic-
olson and Paliwal (2019a) that ξdB[l, k] is distributed normally with 
mean μk and variance σ2

k : ξdB[l,k] ∼ 𝒩 (μk,σ2
k). The map is given by 

ξ[l, k] =
1
2

[

1 + erf
(

ξdB[l, k] − μk

σk
̅̅̅
2

√

)]

, (10)  

where ξ[l, k] is the mapped a priori SNR and erf is the error function. 
Following Nicolson and Paliwal (2019a), the statistics of ξdB[l, k] for each 
noisy speech spectral component were found over 1 000 samples of the 
training set. 

During inference, ξ̂[l, k] is found from ξ̂[l, k] as follows: 

ξ̂[l, k] = 10((σk
̅̅
2

√
erf− 1(2̂ξ [l,k]− 1)+μk)/10). (11)  

Eq. (11) is shown in Fig. 1, where μ = {μ0, μ1,…, μK− 1} are the means for 
each discrete-frequency bin and σ = {σ0, σ1,…, σK− 1} are the corre-
sponding standard deviations. 

3. MHANet for speech enhancement 

In this section, we describe the proposed MHANet for speech 
enhancement, as illustrated in Fig. 2 (left). For speech enhancement, the 
sequence length of the input and target are equal. This means that the 
encoder-decoder structure of the Transformer network is not required. 
Thus, a network can be formed simply by stacking blocks of computa-
tional units from the input to the output. The blocks of the MHANet are 
identical to those used by the encoder of the Transformer network, 
except that masking is employed for causality. Each block includes the 
fundamental component of the Transformer network — multi-head 
attention (MHA). As the MHANet is derived from the Transformer 
network, the notation in this section is based on that used in Vaswani 
et al. (2017). 

The proposed MHANet is described from input to output as follows. 

The noisy speech magnitude spectra, |X| ∈ RL×K, is the input to the 
MHANet. An attention mechanism is unaware of the order of events in a 
sequence. Hence, it must have positional information encoded into its 
input. Here, the trigonometric positional encoding (PE) used for the 
Transformer network is employed (Vaswani et al., 2017). We investigate 
three different ways of including the positional encoding with the input: 
the addition of the positional encoding (Vaswani et al., 2017), the 
concatenation of the positional encoding (Sperber et al., 2018), and no 
positional encoding. Including no positional encoding assumes that 
there is enough information encoded in the noisy speech about the po-
sition of each event. After the positional encoding is included, the first 
layer is used to project the input to a size of dmodel. The first layer from 
Nicolson and Paliwal (2019a) is used here: max(0, LN(|X|WI + bI)),

where LN is frame-wise layer normalisation Ba et al. (2016), WI ∈

RK×dmodel , and bI ∈ Rdmodel . 
Next, B blocks (called “layers” in Vaswani et al. (2017)) are cascaded, 

where each block includes an MHA module, a two-layer FNN, residual 
connections (He et al., 2016), and frame-wise layer normalisation. The 
blocks are further described in Section 3.1. After the blocks is the output 
layer, which is a sigmoidal feed-forward layer as in Nicolson and Pal-
iwal (2019a). The MHANet is trained to estimate the mapped a priori 
SNR, ξ ∈ RL×K, as described in Section 2.2.2. The optimisation method 
used to train the MHANet is described in Section 3.3. 

3.1. MHANet blocks 

The MHA module is the first component of the block, and is illus-
trated in Fig. 2 (middle). The MHA module takes as input a set of L 
queries (Q ∈ RL×dmodel ), keys (K ∈ RL×dmodel ), and values (V ∈ RL×dmodel ), 
where L is the number of frames, and dmodel is the size of each query, key, 
and value. For a detailed explanation about what Q, K, and V represent, 
we refer the reader to the work in Vaswani et al. (2017). Q, K, and V in 
this case are all replicas of the input to the block. Thus, the specific form 
of MHA that is used is multi-head self-attention. 

A total of H heads of masked scaled dot-product attention are used in 
each MHA module, where h = {1,2,…,H} is the head index. For head h, 
Q, K, and V are linearly projected: 𝒬h = QWQ

h , 𝒦h = KWK
h , and 𝒱h =

VWV
h , where WQ

h ∈ Rdmodel×dk , WK
h ∈ Rdmodel×dk , and WV

h ∈ Rdmodel×dv are 
learned weight matrices. The projected queries and keys are of size dk,

and the projected values are of size dv. This allows each head to operate 
on different, learned linear projections of Q, K, and V. To control the 
size of each head, the following policy from Vaswani et al. (2017) is 

Fig. 2. (left) Proposed multi-head attention network (MHANet), (middle) multi-head attention module (MHA), and (right) masked scaled dot-product attention.  
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used: dk = dv = dmodel/H. The MHA module is defined as 

MHA(Q,K,V) = concat(A1,A2,…,AH)WO, (12)  

where Ah = Attention(𝒬h,𝒦h,𝒱h) is the output for head h(Ah ∈ RL×dk ). 
The masked scaled dot-product attention mechanism used for each head, 
Attention(𝒬h,𝒦h,𝒱h), is described in Section 3.2. It can be seen that the 
outputs from all of the heads are concatenated and linearly projected 
using the learned weight matrix WO

h ∈ RHdv×dmodel , forming the final 
output of the MHA module. A residual connection is applied from the 
input to the output of the MHA module, which is followed by frame-wise 
layer normalisation. 

The second half of the block includes a two-layer feed-forward neural 
network (FNN): 

FNN(Z) = max
(
0,ZW1 +b1)W2 + b2, (13)  

where Z ∈ RL×dmodel is the input, W1 ∈ Rdmodel×dff , b1 ∈ Rdff , W2 ∈

Rdff×dmodel , and b2 ∈ Rdmodel . Hence, the inner layer has a size of dff . A re-
sidual connection is applied from the input to the output of the FNN, 
which is followed by frame-wise layer normalisation. As in Vaswani 
et al. (2017), a dropout rate of Pdrop is applied before each residual 
connection during training. 

3.2. Masked scaled dot-product attention 

The masked scaled dot-product attention mechanism for head h, as 
shown in Fig. 2 (right), takes as input a set of L queries (𝒬h ∈ RL×dk ), 
keys (𝒦h ∈ RL×dk ), and values (𝒱h ∈ RL×dv ). Masked scaled dot-product 
attention is computed as 

Attention(𝒬h,𝒦h,𝒱h) = softmax
(

M +
𝒬h𝒦

⊤
h̅̅̅̅̅

dk
√

)

𝒱h. (14)  

The similarity matrix computed from the dot product of 𝒬h and 𝒦⊤
h 

forms the unnormalised weights of the attention mechanism. After 
scaling by 1/

̅̅̅̅̅
dk

√
, M ∈ RL,L is used to mask out similarities that include 

future frames, ensuring causality. As the ensuing operation is the soft-
max function, masking is performed by adding − ∞. Following masking, 
each row of the sequence similarity matrix is normalised into a proba-
bility distribution using the softmax activation function. Finally, a new 
representation is computed via the dot product of the normalised simi-
larity matrix and 𝒱h. 

3.3. Optimisation method 

As in Vaswani et al. (2017), the Adam optimiser (Kingma and Ba, 
2014) with β1 = 0.9, β2 = 0.98, and ϵ = 10− 9 is used for training the 
MHANet, where the learning rate, α, is controlled over the course of 
training as 

α = d− 0.5
model⋅min

(
ψ − 0.5,ψ⋅Ψ− 1.5), (15)  

where ψ is the training step and Ψ is the number of warmup steps. The 
learning rate increases linearly with ψ until Ψ is exceeded and then 
decreases proportionally to the inverse square root of ψ. This strategy 
was used in Vaswani et al. (2017) to stabilise learning during the initial 
stages of training, as MHA has been found difficult to train. 

4. Validation error 

In this section, the validation error of the MHANet is compared to 
that of an RNN and a TCN, where the RNN is a residual LSTM (ResLSTM) 
network (Nicolson and Paliwal, 2019a) and the TCN is a residual 
network (ResNet) (Zhang et al., 2020). The ResLSTM network and the 
ResNet are described in Section 4.3. The MHANet, ResNet, and ResLSTM 

are implemented within the Deep Xi framework using TensorFlow 1.14 
(Abadi et al., 2015). 

As in Nicolson and Paliwal (2019a), the cross-entropy between the 

mapped a priori SNR ξ[l, k], and its estimate ̂ξ[l, k], is used as the error: 

E = −
1

LK
∑L

l=1

∑K− 1

k=0
ξ[l, k]log(ξ̂[l, k]) + (1 − ξ[l, k])log(1 − ξ̂[l, k]). (16)  

The training and validation sets used in this subsection are described in 
Section 4.1, followed by the training strategy in Section 4.2. The 
hyperparameter search for the MHANet is presented in Appendix A. A 
key finding is that information about the order of events is sufficiently 
embedded in the noisy speech magnitude spectrum input. Thus, no 
positional encoding is required. Moreover, it was found that utilising 
dropout hindered performance. The set of hyperparameters that per-
formed best included no positional encoding, B = 5, dff = 1 024, 
dmodel = 256, H = 8, Pdrop = 0.0, and Ψ = 40 000. This set of hyper-
parameters is used for the MHANet for the remainder of this work. 

4.1. Training & validation set 

Here, we describe the clean speech and noise recordings used for 
training. The clean speech recordings from the following speech corpora 
are included: the train-clean-100 set from the Librispeech corpus (Pan-
ayotov et al., 2015) (28 539 recordings), the CSTR VCTK corpus (Veaux 
et al., 2017) (42 015 recordings), and the si∗ and sx∗ training sets from 
the TIMIT corpus (Garofolo et al., 1993) (3 696 recordings). This gives a 
total of 74 250 clean speech recordings. The minimum, average, and 
maximum duration of the recordings from the sets of the speech corpora 
are given in Table 2. 

The noise recordings from the following noise datasets are included: 
the QUT-NOISE dataset (Dean et al., 2010), the Nonspeech dataset (Hu 
and Wang, 2010), the RSG-10 dataset (voice babble, F16, and factory 
welding are excluded as they are used for testing in later sections) 
(Steeneken and Geurtsen, 1988), the Urban Sound dataset (street music 
recording no. 26 270 is excluded as it is used for testing in later sections) 
(Salamon et al., 2014), the Environmental Background Noise dataset 
(Saki et al., 2016), the noise set from the MUSAN corpus Snyder et al. 
(2015), multiple FreeSound packs,1 and coloured noise recordings (with 
an α value ranging from − 2 to 2 in increments of 0.25). Noise re-
cordings that are over 30 sin length are split into 30 s or less segments. 
This gives a total of 17 458 noise recordings, each of a length less than or 
equal to 30 s. 

For the validation set, 1 000 clean speech and noise recordings are 
randomly selected (without replacement) and removed from the 
training set. Each clean speech recording is paired with one of the noise 
recordings. The clean speech recording is then mixed with a random 
section of the noise recordings at a randomly selected SNR level between 
− 10 to 20 dB in 1 dB increments. This forms 1 000 noisy speech signals 
for the validation set. 

All clean speech and noise recordings are single-channel, with a 

Table 2 
Minimum, average, and maximum duration of the recordings from the sets of the 
speech corpora.  

Set Min. (s) Avg. (s) Max. (s) 

train-clean-100 1.4 12.3 17.2 
CSTR VCTK 1.2 3.6 15.1 
Train si∗ & sx∗ 0.9 3.1 7.8  

1 Freesound packs that are used include 147, 199, 247, 379, 622, 643, 1 133, 
1 563, 1 840, 2 432, 4 366, 4 439, 4 780, 8 420, 14 826, 15 046, 15 097, 15 598, 
16 204, 17 266, 17 403, 17 430, 17 468, 17 579, 19 093, 20 237, 20 241, 21 558, 
22 953, and 24 590. 
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sampling frequency of 16 kHz (recordings with a higher sampling fre-
quency are down-sampled to 16 kHz). A description of how the noisy 
speech is formed for each training iteration is given in Section 4.2. 

4.2. Training strategy 

The following strategy is used for training:  

• As in Nicolson and Paliwal (2019a), cross-entropy is used as the error 
function — as per Eq. (16).  

• For the ResLSTM network and the ResNet, the Adam algorithm 
(Kingma and Ba, 2014) with default hyper-parameters is used for 
gradient descent optimisation.  

• Gradients are clipped between [ − 1,1].  
• A mini-batch size of 10 noisy speech signals is used for each training 

iteration.  
• The noisy speech signals for each mini-batch are computed on the fly 

as follows: each clean speech recording selected for the mini-batch is 
mixed with a random section of a randomly selected noise recording 
at a randomly selected SNR level ( − 10 to 20 dB, in 1 dB increments).  

• A total of 7 325 training iterations occurs for each epoch (no. of clean 
speech recordings divided by the mini-batch size).  

• The selection order for the clean speech recordings is randomised for 
each epoch. 

Fig. 3. The training error of the ResLSTM network, the ResNet, and the pro-
posed MHANet. 

Fig. 4. The validation error of the ResLSTM network, the ResNet, and the 
proposed MHANet. 

Fig. 5. (a) Clean speech spectrogram of female speaker 5 683 
uttering the first second of sentence 1 from book 32 865, “Said 
Lord Chelford, addressing me” (from the test set described in 
Section 7.1). (b) A recording of voice babble mixed with (a) at an 
SNR level of − 5 dB. Attention weights produced by the MHANet 
from (c) head one of block one, (d) head two of block two, (e) 
head two of block three, and (e) head four of block four. The level 
of darkness indicates the magnitude of each attention weight.   
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4.3. Validation error comparison 

In this subsection, the validation error of the MHANet is compared to 
that of an RNN and a TCN. The RNN is the residual LSTM (ResLSTM) 
network from Nicolson and Paliwal (2019a). It consists of five residual 
blocks, where each block consists solely of an LSTM cell of size 512. The 
TCN is the residual network (ResNet) from Zhang et al. (2020). It utilises 
40 bottleneck residual blocks, where each block comprises of three 
convolutional units. The input and output size of each block is 256. The 
number of filters is 64 for the first and second convolutional units, and 
256 for the third convolutional unit. A kernel size of one is used for the 
first and third convolutional units, and three for the second convolu-
tional unit. The dilation rate, d, for the kernel of the second convolu-
tional unit is controlled via the index of each block, b. The dilation rate is 
cycled as the block index increases: d = 2(b− 1 mod (log2(D)+1), where mod 
is the modulo operation, and D is the maximum dilation rate which is set 
to 16. Each convolutional unit is pre-activated using the ReLU activation 
function (Nair and Hinton, 2010) followed by frame-wise layer nor-
malisation. The ResLSTM network and the ResNet are both trained using 
the training and validation set described in Section 4.1 and the training 
strategy described in Section 4.2. 

The training and validation error attained by each of the DNNs is 
shown in Figs. 3 and 4. Each network is trained for 150 epochs. The time 
taken for one training epoch is approximately 7 h for the ResLSTM 
network, 40 min for the ResNet, and 30 min for the MHANet on an 
NVIDIA GTX 1080 Ti. It thus took the ResLSTM network, the ResNet, 
and the MHANet 1 050, 100, and 75 h to train, respectively. It can be 
seen that the MHANet produced the lowest training and validation error. 
The training process for the MHANet is also more stable than that of the 
ResLSTM network. The training and validation error for the ResLSTM 
network after epoch 80 becomes volatile. This indicates the occurrence 
of the exploding gradient problem. 

5. Attention weights 

In this section, we observe the attention weights of different self- 
attention heads in the MHANet. The attention weights are highly 
interpretable, allowing us to observe what each head attends to during 
speech enhancement. Epoch 150 for configuration D from Section A.2 is 
the used MHANet. The attention weights for the heads of different blocks 
are shown from Fig. 5(c) to (f). These are the normalised weights 
attained after the softmax function is applied to the scaled dot product of 
𝒬i and 𝒦⊤

i in Eq. (14). The noisy speech given to the MHANet is shown in 
Fig. 5 (b). It is the clean speech from Fig. 5 (a) mixed with voice babble at 
an SNR level of -5 dB. 

The attention weights for the first head of block one are shown in 
Fig. 5 (c). It can be seen that a significant amount of attention is payed to 
the unvoiced phoneme from frame 13 to 21. This unvoiced phoneme is 
attended to for the remainder of the sequence, except during the un-
voiced phoneme from frame 49 to 53. This indicates that head one of 
block one attends to the unvoiced phonemes of the target speaker. 

The attention weights for the second head of block two are shown in 
Fig. 5 (d). It attends to three regions that are dominated by noise. These 
three regions are from frame 1 to 12, 26 to 33, and 44 to 47. It can be 
seen that each noise dominated region is attended to for the remainder 
of the sequence — after being observed. The attention weights for the 
second head of block three are shown in Fig. 5 (e). They are similar to 
the attention weights in Fig. 5 (d), except that more attention is payed to 
the region from frame 1 to 12. 

The attention weights for the fourth head of block four are shown in 
Fig. 5 (f). The head first pays attention to the unvoiced phoneme from 
frame 11 to 21. However, the unvoiced phoneme is not attended to after 
the head observes the voiced phoneme from frame 22 to 26. This voiced 
phoneme is attended to for the remainder of the sequence. Another re-
gion garnering a high amount of attention is the unvoiced phoneme from 

frame 49 to 53. The head also pays slight attention to the voiced pho-
nemes from frame 34 to 43 and 57 to 60. It is clear that head four of 
block four has learnt to focus on the unvoiced and voiced phonemes of 
the target speaker. In summary, a self-attention head in the MHANet 
attends to regions of speech and/or noise in the noisy speech. 

6. A priori SNR estimation accuracy 

MMSE approaches to speech enhancement are directly affected by 
the accuracy of the employed a priori SNR estimator. Additionally, a 
more accurate a priori SNR estimator can increase the performance of 
ideal binary mask (IBM) estimation for missing data approaches (Nic-
olson and Paliwal, 2020c). Hence, we evaluate the a priori SNR esti-
mation accuracy of the MHANet within the Deep Xi framework. Epoch 
150 for the MHANet configuration described in Section 4 is used. It is 
compared to the ResLSTM network and the ResNet from Section 4. 
Epoch 80 and 150 are used for the ResLSTM network and the ResNet, 
respectively. SD levels for previous a priori SNR estimation methods, 
including the decision-directed (DD) approach (Ephraim and Malah, 
1984), the two-step noise reduction (TSNR) technique (Plapous et al., 
2004), harmonic regeneration noise reduction (HRNR) (Plapous et al., 
2005), and selective cepstro-temporal smoothing (SCTS) (Breithaupt 
et al., 2008) are also included. Each of the previous a priori SNR esti-
mation methods utilises the noise estimator from Gerkmann and Hen-
driks (2012). The test set from Nicolson and Paliwal (2019a) is used for 
evaluation, and is described in Section 6.1. This test set is selected as it 
has been used previously to evaluate the accuracy of a priori SNR esti-
mators. Spectral distortion is employed to evaluate the a priori SNR 
estimation accuracy, as described in Section 6.2. The spectral distortion 
levels attained by the MHANet are discussed in Section 6.3. 

6.1. Test set 

The test set from Nicolson and Paliwal (2019a) is described in this 
subsection. Recordings of four real-world noise sources, including two 
non-stationary and two coloured, are included in the test set. The two 
real-world non-stationary noise sources include voice babble from the 
RSG-10 noise dataset (Steeneken and Geurtsen, 1988) and street music 
(recording no. 26 270) from the Urban Sound dataset (Salamon et al., 
2014). The two real-world coloured noise sources include F16and fac-
tory welding from the RSG-10 noise dataset (Steeneken and Geurtsen, 
1988). 10 clean speech recordings are randomly selected (without 
replacement) from the TSP corpus (only adult speakers are included) 
(Kabal, 2002) for each of the four noise recordings. The minimum, 
mean, and maximum duration of the recordings in the TSP corpus are 
1.34, 2.37, and 4.79 s, respectively. To create the noisy speech, a 
random section of the noise recording is selected and mixed with the 
clean speech at the following SNR levels: -5 to 15 dB, in 5 dB increments. 
This creates a test set of 200 noisy speech signals. The noisy speech 
signals are single channel, with a sampling frequency of 16 kHz. 

6.2. Evaluation metric 

The frame-wise spectral distortion (SD) (Nicolson and Paliwal, 
2019a) is used to evaluate the accuracy of the MHANet. The SD is 
defined as the root-mean-square difference between the a priori SNR 
estimate in dB, ̂ξdB[l, k], and the instantaneous case in dB, ξdB[l, k], for the 
lth frame: 

D2
l =

1
K/2 + 1

∑K− 1

k=0

[

ξdB[l, k] − ξ̂dB[l, k]

]

2. (17)  

Average SD levels are found over all frames for each test condition. 
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6.3. Spectral distortion levels 

The SD levels attained by the MHANet are given in Table 3. It can be 
seen that for both real-world non-stationary (voice babble and street 
music) and coloured (F16 and factory) noise sources, the MHANet is able 
to produce lower SD levels than the previous a priori SNR estimation 
methods (DD, TSNR, HRNR, and SCTS), as well as the ResLSTM network 
and the ResNet (except for factory at -5 dB, where the ResLSTM network 
attained the same SD level). As shown in Nicolson and Paliwal (2020b), 
the high a priori SNR estimation accuracy attained by the MHANet will 
be of benefit to the employed MMSE approach. 

7. Speech enhancement performance 

Here, we evaluate the speech enhancement performance of the 
MHANet. Epoch 150 for the MHANet configuration described in Section 
4 is used. It is compared to the ResLSTM network and the ResNet from 
Section 4. Epoch 80 and 150 were used for the ResLSTM network and the 
ResNet, respectively. Each DNN is employed within the Deep Xi 
framework to estimate the a priori SNR for the MMSE-LSA estimator. The 
MHANet is also compared to a benchmark method, namely the MMSE- 
LSA estimator employing the DD approach and the noise estimator 
from Gerkmann and Hendriks (2012). 

Objective quality (MOS-LQO) and intelligibility (STOI) measures are 
used to evaluate the speech enhancement performance of the MHANet, 
where each metric is described in Figs. 6 and 7, respectively. The used 
test set is described in Section 7.1. The objective scores attained by the 
MHANet are discussed in Section 7.2. The enhanced speech spectrogram 
produced by the MHANet is also evaluated in Section 7.3. Subjective 
quality scores for the enhanced speech produced by the MHANet are 
presented and discussed in Sections 7.4 and 7.5. Finally, the execution 
time of the MHANet is evaluated in Section 7.6. 

Table 3 
A priori SNR estimation SD levels for each of the a priori SNR estimators. The 
lowest SD for each condition is shown in boldface. The used test set is described 
in Section 6.1.    

SNR level (dB) 

Noise ξ̂[n,k] − 5  0 5 10 15 

Voice babble DD 19.0 18.1 17.6 17.4 17.6 
TSNR 18.8 17.9 17.4 17.3 17.5 
HRNR 20.4 19.7 19.4 19.3 19.5 
SCTS 17.9 17.2 16.9 16.9 17.2 
ResNet 15.1 14.3 13.7 13.3 12.9 
ResLSTM 14.9 14.1 13.5 13.0 12.7 
MHANet 14.7 13.9 13.2 12.7 12.4 

Street music DD 20.4 19.0 18.0 17.4 17.1 
TSNR 20.1 18.8 17.8 17.2 16.9 
HRNR 20.3 19.2 18.5 18.2 18.1 
SCTS 19.0 17.8 17.0 16.5 16.5 
ResNet 13.7 13.2 12.8 12.6 12.3 
ResLSTM 13.5 13.1 12.7 12.3 12.1 
MHANet 13.4 12.9 12.5 12.1 11.9 

F16 DD 22.7 21.0 19.7 18.6 17.9 
TSNR 22.3 20.7 19.3 18.3 17.6 
HRNR 21.3 19.9 18.9 18.2 17.9 
SCTS 21.3 19.7 18.4 17.5 16.9 
ResNet 13.7 13.1 12.7 12.4 12.1 
ResLSTM 13.3 12.9 12.4 12.1 11.9 
MHANet 13.2 12.7 12.2 12.0 11.8 

Factory DD 24.5 22.7 21.1 19.9 18.9 
TSNR 24.2 22.5 20.9 19.6 18.7 
HRNR 23.5 22.0 20.7 19.7 19.1 
SCTS 23.0 21.2 19.8 18.6 17.8 
ResNet 14.8 14.2 13.7 13.2 12.9 
ResLSTM 14.7 14.0 13.4 12.9 12.5 
MHANet 14.7 13.8 13.1 12.6 12.2  

Fig. 6. Enhanced speech objective quality scores for the MMSE-LSA estimator. The mean opinion score of the listening quality objective (MOS-LQO) is used as the 
metric, where the wideband perceptual evaluation of quality (Wideband PESQ) is the objective model used to obtain the MOS-LQO score (Rec, 2005). 

Fig. 7. Enhanced speech objective intelligibility scores (in %) for the MMSE-LSA estimator. The short-time objective intelligibility (STOI) measure is used to 
compute the objective intelligibility scores (Taal et al., 2011). 
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7.1. Test set 

The test set used in this section is identical to that described in 
Section 6.1, except that 10 clean speech recordings are randomly 

selected (without replacement) from the test-clean set of the Librispeech 
corpus for each of the four noise recordings, instead of the TSP corpus. 
The clean speech recordings from the test-clean set have a longer dura-
tion than that of the TSP corpus. The clean speech recordings from the 

Fig. 8. (a) Clean speech spectrogram of female speaker 5 683 uttering the first two seconds of sentence 1 from book 32 865, “Said Lord Chelford, addressing me” 
(from the test set described in Section 7.1). (b) A recording of voice babble mixed with (a) at an SNR level of − 5 dB. Enhanced speech spectrogram produced by the 
MMSE-LSA estimatorusing (c) the DD approach, (d) the ResNet, (e) the ResLSTM network, and (f) the proposed MHANet. 
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test-clean set have a duration of up to 34 s, whereas recordings from the 
TSP corpus have a duration of up to 4.8 s. 

7.2. Objective scores 

The objective quality scores attained by the MHANet are given in 
Fig. 6. It can be seen that the MHANet is able to produce enhanced 
speech at a higher quality than the ResLSTM network and the ResNet for 
all tested conditions, including real-world non-stationary (voice babble 
and street music) and coloured (F16 and factory) noise sources at all SNR 
levels. The objective intelligibility scores attained by the MHANet are 
given in Fig. 7. The MHANet is able to produce more intelligible 
enhanced speech than the ResLSTM network and the ResNet for all 
conditions (except for factory at − 5 dB, where the ResLSTM performs 
best). It is even able to produce enhanced speech that is significantly 
more intelligible than noisy speech at low SNR levels. This indicates that 
the MHANet is more suited to the task of speech enhancement than both 
the ResLSTM network and the ResNet. 

7.3. Enhanced speech spectrograms 

In this section we examine the enhanced speech spectrogram pro-
duced by the MHANet. The clean speech spectrogram is shown in Fig. 8  
(a). Voice babble at an SNR level of -5 dB is used to create the noisy 
speech in Fig. 8 (b). This is a particularly tough condition, as the 
background noise exhibits characteristics similar to the speech produced 
by the target speaker. Moreover, the background noise is more pre-
dominant than the target speech in the band from 0 to 4 kHz. 

The enhanced speech for the DD approach is shown in Fig. 8 (c). It 
can be seen that a significant amount of musical noise is introduced. A 
large amount of residual background noise and speech distortion is also 
present. The enhanced speech produced by the ResNet is shown in Fig. 8 
(d). It can be seen that there is less residual background noise than the 
enhanced speech produced by the DD approach. Moreover, there is no 
musical noise present. The enhanced speech for the ResLSTM network is 
shown in Fig. 8 (e). There is less residual background noise and speech 
distortion present than in the enhanced speech produced by the ResNet. 
The enhanced speech produced by the MHANet is shown in Fig. 8(f). It 
can be seen that there is less residual background noise and speech 
distortion than in the enhanced speech produced by the ResLSTM 
network. 

7.4. Subjective testing procedure 

In this subsection, we describe the procedure used to obtain the 
subjective quality scores in Fig. 9. The mean subjective preference (%) 

scores are obtained using AB listening tests (So and Paliwal, 2011). Each 
AB listening test involves a stimuli pair. Each stimulus is either clean, 
noisy, or enhanced speech. The enhanced speech stimuli are produced 
by the DD approach, the ResNet, and the proposed MHANet — each 
using the MMSE-LSA estimator. Therefore, each stimulus belongs to one 
of the following classes: clean speech, noisy speech, enhanced speech 
produced by the DD approach, the ResNet, or the proposed MHANet. 

After listening to a stimuli pair, the listeners’ preference is deter-
mined by selecting one of three options. The first and second options 
indicate a preference for one of the two stimuli, while the third option 
indicates an equal preference for both stimuli. Pair-wise scoring is used, 
with a score of +1 awarded to the preferred class, and 0 to the other. If 
the listener has an equal preference for both stimuli, each class is 
awarded a score of +0.5. Participants could re-listen to the stimuli pair 
before selecting an option. 

Two utterances from the test set described in Section 7.1 are used as 
the clean speech stimuli: sentence 1 from book 32 865, as uttered by 
female speaker 5 683, and sentence 7 from book 122 612, as uttered by 
male speaker 1 320. Voice babbleand F16 is mixed with the clean speech 
stimuli from speaker 5 683 and 1 320, respectively, at an SNR level of 0 
dB, producing the noisy speech stimuli. The enhanced speech stimuli for 
each of the speech enhancement methods is produced from the noisy 
speech stimuli. For each utterance, all possible stimuli pair combinations 
are presented to the listener (i.e. double-blind testing). Each participant 
listens to a total of 40 stimuli pair combinations. A total of five English- 
speaking listeners participated. Each listening test is conducted in a 
separate session, in a quiet room using closed circumaural headphones 
at a comfortable listening level. 

7.5. Subjective quality scores 

Here, we evaluate the subjective quality of the enhanced speech 
produced by the MHANet. Details about the subjective testing procedure 
are given in Section 7.4. Voice babble and F16 at an SNR level of 0 dB are 
the used conditions for the subjective tests. Voice babble is a real-world 
non-stationary noise source, while F16 is a real-world coloured noise 
source. The mean subjective preference (%) for the MMSE-LSA estimator 
utilising the DD approach, the ResNet, and the MHANet is shown in 
Fig. 9. It can be seen that the enhanced speech produced by the MHANet 
is preferred by listeners over the enhanced speech produced by the 
ResNet. These results support the objective quality results obtained by 
the MHANet in Fig. 6. 

7.6. Execution time comparison 

In this subsection, we evaluate the execution time of the MHANet. It 
is tasked with processing each noisy speech signal of the test set 
described in Section 7.1 individually (i.e. no batch processing). The 
MHANet is compared to the ResLSTM network and the ResNet. Five 
trials for each model are performed. The total duration of the test set is 
1 515.1 sand includes 200 waveforms. The ResLSTM network, ResNet, 
and MHANet took an average of 518.7, 36.9, and 28.6 s to process the 
test set on an NVIDIA TITAN X graphics processing unit (GPU). Addi-
tionally, the ResLSTM network, ResNet, and MHANet took an average of 
360.1, 261.2, and 415.3 s to process the test set on 2× Intel Xeon E5- 
2670 v3 @ 2.30 GHz (48 total logical processors) central processing 
units (CPUs). It can be seen that the execution time of the MHANet is 
faster than that of the ResNet and the ResLSTM network for the GPU 
case. However, the MHANet is the slowest for the CPU case. The 
MHANet and the ResNet took significantly longer to process the test set 
when the CPU was used. Oppositely, the ResLSTM processed the test set 
faster when a CPU was used. Most modern mobile devices include a GPU 
that can be used for inference (Yun et al., 2018; Wang et al., 2020). The 
results for the GPU case thus indicate that the execution time of the 
MHANet on a modern mobile device would be faster than that of the 
ResLSTM network and ResNet. 

Fig. 9. Mean subjective preference (%) scores for the MMSE-LSA estimator. 
The subjective testing procedure is described in Section 7.4. Voice babble and 
F16 at an SNR level of 0 dB are the used conditions for the subjective tests. The 
error bars indicate the standard deviation of the scores. 
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8. Comparison to multiple deep learning approaches to speech 
enhancement 

In this section, we compare the speech enhancement performance of 
the MHANet to multiple recent deep learning approaches to speech 
enhancement. The training and test sets from Valentini-Botinhao et al. 
(2016) are used, which have been employed previously to evaluate deep 
learning approaches to speech enhancement. The training set is 
described in Section 8.1 and the test set is described in Section 8.2. The 
MHANet and the ResNet from Section 4 are used here and are both 
trained using the training set described in Section 8.1. A FNN including 
five hidden layers with 1 024 nodes per layer was also trained within the 
Deep Xi framework using the training set described in Section 8.1. Each 
hidden layer of the FNN is followed by frame-wise layer normalisation 
and the ReLU activation function. The FNN inludes the current frame 
and 10 previous frames as its input. The MHANet, ResNet, and FNN are 
trained until convergence (for 115 epochs). MHANet is compared to the 
following deep learning approaches to speech enhancement: SEGAN 
(Pascual et al., 2017), WaveNet (Rethage et al., 2018), MMSE-GAN 
(Soni et al., 2018), Deep Feature Loss (Germain et al., 2019), Metri-
cGAN (Fu et al., 2019), Koizumi2020 Koizumi et al. (2020), and T-GSA 
Kim et al. (2020). The objective measures used for the comparison are 
described in Table 4. The objective scores attained by the MHANet are 
discussed in Section 8.3. 

8.1. Training set 

The training set from Valentini-Botinhao et al. (2016) is described in 
this subsection. Clean speech recordings from 28 speakers of the Voice 
Bank corpus (Veaux et al., 2013) are included in the training set (11 572 
recordings). Two synthetic noise sources (speech-shaped noise and babble, 
as described in Valentini-Botinhao et al. (2016), as well as eight 
real-world noise recordings from the DEMAND dataset (Thiemann et al., 

2013) are also included in the training set. The clean speech and noise 
recordings are downsampled from 48 kHz to 16 kHz. Noisy speech sig-
nals are formed by mixing each clean speech recording with a random 
section of a randomly selected noise recording at one of four following 
SNR levels: 0, 5, 10, and 15 dB. This creates 11 572 noisy speech signals 
for training. 

8.2. Test set 

The test set from Valentini-Botinhao et al. (2016) is described in this 
subsection. The test set includes 824 clean speech recordings of two 
speakers from the Voice Bank corpus — 393 from p232 and 431 from 
p257 (Veaux et al., 2013). Both speakers are separate from those 
selected in the previous section for the training set. A total of 20 different 
conditions are used to create the noisy speech, including five noise types 
from the DEMAND dataset (separate from those included in the training 
set described in Section 8.1), and 4 SNR levels: 2.5, 7.5, 12.5, and 17.5 
dB. This corresponds to approximately 20 different sentences per con-
dition for each speaker (824 noisy speech signals in the second test set). 
The clean speech and noise recordings are downsampled from 48 kHz to 
16 kHz prior to mixing. 

8.3. Objective scores 

The objective scores for the MHANet and for multiple recent deep 
learning approaches to speech enhancement are shown in Table 4. The 
objective scores from Pascual et al. (2017), Rethage et al. (2018), Yang 
et al. (2020), Soni et al. (2018), Germain et al. (2019), Fu et al. (2019), 
Koizumi et al. (2018), Kim et al. (2020) are included in the table (PESQ 
and STOI scores were not reported in some of these articles). Some of the 
deep learning approaches to speech enhancement are non-causal, such 
as MetricGAN, WaveNet, MMSE-GAN, Koizumi2020, and T-GSA.2 As 
seen in Table 4, the MHANet outperforms all models that do not utilise 
an attention mechanism. 

The MHANet outperforms Koizumi2020 for CSIG. However, Koi-
zumi2020 demonstrates an improvement of 0.05, 0.04, and 0.11 for 
CBAK, COVL, and PESQ, respectively, over the MHANet. The key ad-
vantages that Koizumi2020 has over MHANet is the use of a complex- 
valued TF mask as the training target (i.e. it makes use of all the infor-
mation of the noisy speech DFT coefficients), its use of speaker-aware 
features, and that it is non-causal. T-GSA demonstrates a performance 
improvement of 0.01, 0.22, 0.09, and 0.18 for CSIG, CBAK, COVL, and 
PESQ, respectively, when compared to the MHANet. The main advan-
tages that T-GSA has over the MHANet is that it is non-causal and that it 
utilises PESQ as an optimisation objective. However, utilising PESQ as 
an optimisation objective may compromise its performance for other 
objective measures, such as CSIG. For real-time applications, the non- 
causal approaches will inherently exhibit a delay, and lack responsive-
ness. The MHANet relies only on current and previous frames, thus 
avoiding the drawbacks associated with non-causal approaches. 

9. Conclusion 

In this work, we propose the MHANet for speech enhancement. 
Masking is used to ensure causality, allowing the MHANet to be used in 
real-time systems. The MHANet was compared to a RNN and a TCN 
using both objective and subjective measures of quality and intelligi-
bility. Multiple real-world non-stationary and coloured noise sources at 
multiple SNR levels were used as the testing conditions. The results 

Table 4 
Objective scores obtained on the test set described in Section 8.2. As in previous 
works, the objective scores are averaged over all tested conditions. CSIG, CBAK, 
and COVL are mean opinion score (MOS) predictors of the signal distortion, 
background-noise intrusiveness, and overall signal quality, respectively Hu and 
Loizou (2008). PESQ is the perceptual evaluation of speech quality measure Rix 
et al. (2001). STOI is the short-time objective intelligibility measure (in %) Taal 
et al. (2011). The highest scores attained for each measure are indicated in 
boldface.  

Method Causal CSIG CBAK COVL PESQ STOI 

Noisy speech – 3.35 2.44 2.63 1.97 92 
(91.5) 

Wiener Scalart and 
Filho (1996) 

✓ 3.23 2.68 2.67 2.22 - 

SEGAN Pascual et al. 
(2017) 

⨯ 3.48 2.94 2.80 2.16 93 

WaveNet Rethage et al. 
(2018) 

⨯ 3.62 3.23 2.98 - - 

HLGAN Yang et al. 
(2020) 

⨯ 3.65 3.19 3.05 2.48 - 

MMSE-GAN Soni et al. 
(2018) 

⨯ 3.80 3.12 3.14 2.53 93 

Deep Feature Loss  
Germain et al. (2019) 

✓ 3.86 3.33 3.22 - - 

MetricGAN Fu et al. 
(2019) 

⨯ 3.99 3.18 3.42 2.86 - 

FNN (Deep Xi–MMSE- 
LSA) 

✓ 4.04 3.25 3.36 2.67 93 
(92.6) 

ResNet (Deep Xi–MMSE- 
LSA) 

✓ 4.12 3.33 3.48 2.82 93 
(93.3) 

Proposed MHANet 
(Deep Xi–MMSE-LSA) 

✓ 4.17 3.37 3.53 2.88 94 
(93.6) 

Koizumi2020 Koizumi 
et al. (2020) 

⨯ 4.15 3.42 3.57 2.99 - 

T-GSA Kim et al. (2020) ⨯ 4.18 3.59 3.62 3.06 -  

2 MetricGAN utilises bidirectional LSTM cells, WaveNet employs non-causal 
dilated kernels, and MMSE-GAN includes past, present, and future frames as 
its input. SEGAN and HLGAN utilise a window duration of one second, which 
would also significantly affect response time. Koizumi2020 and T-GSA do not 
mask out attention weights that consider future frames. 
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presented in this work show that the MHANet is able to produce 
enhanced speech at a higher quality and intelligibility than that pro-
duced by RNNs and TCNs. This is because MHA is better able to model 
the long-term dependencies of noisy speech than RNNs and TCNs. It was 
also found that utilizing dropout hinders the performance of MHANet. 
Additionally, it was found that no positional encoding for the attention 
mechanism is required for speech enhancement. This indicates that a 
sufficient amount of positional information is encoded into the noisy 
speech. The attention weights of the MHANet were also analysed, where 
it was observed that each head attends to regions of the target speech 
and/or background noise. This work demonstrates that MHA is more 
suitable for causal speech enhancement than RNNs and TCNs. 
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Appendix A. Hyperparameter search 

In this section, a search is conducted to determine an appropriate set of hyperparameters for the MHANet. The hyperparameters that are inves-
tigated are shown in Table A.1. Performing a grid search over multiple values for each hyperparameter is costly. Instead, we conduct a hyperparameter 
search over two stages. The first stage is a manual search over each hyperparameter. The second stage is a grid search over a subset of the hyper-
parameters. This subset includes the hyperparameters that had no appropriate value discovered during the first stage of the search. These two stages 
are used to determine the MHANet hyperparameters for the remainder of this work. The validation error from Eq. (16) is used to determine the best 
value for each hyperparameter, with the assumption that a lower validation error indicates a better speech enhancement performance. 

A1. Manual search 

For the first stage of the hyperparameter search, a manual search is conducted. Described in Table A.1 is the set of hyperparameters used initially 
for the MHANet. For each manual search, the hyperparameter is varied until an appropriate value is found. Once an appropriate value for a 
hyperparameter is found, it is then used for the remaining manual searches. The validation error over 50 training epochs is used to determine the 

appropriate value for each hyperparameter. 

A1.1. Positional encoding 
We first investigate the positional encoding types, including the addition or concatenation of a positional encoding, and no positional encoding. 

The trigonometric positional encoding from Vaswani et al. (2017) is used. As can be seen in Fig. A.1, the lowest validation error is attained when no 
positional encoding is used. This indicates that information about the order of events is sufficiently embedded in the noisy speech magnitude spectrum 
input. Thus, no positional encoding is used for the remainder of this work. 

Table Appendix A.1 
Hyperparameters used for the initial MHANet. The values for Ψ and Pdrop, as well as the po-
sitional encoding type from Vaswani et al. (2017) were used. The remaining initial hyper-
parameters were chosen heuristically.  

Param. Init. val. Description 

Pos. enc. Additive Positional encoding 
B  4 # blocks 
dff  256 Feed-forward size 
dmodel  128 Model size 
H  4 # heads 
Pdrop  0.1 Dropout rate 
Ψ  4 000  # warmup steps  

Fig. Appendix A.1. Positional encoding types. MHANet hyperparameters: B = 4, dff = 256, dmodel = 128, H = 4, Pdrop = 0.1, and Ψ = 4 000.  
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A1.2. Number of blocks: B 
The number of blocks B, for the MHANet is investigated here. The number of blocks contributes significantly to the total number of parameters of 

the MHANet. Selecting too many blocks can thus cause the MHANet to consume an unnecessarily large amount of parameters. As shown in Fig. A.2, a 
total of five to six blocks performs best. In Section A.2, the number of blocks is further investigated through a grid search. A total of five blocks are used 
for the remainder of this subsection. 

A1.3. Feed-forward inner layer size: dff 
Next, we investigate the size of the first feed-forward layer of the FNN of each block, dff . The size of dff is important, as the FNN accounts for most of 

the parameters in each block (Sukhbaatar et al., 2019). Blindly selecting a size that is too high can cause the model to be parameter inefficient. It can be 
seen in Fig. A.3 that a dff size of 1 024 attains the lowest validation error. A dff size of 1 024 is thus used for the remainder of this work. 

A1.4. Model size: dmodel 
In this section, we investigate the model size for the MHANet, dmodel. The size of dmodel affects the input and output size of each block, each MHA 

module, and each FNN. It also affects the size of the first layer, the input size of the output layer, and the size of each head. This indicates that the size of 
dmodel will have a significant effect on the performance of the MHANet. As shown in Fig. A.4, a dmodel size of 128 provides the lowest validation error, 
with a dmodel size of 256 demonstrating a similar performance. A dmodel size of 512 is also tested, but is unable to converge. In Section A.2, the dmodel size 
is further investigated through a grid search due to its effect on the performance of the MHANet. A dmodel size of 128 is used for the remainder of this 
subsection. 

Fig. Appendix A.2. Number of MHA blocks, B. MHANet hyperparameters: dff = 256, dmodel = 128, H = 4, Pdrop = 0.1, Ψ = 4 000, and no positional encoding.  

Fig. Appendix A.3. Feed-forward layer size, dff . MHANet hyperparameters: B = 5, dmodel = 128, H = 4, Pdrop = 0.1, Ψ = 4 000, and no positional encoding.  

Fig. Appendix A.4. Model size, dmodel. MHANet hyperparameters: B = 5, dff = 1 024, H = 4, Pdrop = 0.1, Ψ = 4 000, and no positional encoding.  
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A1.5. Number of heads: H 
Here, we investigate the number of heads for each MHA module, H. Each head possesses the ability to model different aspects of the noisy speech. 

For example, one head may learn to model regions of noise, while another may learn to model phonemic information. Another factor to consider is that 
the policy dk = dv = dmodel/H decreases the size of each head as H increases. It can be seen in Fig. A.5 that utilising four to eight heads attains the lowest 
validation error (A total of 16 heads is also investigated but consumes too much memory when trained on an NVIDIA GTX 1080 Ti). A total of four 
heads are used for the remainder of this subsection. The number of heads is further investigated in Section A.2 through a grid search. 

A1.6. Dropout rate: Pdrop 
Next, we investigate the dropout rate for the MHANet. As shown in Fig. A.6, utilising no dropout (i.e. Pdrop = 0.0) provided the lowest validation 

error. Dropout tends not to be beneficial for speech enhancement as shown by its absence in other works (Nicolson and Paliwal, 2019a; Rethage et al., 
2018; Fu et al., 2019). No dropout is used for the remainder of this work. 

A1.7. Warmup steps: Ψ 
In this subsection, we investigate the number of warmup steps, Ψ. The appropriate number of warmup steps will depend largely on the task (e.g. 

machine translation versus speech enhancement) and the mini-batch size. It can be determined from Fig. A.7 that 40 000 warmup steps provides the 
lowest validation error, and is used for the remainder of this work. 

Fig. Appendix A.5. Number of heads, H. MHANet hyperparameters: B = 5, dff = 1 024, dmodel = 128, Pdrop = 0.1, Ψ = 4 000, and no positional encoding.  

Fig. Appendix A.6. Dropout rate, Pdrop. MHANet hyperparameters: B = 5, dff = 1 024, dmodel = 128, H = 4, Ψ = 4 000, and no positional encoding.  

Fig. Appendix A.7. Number of warmup steps, Ψ. MHANet hyperparameters: B = 5, dff = 1 024, dmodel = 128, H = 4, Pdrop = 0.0, and no positional encoding.  
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A2. Grid search 

From the manual search, an appropriate value could not be determined for the block size and the number of heads. More specifically, it could not be 
determined if 5 or 6 blocks is more appropriate, or if 4 or 8 heads is more appropriate. Additionally, a dmodel size of 128 and 256 are further inves-
tigated, due to the ability of dmodel to affect many aspects of the MHANet (as described in Section A.1.4). This gives eight different combinations, as 
described in Table A.2. The values for the remaining hyperparameters are those found during the manual search. The validation error curves for each 
configuration in Table A.2 are shown in Fig. A.8. It can be seen that configuration D and H both produced the lowest validation error. Configuration D 
and H are similar, in that they both use dff = 1 024, dmodel = 256, H = 8, Pdrop = 0.0, Ψ = 40 000 and no positional encoding. The difference is that D 
utilises five blocks, while H utilises six blocks. Configuration D is chosen for the MHANet for the remainder of this work, as it consumes fewer pa-
rameters than configuration H. 
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