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Abstract

Signal coding or compression has played a significant role in the success of digital commu-
nications and multimedia. The use of signal coding pervades many aspects of our digital
lifestyle—a lifestyle that has seen widespread demand for applications like third genera-
tion mobile telephony, portable music players, Internet-based video conferencing, digital
television, etc. The issues that arise, when dealing with the transmission and storage of
digital media, are the limited bandwidth of communication channels, the limited capacity
of storage devices, and the limited processing ability of the encoding and decoding devices.
The aim of signal coding is therefore to represent digital media, such as speech, music,
images, and video, as efficiently as possible. Coding efficiency encompasses rate-distortion
(for lossy coding), computational complexity, and static memory requirements.

The fundamental operation in lossy signal coding is quantisation. Its rate-distortion
efficiency is influenced by the properties of the signal source, such as statistical depen-
dencies and its probability density function. Vector quantisers are known to theoretically
achieve the lowest distortion, at a given rate and dimension, of any quantisation scheme,
though their computational complexity and memory requirements grow exponentially with
rate and dimension. Structurally constrained vector quantisers, such as product code vec-
tor quantisers, alleviate these complexity issues, though this is achieved at the cost of
degraded rate-distortion performance.

Block quantisers or transform coders, which are a special case of product code vec-
tor quantisation, possess both low computational and memory requirements, as well as
the ability to scale to any bitrate, which is termed as bitrate scalability. However, the
prerequisite for optimal block quantisation, namely a purely Gaussian data source with
uniform correlation, is rarely ever met with real-world signals. The Gaussian mixture
model-based block quantiser, which was originally developed for line spectral frequency
(LSF) quantisation for speech coding, overcomes these problems of source mismatch and
non-stationarity by estimating the source using a GMM.

The split vector quantiser, which was also successfully applied to LSF quantisation
in the speech coding literature, is a product code vector quantiser that overcomes the
complexity problem of unconstrained vector quantisers, by partitioning vectors into sub-
vectors and quantising each one independently. The complexity can be significant reduced
via more vector splitting, though this inevitably leads to an accompanying degradation in
the rate-distortion efficiency. This is because the structural constraint of vector splitting
causes losses in several properties of vector quantisers, which are termed as ‘advantages’.

This dissertation makes several contributions to the area of block and vector quantisa-
tion, more specifically to the GMM-based block quantiser and split vector quantiser, which
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aim to improve their rate-distortion and computational efficiency. These new quantisation
schemes are evaluated and compared with existing and popular schemes in the areas of
lossy image coding, LSF quantisation in narrowband speech coding, LSF and immittance
spectral pair (ISP) quantisation in wideband speech coding, and Mel frequency-warped
cepstral coefficient (MFCC) quantisation in distributed speech recognition. These contri-
butions are summarised below.

A novel technique for encoding fractional bits in a fixed-rate GMM-based block quan-
tiser scheme is presented. In the GMM-based block quantiser, fractional bitrates are often
assigned to each of the cluster block quantisers. This new encoding technique leads to
better utilisation of the bit budget by allowing the use of, and providing for the encoding
of, quantiser levels in a fixed-rate framework. The algorithm is based on a generalised
positional number system and has a low complexity.

A lower complexity GMM-based block quantiser, that replaces the KLT with the dis-
crete cosine transform (DCT), is proposed for image coding. Due to its source independent
nature and amenability to efficient implementation, the DCT allows a fast GMM-based
block quantiser to be realised that achieves comparable rate-distortion performance as the
KLT-based scheme in the block quantisation of images.

Transform image coding often suffers from block artifacts at relatively low bitrates. We
propose a scheme that minimises the block artifacts of block quantisation by pre-processing
the image using the discrete wavelet transform, extracting vectors via a tree structure that
exploits spatial self-similarity, and quantising these vectors using the GMM-based block
quantiser. Visual examination shows that block artifacts are considerably reduced by the
wavelet pre-processing step.

The multi-frame GMM-based block quantiser is a modified scheme that exploits mem-
ory across successive frames or vectors. Its main advantages over the memoryless scheme
in the application of LSF and ISP quantisation, are better rate-distortion and computa-
tional efficiency, through the exploitation of correlation across multiple frames and mean
squared error selection criterion, respectively. The multi-frame GMM-based block quan-
tiser is also evaluated for the quantisation of MFCC feature vectors for distributed speech
recognition and is shown to be superior to all quantisation schemes considered.

A new product code vector quantiser, called the switched split vector quantiser (SSVQ),
is proposed for speech LSF and ISP quantisation. SSVQ is a hybrid scheme, combining a
switch vector quantiser with several split vector quantisers. It aims to overcome the losses
of rate-distortion efficiency in split vector quantisers, by exploiting full vector dependencies
before the vector splitting. It is shown that the SSVQ alleviates the losses in two of the
three vector quantiser ‘advantages’. The SSVQ also has a remarkably low computational
complexity, though this is achieved at the cost of an increase in memory requirements.
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2.2.1 The Karhunen-Loève Transform . . . . . . . . . . . . . . . . . . . . 17

ix



2.2.2 Non-Uniform Scalar Quantisation . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.4 Problems with the KLT in Transform Coding . . . . . . . . . . . . . 32

2.3 The Discrete Cosine Transform . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Adaptive Transform Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Using K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Gaussian Mixture Model-Based Block Quantisation . . . . . . . . . . . . . . 42

2.5.1 Source Modelling for Quantiser Design . . . . . . . . . . . . . . . . . 42

2.5.2 PDF Estimation Using Gaussian Mixture Models and the EM Al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.3 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.4 Minimum Distortion Block Quantisation . . . . . . . . . . . . . . . . 55

2.5.5 Quantiser Index Encoding . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5.6 Computational Complexity and Memory Requirements . . . . . . . . 57

2.6 GMM-based Block Quantisation using the Discrete Cosine Transform . . . 58

2.6.1 PDF Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6.2 Minimum Distortion Block Quantisation . . . . . . . . . . . . . . . . 60

2.7 GMM-Based Block Quantisation with Memory . . . . . . . . . . . . . . . . 60

2.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7.2 Predictive GMM-Based Block Quantisation . . . . . . . . . . . . . . 61

2.7.3 Multi-Frame GMM-Based Block Quantisation . . . . . . . . . . . . . 63

2.8 Non-Integer Bit Allocation and Encoding at a Fixed-Rate . . . . . . . . . . 64

2.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.8.2 Positional Value Number Systems . . . . . . . . . . . . . . . . . . . 66

2.8.3 Fractional Bit Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.8.4 Heuristic Algorithms for Compensating Quantiser Levels . . . . . . . 69

2.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Efficient Vector Quantisation 75

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



3.3 Vector Quantiser Design Using the Linde-Buzo-Gray Algorithm . . . . . . . 77

3.4 Advantages of Vector Quantisation . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 Linear and Non-Linear Dependency . . . . . . . . . . . . . . . . . . 79

3.4.2 Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Probability Density Function Shape . . . . . . . . . . . . . . . . . . 81

3.4.4 Space-Filling Advantage . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.5 Shape Advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.6 Memory Advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Practical Limitations of Unconstrained Vector Quantisation . . . . . . . . . 84

3.6 Product Code Vector Quantisers . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.2 Split Vector Quantisers . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6.3 Multistage Vector Quantisers . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Tree Structured and Classified Vector Quantisers . . . . . . . . . . . . . . . 90

3.8 Switched Split Vector Quantisation . . . . . . . . . . . . . . . . . . . . . . . 91

3.8.1 Hybrid Vector Quantisation Schemes . . . . . . . . . . . . . . . . . . 91

3.8.2 Suboptimality of Split Vector Quantisers . . . . . . . . . . . . . . . . 92

3.8.3 Switched Split Vector Quantisers . . . . . . . . . . . . . . . . . . . . 94

3.8.4 Advantages of the Switched Split Vector Quantiser . . . . . . . . . . 98

3.8.5 Computational Complexity and Memory Requirements . . . . . . . . 102

3.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Lossy Image Coding 107

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Distortion Measures for Image Coding . . . . . . . . . . . . . . . . . . . . . 110

4.4 Overview of Image Coding Techniques . . . . . . . . . . . . . . . . . . . . . 111

4.4.1 Vector Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4.2 Transform Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.3 Subband Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.4 Wavelet-Based Image Coding . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Non-Expansive Filtering for the Subband Decomposition of Images . . . . . 134

4.5.1 Non-Causal Filtering with Minimal Delay . . . . . . . . . . . . . . . 135

xi



4.5.2 Signal Extension Methods . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5.3 An Example of Symmetric Extension for Subband Decomposition of
Finite Length Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.5.4 An Example of Symmetric Extension for the Discrete Wavelet Trans-
form of Finite Length Signals . . . . . . . . . . . . . . . . . . . . . . 147

4.6 Experimental Setup for Image Coding Simulations . . . . . . . . . . . . . . 152

4.7 Application of the Block Quantiser . . . . . . . . . . . . . . . . . . . . . . . 155

4.7.1 The KLT-Based Block Quantiser . . . . . . . . . . . . . . . . . . . . 155

4.7.2 The DCT-Based Block Quantiser . . . . . . . . . . . . . . . . . . . . 157

4.7.3 The K-Means-Based Multiple Transform Block Quantiser . . . . . . 162

4.8 Application of the GMM-Based Block Quantiser . . . . . . . . . . . . . . . 169

4.8.1 The GMM-Based Block Quantiser . . . . . . . . . . . . . . . . . . . 169

4.8.2 Comparison Between Integer and Fractional Bit-Based Cluster Block
Quantisers in the GMM-Based Block Quantiser . . . . . . . . . . . . 178

4.8.3 The GMM-DCT-Based Block Quantiser . . . . . . . . . . . . . . . . 179

4.9 Reducing Block Artifacts in the GMM-Based Block Quantiser Using Wavelet
Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.9.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.9.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5 LPC Parameter Quantisation in Narrowband Speech Coding 197

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2 Preliminaries of Speech Coding . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.1 Narrowband versus Wideband Speech . . . . . . . . . . . . . . . . . 198

5.2.2 Speech Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.3 Autoregressive Modelling and Linear Prediction Analysis of the Speech
Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.3 Linear Prediction-Based Speech Coding . . . . . . . . . . . . . . . . . . . . 207

5.3.1 The LPC Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.3.2 The RPE-LTP Speech Coder . . . . . . . . . . . . . . . . . . . . . . 210

5.3.3 Differential Pulse Coded Modulation with Perceptual Weighting . . 211

5.3.4 Code Excited Linear Predictive Speech Coders . . . . . . . . . . . . 215

5.3.5 Pre-Processing of LPC Coefficients: Bandwidth Expansion and High
Frequency Compensation . . . . . . . . . . . . . . . . . . . . . . . . 223

xii



5.4 LPC Parameter Representations . . . . . . . . . . . . . . . . . . . . . . . . 226

5.4.1 Reflection Coefficients, Log Area Ratios and Arcsine Reflection Co-
efficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.4.2 Line Spectral Frequencies . . . . . . . . . . . . . . . . . . . . . . . . 229

5.4.3 Immittance Spectral Pairs . . . . . . . . . . . . . . . . . . . . . . . . 233

5.5 Quantisation of LPC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 234

5.5.1 LPC Parameter Distortion Measures . . . . . . . . . . . . . . . . . . 235

5.5.2 Experimental Setup for LSF Quantisation Experiments . . . . . . . 238

5.5.3 PDF-Optimised Scalar Quantisers with Non-Uniform Bit Allocation 238

5.5.4 Product Code Vector Quantisation . . . . . . . . . . . . . . . . . . . 240

5.5.5 GMM-Based Block Quantisation . . . . . . . . . . . . . . . . . . . . 245

5.6 LSF Quantisation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.6.1 The KLT-Based Block Quantiser . . . . . . . . . . . . . . . . . . . . 248

5.6.2 The Multi-Frame GMM-Based Block Quantiser . . . . . . . . . . . . 249

5.6.3 The Switched Split Vector Quantiser . . . . . . . . . . . . . . . . . . 256

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

6 LPC Parameter Quantisation in Wideband Speech Coding 265

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

6.2.1 The Improved Quality of Wideband Speech . . . . . . . . . . . . . . 266

6.2.2 LPC Analysis of Wideband Speech . . . . . . . . . . . . . . . . . . . 267

6.2.3 Coding of Wideband Speech . . . . . . . . . . . . . . . . . . . . . . . 268

6.3 Wideband Speech Coders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

6.3.1 The ITU-T G.722 Wideband Speech Coder . . . . . . . . . . . . . . 269

6.3.2 The Transform Coded Excitation (TCX) Wideband Speech Coder . 270

6.3.3 The Adaptive Multirate Wideband (AMR-WB) Speech Coder . . . . 271

6.4 Quantisation of Wideband LPC Parameters . . . . . . . . . . . . . . . . . . 273

6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

6.4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.4.4 PDF-Optimised Scalar Quantisers with Non-Uniform Bit Allocation 275

6.4.5 Unconstrained Vector Quantisers and an Informal Lower Bound for
Transparent Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

xiii



6.4.6 Split-Multistage Vector Quantisers with MA Predictor . . . . . . . . 282

6.4.7 GMM-Based Block Quantisers . . . . . . . . . . . . . . . . . . . . . 283

6.4.8 Switched Split Vector Quantisers . . . . . . . . . . . . . . . . . . . . 286

6.4.9 Multi-Frame GMM-based Block Quantisers . . . . . . . . . . . . . . 290

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

7 MFCC Quantisation in Distributed Speech Recognition 297

7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

7.2 Preliminaries of Speech Recognition . . . . . . . . . . . . . . . . . . . . . . 298

7.2.1 Speech Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

7.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.2.3 Pattern Recogniser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

7.3 Client/Server-Based Speech Recognition . . . . . . . . . . . . . . . . . . . . 304

7.3.1 Network Speech Recognition . . . . . . . . . . . . . . . . . . . . . . 305

7.3.2 Distributed Speech Recognition . . . . . . . . . . . . . . . . . . . . . 308

7.4 The ETSI Aurora-2 Experimental Framework . . . . . . . . . . . . . . . . . 312

7.5 Setup of Experiments for Evaluating Different Quantisation Schemes in a
DSR Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

7.6 Recognition Performance of the Memoryless GMM-Based Block Quantiser . 315

7.7 Recognition Performance of the Multi-Frame GMM-Based Block Quantiser 316

7.8 Comparison with the Recognition Performance of the Non-Uniform Scalar
Quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

7.9 Comparison with the Recognition Performance of the Unconstrained Vector
Quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

7.10 Effect of Additive Noise on Recognition Performance . . . . . . . . . . . . . 321

7.11 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

8 Conclusions and Future Research 329

8.1 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 329

8.1.1 Chapter 2: Efficient Block Quantisation . . . . . . . . . . . . . . . . 329

8.1.2 Chapter 3: Efficient Vector Quantisation . . . . . . . . . . . . . . . . 330

8.1.3 Chapter 4: Lossy Image Coding . . . . . . . . . . . . . . . . . . . . 331

8.1.4 Chapter 5: LPC Parameter Quantisation in Narrowband Speech
Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

xiv



8.1.5 Chapter 6: LPC Parameter Quantisation in Wideband
Speech Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

8.1.6 Chapter 7: MFCC Quantisation in Distributed Speech Recognition . 334

8.2 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 334

Bibliography 337

xv



xvi



List of Figures

2.1 Schematic of a typical block quantiser . . . . . . . . . . . . . . . . . . . . . 16

2.2 Scatter diagram of joint Gaussian random source . . . . . . . . . . . . . . . 25

2.3 Estimated PDF of joint Gaussian random source . . . . . . . . . . . . . . . 25

2.4 Block quantisation using 3 bits/sample with no KLT applied . . . . . . . . 26

2.5 Scalar quantisation of KLT coefficients k1 and k2 using 3 bits/sample . . . . 27

2.6 Block quantisation using 3 bits/sample with KLT applied . . . . . . . . . . 28

2.7 The function K(b) of a Gaussian Lloyd-Max scalar quantiser . . . . . . . . 31

2.8 Scalar quantisation of DCT coefficients d1 and d2 using 3 bits/sample . . . 35

2.9 Block quantisation using 3 bits/sample with DCT applied . . . . . . . . . . 36

2.10 The image ‘goldhill’ along with its 2D PDF and first eigenvector . . . . . . 38

2.11 Voronoi regions from K-means algorithm . . . . . . . . . . . . . . . . . . . . 40

2.12 The image ‘barbara’ and its PDF in two dimensions . . . . . . . . . . . . . 47

2.13 Original PDF and a single cluster GMM of the image ‘barbara’ . . . . . . . 48

2.14 Original PDF and a 4 cluster GMM of the image ‘barbara’ . . . . . . . . . 49

2.15 Original PDF and a 16 cluster GMM of the image ‘barbara’ . . . . . . . . . 50

2.16 Original PDF and a 32 cluster GMM of the image ‘barbara’ . . . . . . . . . 51

2.17 Minimum distortion block quantisation (Q – cluster block quantiser) . . . . 55

2.18 Example of quantiser level encoding and cluster number partitioning . . . . 56

2.19 PDF estimation and bit allocation procedure for the GMM-DCT-based
block quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.20 Schematic of the modified GMM-based block quantiser based on DCT . . . 60

2.21 Schematic of the ‘modified case’ predictive GMM-based block quantiser . . 61

2.22 Schematic of the ‘trained case’ predictive GMM-based block quantiser . . . 61

3.1 Voronoi regions of a nearest neighbour (MSE) vector quantiser . . . . . . . 77

3.2 Voronoi regions of a 4 bit vector quantiser designed using the LBG algorithm 78

xvii



3.3 Vector quantisation using 3 bits/sample of random Gaussian vectors . . . . 83

3.4 Two part split vector quantiser . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Three stage multistage vector quantiser . . . . . . . . . . . . . . . . . . . . 88

3.6 Codebook searches of an M-L searched multistage vector quantiser . . . . . 89

3.7 Tree structured vector quantisation . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Illustrating the memory suboptimality of two-part split vector quantiser in
two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.9 Illustrating the space-filling and shape suboptimality of two-part split vector
quantiser in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.10 Switched split vector quantiser (training) . . . . . . . . . . . . . . . . . . . 95

3.11 Switched split vector quantiser (coding) . . . . . . . . . . . . . . . . . . . . 96

3.12 Quantiser index partitioning for 3 bit SSVQ with two-way switch . . . . . . 97

3.13 Illustrating the memory advantage of the switched split vector quantiser . . 98

3.14 Comparing product code-vectors of 8 bits/vector split vector quantiser with
8 bits/vector switched split vector quantiser on vectors with memory . . . . 100

3.15 Comparing product code-vectors of 8 bits/vector split vector quantiser with
8 bits/vector switched split vector quantiser on vectors without memory . . 101

3.16 Computational complexity of two-part and three-part SSVQ as a function
of number of bits for switch vector quantiser . . . . . . . . . . . . . . . . . . 102

3.17 Memory requirements of two-part and three-part SSVQ as a function of
number of bits for switch vector quantiser . . . . . . . . . . . . . . . . . . . 104

4.1 A typical 8-bit greyscale image ‘bird’ . . . . . . . . . . . . . . . . . . . . . . 109

4.2 The image ‘lena’ coded using a vector quantiser at 0.5625 bits/pixel . . . . 112

4.3 Block diagram of the lossy JPEG image coding standard . . . . . . . . . . . 113

4.4 The block artifacts of JPEG on the image ‘bird’ . . . . . . . . . . . . . . . . 114

4.5 Uniform splitting of frequency spectrum into four subbands . . . . . . . . . 115

4.6 Block diagram of a two-band subband coder . . . . . . . . . . . . . . . . . . 116

4.7 Brick-wall filter with ideal filter response . . . . . . . . . . . . . . . . . . . . 116

4.8 Frequency response of quadrature mirror filters . . . . . . . . . . . . . . . . 117

4.9 Frequency response of the Johnston QMF (8-taps) . . . . . . . . . . . . . . 118

4.10 Frequency response of the Johnston QMF (16-taps) . . . . . . . . . . . . . . 119

4.11 Two dimensional subband coding using separable filters . . . . . . . . . . . 119

4.12 Subband decomposition configurations . . . . . . . . . . . . . . . . . . . . . 120

4.13 Laplacian pyramidal image coder . . . . . . . . . . . . . . . . . . . . . . . . 123

xviii



4.14 Discrete wavelet transform of greyscale test images: ‘lena’, ‘bird’, ‘camera-
man’ (using 9/7-tap biorthogonal wavelet filters) . . . . . . . . . . . . . . . 127

4.15 Image subbands and their respective directions . . . . . . . . . . . . . . . . 128

4.16 Zerotrees used in the embedded zerotree wavelet coder . . . . . . . . . . . . 129

4.17 Spatial orientation trees used in SPIHT coding . . . . . . . . . . . . . . . . 132

4.18 Subband coding with non-causal filtering and signal extension . . . . . . . . 135

4.19 Impulse responses of causal and non-causal linear phase filters . . . . . . . . 136

4.20 The circular extension method . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.21 The symmetric extension method . . . . . . . . . . . . . . . . . . . . . . . . 139

4.22 Impulse response of an even and odd-tapped symmetric filter . . . . . . . . 141

4.23 Symmetric extension for filters with an even number of taps . . . . . . . . . 142

4.24 Symmetric extension for filters with an odd number of taps . . . . . . . . . 143

4.25 Ramp signal, x(n) = n+ 1 where n = 0, 1, . . . , N . . . . . . . . . . . . . . . 146

4.26 Symmetrically extended ramp signal, x̃(n) . . . . . . . . . . . . . . . . . . . 146

4.27 Low-pass and high-pass filtered signals, v1(n) and v2(n) . . . . . . . . . . . 147

4.28 Low-pass and high-pass extended and upsampled signals, w̃1(n) and w̃2(n) . 148

4.29 Filtered extended and upsampled signals, x̂1(n) and x̂2(n) . . . . . . . . . . 148

4.30 Symmetrically extended ramp signal, x̃(n) . . . . . . . . . . . . . . . . . . . 149

4.31 Low-pass and high-pass filtered signals, v1(n) and v2(n) . . . . . . . . . . . 150

4.32 Filtered extended and upsampled signals, x̂1(n) and x̂2(n) . . . . . . . . . . 151

4.33 Training set of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.34 Testing set of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.35 Results of the ‘goldhill’ image at various bitrates using the KLT-based block
quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.36 Results of the ‘boat’ image at various bitrates using the KLT-based block
quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.37 Results of the ‘goldhill’ image at various bitrates using the DCT-based block
quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.38 Results of the ‘boat’ image at various bitrates using the DCT-based block
quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.39 Results of the ‘goldhill’ image using the K-means-based multiple transform
block quantiser with varying number of clusters at 0.5 bits/pixel . . . . . . 167

4.40 Results of the ‘boat’ image using the K-means-based multiple transform
block quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . 168

xix



4.41 Plot of PSNR as a function of bitrate of GMM-based block quantisation of
‘boat’ with varying number of clusters . . . . . . . . . . . . . . . . . . . . . 171

4.42 Results of the ‘goldhill’ image using the GMM-based block quantiser with
varying number of clusters at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . 172

4.43 Results of the ‘boat’ image using the GMM-based block quantiser at 0.5
bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.44 Plot of PSNR as a function of bitrate of GMM-DCT-based block quantisa-
tion of ‘boat’ with varying number of clusters . . . . . . . . . . . . . . . . . 181

4.45 Results of the ‘goldhill’ image using the GMM-DCT-based block quantiser
with varying number of clusters at 0.5 bits/pixel . . . . . . . . . . . . . . . 182

4.46 Results of the ‘boat’ image using the GMM-DCT-based block quantiser at
0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.47 Wavelet tree structure for extracting vectors from the same spatial location 187

4.48 Quality comparison of the ‘lena’ image using the GMM-based block quan-
tiser with and without the wavelet transform pre-processing at 0.5 bits/pixel191

4.49 Quality comparison of the ‘boat’ image using the GMM-based block quan-
tiser with and without the wavelet transform pre-processing at 0.5 bits/pixel192

4.50 Quality comparison of the ‘barbara’ image using the GMM-based block
quantiser with and without the wavelet transform pre-processing at 0.5
bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.51 Comparing the wavelet transform of the images ‘man’, ‘vegas’, and ‘barbara’
with their quantised versions using the GMM-based block quantiser at 0.5
bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.1 Waveform and spectrogram of narrowband speech . . . . . . . . . . . . . . 199

5.2 Anatomy of the human vocal tract . . . . . . . . . . . . . . . . . . . . . . . 199

5.3 Source-filter synthesis model of speech . . . . . . . . . . . . . . . . . . . . . 201

5.4 Estimation of the spectral envelope and excitation/residual signal of voiced
speech, /i/, using a 12th order linear prediction filter . . . . . . . . . . . . . 204

5.5 Estimation of the spectral envelope and excitation/residual signal of un-
voiced speech, /s/, using a 12th order linear prediction filter . . . . . . . . . 204

5.6 Cubed autocorrelation (unbiased) of the residual for voiced and unvoiced
speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.7 Plot of normalised residual error versus order of linear prediction for voiced
and unvoiced speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.8 Different types of prediction used in speech coding . . . . . . . . . . . . . . 208

5.9 Block diagram of generalised speech synthesis . . . . . . . . . . . . . . . . . 208

5.10 Block diagram of the LPC vocoder . . . . . . . . . . . . . . . . . . . . . . . 209

5.11 Block diagram of the RPE-LTP speech coder used in GSM 06.10 . . . . . . 211

xx



5.12 Block diagram of the DPCM coder with and without noise shaping . . . . . 212

5.13 Block diagram of the generalised DPCM speech coder . . . . . . . . . . . . 214

5.14 The analysis-by-synthesis speech coder . . . . . . . . . . . . . . . . . . . . . 215

5.15 Block diagram of the CELP coder . . . . . . . . . . . . . . . . . . . . . . . 217

5.16 Relationship between frames, subframes, and analysis windows . . . . . . . 217

5.17 Frequency response of a perceptual weighting filter . . . . . . . . . . . . . . 219

5.18 Modified CELP coder with lower computational complexity . . . . . . . . . 220

5.19 Block diagram of the pitch predictor and adaptive codebook . . . . . . . . . 222

5.20 Illustrating the effect of bandwidth expansion on the spectral envelope es-
timate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.21 Illustrating the effect of high frequency compensation on the spectral enve-
lope estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.22 The acoustic tube model of the vocal tract . . . . . . . . . . . . . . . . . . . 227

5.23 The acoustic tube with two artificial boundary conditions for the line spec-
tral frequency representation . . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.24 Pole-zero plot of P (z) and Q(z) of 12th order LPC analysis . . . . . . . . . 232

5.25 Spectral envelope estimate and line spectral frequency locations . . . . . . . 232

5.26 Original and reconstructed spectral envelope of two LSFs that have been
shifted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

5.27 Scatter diagram of the first and second line spectral frequencies . . . . . . . 244

5.28 Histograms of 10 line spectral frequencies for narrowband speech . . . . . . 245

5.29 Average spectral distortion (SD) of two-part and three-part SSVQ at 24
bits/frame as a function of the bits required for switching . . . . . . . . . . 257

5.30 Computational complexity of two-part and three-part SSVQ at 24 bits/frame
as a function of the bits required for switching . . . . . . . . . . . . . . . . 258

5.31 Partial-band spectral distortion (SD) histograms for the 24 bits/frame two-
part switched split vector quantiser (m = 16) using minimum distortion (us-
ing weighted distance measure and spectral distortion) and nearest neigh-
bour selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.1 Waveform and spectrogram of wideband speech . . . . . . . . . . . . . . . . 266

6.2 Spectral envelope estimate of wideband speech for different orders of linear
prediction analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

6.3 Block diagram of the 64 kbps ITU-T G.722 wideband speech coder . . . . . 269

6.4 Block diagram of the 16 kbps TCX wideband speech coder . . . . . . . . . 270

6.5 Histograms of immittance spectral frequencies (ISFs) and line spectral fre-
quencies (ISFs) from the TIMIT database . . . . . . . . . . . . . . . . . . . 276

xxi



6.6 Original and reconstructed power spectral envelope estimates of 16th order
LSFs and ISFs with last parameter shifted by 142 Hz . . . . . . . . . . . . 280

6.7 Extrapolating from the operating distortion-rate curve of the unconstrained
vector quantisers for wideband LSFs and ISFs to approximate a lower bound281

6.8 Block diagram of the split-multistage vector quantiser . . . . . . . . . . . . 282

6.9 Original and reconstructed spectral envelope of two LSFs that have been
shifted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

7.1 A typical speech recognition system (after [178]) . . . . . . . . . . . . . . . 298

7.2 Waveform and spectrogram of the sentence, she had your dark suit in greasy
wash-water all year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.3 Magnitude and phase response of the pre-emphasis filter . . . . . . . . . . . 300

7.4 The effect of pre-emphasis on the power spectral density of speech . . . . . 301

7.5 Filterbank of Mel frequency-warped triangular-shaped filters used for MFCC
calculation from 8 kHz speech (M = 20) . . . . . . . . . . . . . . . . . . . . 303

7.6 A typical 6 state, left-to-right hidden Markov model (HMM) (after [203]) . 304

7.7 Client-server-based speech recognition modes . . . . . . . . . . . . . . . . . 309

7.8 Summary of average word recognition accuracies for all quantisation schemes
considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

7.9 Plot of recognition accuracy versus SNR for all quantisation schemes (ex-
cluding SQ) at 1.2 kbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

7.10 Plot of recognition accuracy versus SNR for all quantisation schemes (ex-
cluding SQ) at 0.6 kbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

xxii



List of Tables

2.1 Bitrate independent computational complexity of the GMM-based block
quantiser (after [183]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2 Example of integer bit allocation table . . . . . . . . . . . . . . . . . . . . . 65

2.3 Example of binary coding a block . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Example of fractional bit allocation table . . . . . . . . . . . . . . . . . . . 65

2.5 System of positional weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6 Positional weights for the S number system . . . . . . . . . . . . . . . . . . 67

2.7 Example of converting decimal to the S number system via method 1 . . . 68

2.8 Example of converting decimal to the S number system via method 2 . . . 68

4.1 Coefficients of the spline variant 9/7-tap wavelet filter . . . . . . . . . . . . 127

4.2 Symmetry properties of convolved signals . . . . . . . . . . . . . . . . . . . 140

4.3 Coefficients of the 32-tap Johnston symmetric QMFs . . . . . . . . . . . . . 145

4.4 Training and testing image set for image coding experiments . . . . . . . . 154

4.5 PSNR as a function of bitrate for the KLT-based block quantiser . . . . . . 156

4.6 Levels allocation table for KLT-based block quantiser at 0.25 bits/pixel . . 156

4.7 Levels allocation table for KLT-based block quantiser at 0.5 bits/pixel . . . 157

4.8 Levels allocation table for KLT-based block quantiser at 1.0 bits/pixel . . . 157

4.9 PSNR as a function of bitrate for the DCT-based block quantiser . . . . . . 160

4.10 Levels allocation table for DCT-based block quantiser at 0.25 bits/pixel . . 161

4.11 Levels allocation table for DCT-based block quantiser at 0.5 bits/pixel . . . 161

4.12 Levels allocation table for DCT-based block quantiser at 1.0 bits/pixel . . . 162

4.13 PSNR as a function of number of clusters for the K-means-based multiple
transform block quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . 165

4.14 Levels allocation table for cluster 1 of 4 cluster K-means-based multiple
transform block quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . 166

xxiii



4.15 Levels allocation table for cluster 2 of 4 cluster K-means-based multiple
transform block quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . 167

4.16 Levels allocation table for cluster 3 of 4 cluster K-means-based multiple
transform block quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . 168

4.17 Levels allocation table for cluster 4 of 4 cluster K-means-based multiple
transform block quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . 169

4.18 PSNR as a function of number of clusters for the GMM-based block quan-
tiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.19 Levels allocation table for cluster 1 of 4 cluster GMM-based block quantiser
at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.20 Levels allocation table for cluster 2 of 4 cluster GMM-based block quantiser
at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.21 Levels allocation table for cluster 3 of 4 cluster GMM-based block quantiser
at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.22 Levels allocation table for cluster 4 of 4 cluster GMM-based block quantiser
at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.23 Cluster densities for the 4 cluster GMM-based block quantiser at 0.5 bits/pixel176

4.24 PSNR performance of the fixed-rate (2 bits/pixel), 4 cluster GMM-based
block quantiser using integer and fractional bit-based cluster block quantis-
ers (underallocation) on images that were part of the training set . . . . . . 176

4.25 PSNR performance of the fixed-rate (2 bits/pixel), 4 cluster GMM-based
block quantiser using integer and fractional bit-based cluster block quantis-
ers (underallocation) on images that were not part of the training set . . . . 177

4.26 PSNR performance of the fixed-rate (0.15 bits/pixel), 4 cluster GMM-based
block quantiser using integer and fractional bit-based cluster block quantis-
ers (overallocation) on images that were part of the training set . . . . . . . 177

4.27 PSNR performance of the fixed-rate (0.15 bits/pixel), 4 cluster GMM-based
block quantiser using integer and fractional bit-based cluster block quantis-
ers (overallocation) on images that were not part of the training set . . . . 177

4.28 Effective bitrates for each cluster at 2 bits/pixel . . . . . . . . . . . . . . . . 178

4.29 Effective bitrates for each cluster at 0.15 bits/pixel . . . . . . . . . . . . . . 179

4.30 PSNR as a function of number of clusters for the GMM-DCT-based block
quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.31 Levels allocation table for cluster 1 of 4 cluster GMM-DCT-based block
quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.32 Levels allocation table for cluster 2 of 4 cluster GMM-DCT-based block
quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.33 Levels allocation table for cluster 3 of 4 cluster GMM-DCT-based block
quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xxiv



4.34 Levels allocation table for cluster 4 of 4 cluster GMM-DCT-based block
quantiser at 0.5 bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.35 Cluster densities for the 4 cluster GMM-DCT-based block quantiser at 0.5
bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.36 Comparison of average processing times between the GMM-KLT and GMM-
DCT-based block quantiser (in seconds) . . . . . . . . . . . . . . . . . . . . 186

4.37 PSNR of the 16 cluster GMM-based block quantiser at 0.5 bits/pixel with
and without the wavelet transform pre-processing . . . . . . . . . . . . . . . 189

4.38 Summary of PSNRs for all block quantisation schemes considered at 0.5
bits/pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.1 Comparing the characteristics of the DPCM with perceptual weighting and
CELP speech coders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.2 Partial-band spectral distortion (SD) performance of uniform scalar quan-
tisers operating at 34 bits/frame from the FS-1016 4.8 kbps CELP coder
on the TIMIT database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

5.3 Partial-band spectral distortion (SD) performance of non-uniform scalar
quantisers for different bitrates on LSF vectors from the TIMIT database . 240

5.4 Partial-band spectral distortion (SD), computational complexity, and mem-
ory requirements (ROM) of the two-part split vector quantiser as a function
of bitrate on LSF vectors from the TIMIT database . . . . . . . . . . . . . 241

5.5 Partial-band spectral distortion (SD), computational complexity, and mem-
ory requirements (ROM) of the three-part split vector quantiser as a func-
tion of bitrate on LSF vectors from the TIMIT database . . . . . . . . . . . 241

5.6 Partial-band spectral distortion (SD), computational complexity, and mem-
ory requirements (ROM) of the two-stage multistage vector quantiser as a
function of bitrate on LSF vectors from the TIMIT database . . . . . . . . 242

5.7 Average spectral distortion (SD) performance of the 16 cluster, memoryless,
fixed-rate GMM-based block quantiser using spectral distortion criterion at
different bitrates on LSF vectors from the TIMIT database . . . . . . . . . 246

5.8 Bitrate independent computational complexity (in kflops/frame) and mem-
ory requirements (ROM) of the GMM-based block quantiser using spectral
distortion-based quantiser selection as a function of the number of clusters . 246

5.9 Average spectral distortion of the 16 cluster predictive GMM-based block
quantiser (trained case) using SD criterion as a function of bitrate on LSF
vectors from the TIMIT database . . . . . . . . . . . . . . . . . . . . . . . . 247

5.10 Prediction coefficients for the predictive GMM-based block quantiser (cal-
culated using the covariance method) . . . . . . . . . . . . . . . . . . . . . . 247

5.11 Average spectral distortion of the KLT-based block quantiser as a function
of bitrate on LSF vectors from the TIMIT database . . . . . . . . . . . . . 249

xxv



5.12 Average spectral distortion of the 16 cluster multi-frame GMM-based block
quantiser using MSE criterion as a function of bitrate and number of con-
catenated frames, p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

5.13 Bitrate independent computational complexity (in kflops/frame) and mem-
ory requirements (ROM) of the multi-frame GMM-based block quantiser
using MSE criterion as a function of number of concatenated vectors, p,
and number of clusters, m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.14 Average spectral distortion of the 32 cluster multi-frame GMM-based block
quantiser using MSE criterion as a function of bitrate and number of con-
catenated frames, p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.15 Average spectral distortion of the 16 cluster multi-frame GMM-based block
quantiser using SD criterion as a function of bitrate and number of con-
catenated frames, p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

5.16 Average spectral distortion of the 32 cluster multi-frame GMM-based block
quantiser using SD criterion as a function of bitrate and number of con-
catenated frames, p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5.17 Bitrate independent computational complexity (in kflops/frame) and mem-
ory requirements (ROM) of the multi-frame GMM-based block quantiser
using SD criterion as a function of number of concatenated vectors, p, and
number of clusters, m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5.18 Partial-band spectral distortion (SD) and computational performance of
the two-part switched split vector quantiser at 24 bits/frame as a function
of the number of switch directions using different bit allocations . . . . . . . 255

5.19 Partial-band spectral distortion (SD) and computational performance of
the three-part switched split vector quantiser at 24 bits/frame as a function
of the number of switch directions using different bit allocations . . . . . . . 256

5.20 Partial-band spectral distortion (SD), computational complexity, and mem-
ory requirements (ROM) of the two-part switched split vector quantiser as
a function of bitrate and number of switch directions . . . . . . . . . . . . . 259

5.21 Partial-band spectral distortion (SD), computational complexity, and mem-
ory requirements (ROM) of the three-part switched split vector quantiser
as a function of bitrate and number of switch directions . . . . . . . . . . . 259

6.1 Average spectral distortion of the PDF-optimised scalar quantisers as a
function of bitrate on wideband ISF vectors from the TIMIT database . . . 277

6.2 Average spectral distortion of the PDF-optimised scalar quantisers as a
function of bitrate on wideband LSF vectors from the TIMIT database . . . 277

6.3 Average spectral distortion of the unconstrained vector quantiser as a func-
tion of bitrate on wideband ISF vectors from the TIMIT database . . . . . 279

6.4 Average spectral distortion of the unconstrained vector quantiser as a func-
tion of bitrate on wideband LSF vectors from the TIMIT database . . . . . 279

xxvi



6.5 Average spectral distortion as a function of bitrate of the AMR-WB (ITU-T
G.722.2) split-multistage vector quantiser with MA prediction on wideband
ISF vectors from the TIMIT database . . . . . . . . . . . . . . . . . . . . . 283

6.6 Average spectral distortion performance of the 16 cluster memoryless, fixed
rate GMM-based block quantiser using spectral distortion criterion at dif-
ferent bitrates on wideband ISF vectors from the TIMIT database . . . . . 284

6.7 Average spectral distortion performance of the 16 cluster memoryless, fixed
rate GMM-based block quantiser using spectral distortion criterion at dif-
ferent bitrates on wideband LSF vectors from the TIMIT database . . . . . 284

6.8 Bitrate independent computational complexity (in kflops/frame) and mem-
ory requirements (ROM) of the GMM-based block quantiser using spectral
distortion-based quantiser selection as a function of the number of clusters
for wideband speech coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

6.9 Average spectral distortion (SD), computational complexity, and memory
requirements (ROM) of the five-part switched split vector quantiser using
unweighted MSE as a function of bitrate and number of switch directions
of wideband LSF vectors from the TIMIT database . . . . . . . . . . . . . . 286

6.10 Average spectral distortion (SD), computational complexity, and memory
requirements (ROM) of the five-part switched split vector quantiser using
unweighted MSE as a function of bitrate and number of switch directions
of wideband ISF vectors from the TIMIT database . . . . . . . . . . . . . . 288

6.11 Average spectral distortion (SD) of the five-part switched split vector quan-
tiser using weighted MSE as a function of bitrate and number of switch
directions of wideband LSF vectors from the TIMIT database . . . . . . . . 290

6.12 Average spectral distortion as a function of bitrate and number of concate-
nated frames, p, of the 16 cluster multi-frame GMM-based block quantiser
on wideband LSF vectors from the TIMIT database . . . . . . . . . . . . . 291

6.13 Average spectral distortion as a function of bitrate and number of concate-
nated frames, p, of the 16 cluster multi-frame GMM-based block quantiser
on wideband ISF vectors from the TIMIT database . . . . . . . . . . . . . . 293

6.14 Bitrate independent computational complexity (in kflops/frame) and mem-
ory requirements (ROM) of multi-frame GMM-based block quantiser as a
function of the number of concatenated frames, p and number of clusters, m 293

6.15 Average spectral distortion as a function of bitrate and number of concate-
nated frames, p, of the 32 cluster multi-frame GMM-based block quantiser
on wideband LSF vectors from the TIMIT database . . . . . . . . . . . . . 294

7.1 Average word recognition accuracy as a function of bitrate and number of
clusters for the memoryless GMM-based block quantiser (baseline accuracy
= 98.01%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

7.2 Average word recognition accuracy as a function of bitrate and number
of frames for 16 cluster multi-frame GMM-based block quantiser (baseline
accuracy = 98.01%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

xxvii



7.3 Average word recognition accuracy as a function of bitrate and number
of clusters for 5 frame multi-frame GMM-based block quantiser (baseline
accuracy = 98.01%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

7.4 Average word recognition accuracy as a function of bitrate for non-uniform
scalar quantiser (baseline accuracy = 98.01%) . . . . . . . . . . . . . . . . . 318

7.5 Average word recognition accuracy, computational complexity (in kflops/frame),
and memory requirements (ROM) as a function of bitrate for vector quan-
tiser (baseline accuracy = 98.01%) . . . . . . . . . . . . . . . . . . . . . . . 319

7.6 Bitrate independent computational complexity (in kflops/frame) and mem-
ory requirements (ROM) of the multi-frame GMM-based block quantiser as
a function of number of concatenated vectors, p, and number of clusters, m 320

7.7 Word recognition accuracy for speech corrupted with subway noise at vary-
ing SNRs (in dB) at 1.2 kbps. . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.8 Word recognition accuracy for speech corrupted with babble noise at vary-
ing SNRs (in dB) at 1.2 kbps . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.9 Word recognition accuracy for speech corrupted with car noise at varying
SNRs (in dB) at 1.2 kbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.10 Word recognition accuracy for speech corrupted with exhibition noise at
varying SNRs (in dB) at 1.2 kbps . . . . . . . . . . . . . . . . . . . . . . . . 322

7.11 Word recognition accuracy for speech corrupted with subway noise at vary-
ing SNRs (in dB) at 0.6 kbps. . . . . . . . . . . . . . . . . . . . . . . . . . . 324

7.12 Word recognition accuracy for speech corrupted with babble noise at vary-
ing SNRs (in dB) at 0.6 kbps . . . . . . . . . . . . . . . . . . . . . . . . . . 324

7.13 Word recognition accuracy for speech corrupted with car noise at varying
SNRs (in dB) at 0.6 kbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7.14 Word recognition accuracy for speech corrupted with exhibition noise at
varying SNRs (in dB) at 0.6 kbps . . . . . . . . . . . . . . . . . . . . . . . . 325

xxviii



Notation

General
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A a square matrix
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A−1 inverse of matrix A
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|A| determinant of matrix A

n dimension/size of a vector/block
N number of vectors
Rk real vector space of dimension k
I integer space

Gaussian Mixture Models

µ mean vector
Σ covariance matrix
N (x;µ,Σ) multivariate Gaussian of random vector, x, with mean, µ,

and covariance matrix, Σ
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Eigenvalue Decomposition and Karhunen-Loève Transform

vi ith eigenvector
λi ith eigenvalue
Σ covariance matrix

U N ×N matrix whose columns contain the eigenvectors, {v i}N
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P N ×N transformation matrix
Rx autocorrelation matrix of vectors, x

Wavelet Transform

L2(R) space of square integrable functions
ψa,b(t) wavelet function of scale, a, and translation, b
φa,b(t) scaling function of scale, a, and translation, b

Autoregressive Modelling and Linear Prediction Analysis

H(z) synthesis filter
A(z) analysis filter
ap,k kth AR model parameter or linear prediction coefficient of order p
Gp filter gain
Pmin minimum prediction error or residual error
R(i) ith autocorrelation coefficient
φ(i, j) covariance coefficient (i, j)
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LPC Parameter Representations

ai ith linear prediction coefficient
ki ith reflection coefficient
gi ith log-area-ratio
ji ith arcsine reflection coefficient
P (z) transfer function of acoustic tube with closed glottal end
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ω
(p)
i ith zero of P (z) expressed as a frequency in rad/s (LSF)

ω
(q)
i ith zero of Q(z) expressed as a frequency in rad/s (LSF)
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Ip(z) pth order immittance function

ω
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Dsd(i) full-band spectral distortion of the ith speech frame
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approximate LPC vector, f̂
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Chapter 1

Introduction

1.1 The Role of Signal Coding

Signal coding or compression has played a significant role in the success of digital commu-

nications and multimedia. The use of signal coding pervades many aspects of our digital

lifestyle—a lifestyle that has seen widespread demand for applications like third genera-

tion mobile telephony, portable music players, Internet-based video conferencing, digital

television, etc. The issues that arise, when dealing with the transmission and storage of

digital media, are the limited bandwidth of communication channels, the limited capacity

of storage devices, and the limited processing ability of the encoding and decoding devices.

The aim of signal coding is therefore to represent digital media, such as speech, music,

images, and video, as efficiently as possible. Coding efficiency encompasses rate-distortion

(for lossy coding), compression ratio (for lossless coding), computational complexity, and

static and dynamic memory requirements.

The coding may be lossless, where no information is lost during the coding process.

That is, the decoded data are exactly the same as the original. In lossy coding, some

information is lost during the process so the decoded data will not be exactly the same as

the original, thus they will suffer from quality degradation. While lossy coding techniques

generally achieve better compression ratios than lossless ones, there will be a compromise

between the amount of compression achievable and the degree of quality degradation or

distortion incurred. This compromise is known as the rate-distortion trade-off [59]. The

decision to use lossy or lossless coding depends on the requirements of the application. For

1
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example, medical imagery requires the preservation of critical detail and thus demands

coding of the lossless type. For the vast majority of applications, which will be described

below, lossy coding schemes are preferred since they generally achieve significantly higher

compression ratios than lossless schemes.

A popular application involves the storage of high quality digitised music that is

recorded from audio compact discs. Through the use of portable digital music players,

consumers can store songs of their preference and also be able to play their music while

they are roaming about. Such players have limited storage and processing abilities which

have an influence on important factors such as the battery life of the device. Portable

music players mostly use lossy perceptual coding algorithms such as MPEG-1 Layer 3

(MP3), Windows Media Audio (WMA), and MPEG-4 Advanced Audio Coding (AAC),

where information loss is confined to parts of the audio that are less perceptible to the

human ear.

When a person talks into his or her mobile phone, their speech is coded into a digi-

tal form by a digital signal processor and transmitted wirelessly over the cellular phone

network where eventually it arrives at the other person’s phone. There are various coding

standards, used in second generation (2G) and earlier third generation (3G) mobile com-

munication systems, which operate on narrowband speech1. Prominent coders include the

GSM series, such as the 13 kbps full-rate (FR), the 5.6 kbps half-rate (HR), 12.2 kbps

enhanced full-rate (EFR), and Adaptive Multirate (AMR) speech codecs. For wireless

applications which demand higher quality speech reproduction, such as teleconferencing,

Voice over IP, and other Internet applications, wideband speech2 coding algorithms, such

as the Adaptive Multirate Wideband codec (AMR-WB), have recently been adopted for

use in the latest 3G systems [19]. Like the perceptual audio coders, low bitrate speech

coders attempt to restrict the information loss to parts of the speech which are less per-

ceptible to the human ear.

1Narrowband speech is sampled at 8 kHz [31] and bandlimited to the frequency range of 300-3400 Hz or
200-3400 Hz, which is the bandwidth of wired telephone speech in Europe and the US, respectively [117].

2Wideband speech is sampled at 16 kHz and bandlimited to the frequency range of 50-7000 Hz. The
wider audio bandwidth improves the intelligibility [31] and naturalness of speech [19].
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1.2 Quantisation of Scalars and Vectors

The fundamental operation in lossy signal coding is quantisation, which is the mapping

of input samples to a codebook of a finite number of codewords. Its rate-distortion effi-

ciency is influenced by the properties of the signal source, such as statistical dependencies

(otherwise known as memory) and the probability density function (PDF). The simplest

quantiser is the scalar quantiser, where input samples are mapped individually to scalar

codewords, which are also referred to as code-points or reproduction values [55]. Because

the quantisation of the input samples are independent of each other, redundancies between

these samples are included as well. If these redundancies can be modelled and reproduced

by the decoder, then their inclusion leads to inefficient coding.

Shannon [155] showed that better rate-distortion efficiency can be achieved by quan-

tising vectors (or, blocks) of samples. Block quantisers3 and transform coders improve

the efficiency of scalar quantisation by removing the linear dependencies or correlation

between the samples in a block via the Karhunen-Loève transform (KLT), which is a

linear decorrelating transform. The decoder can then ‘add’ the correlation back to the

decoded values via the inverse KLT. Also, the block quantiser is bitrate scalable, which

means that it can scale to any bitrate without any quantiser re-training. However, the

prerequisite for optimal block quantisation, namely a purely Gaussian data source with

uniform correlation, is rarely ever met with real-world signals. This mismatch degrades the

rate-distortion efficiency of the block quantiser [43]. Also, non-linear dependencies remain

after decorrelation [108], which suggests that further gains in rate-distortion efficiency are

possible.

The vector quantiser, which individually maps input vectors to vector codewords (or,

code-vectors), is theoretically the ultimate solution, in terms of achieving the best rate-

distortion efficiency. In other words, the vector quantiser can achieve the lowest distortion,

at a given rate and dimension, of any quantisation scheme. It can be shown that vector

quantisers not only exploit non-linear dependencies, but also outperform scalar quanti-

sation even on memoryless and independent sources [55]. It is because of the freedom

to place code-vectors in a higher dimensional space, that gives the vector quantiser ad-

3Generally, the term block quantiser is also a synonym of vector quantiser (such as, in [53]) and this is
reflected in the title of this dissertation. However, we now make a distinction between these two terms, by
noting in [198], where the fixed-rate transform coding scheme of Huang and Schultheiss [72] is referred to
as ‘block quantisation’. This contrasts to the vector quantiser, as described in [55, 59].
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ditional advantages in matching the source PDF shape and filling space efficiently [103].

However, their computational complexity and memory requirements grow exponentially

with rate and dimension and this inherent disadvantage inhibits their use in applications

that require high bitrates and dimensionality. Structurally constrained vector quantisers,

such as product code vector quantisers [55], alleviate the complexity issues by simplify-

ing the code-vector search, though this results in degraded rate-distortion performance.

Compared with the block quantiser, vector quantisers are generally not bitrate scalable.

This dissertation makes several contributions to improving the rate-distortion and/or

computational efficiency of block and vector quantisation schemes. Specifically, we exam-

ine the block quantisation scheme introduced in [183], which we refer to as the Gaussian

mixture model-based block quantiser, that derives better rate-distortion performance by

accurately estimating the source using a mixture of Gaussian sources and designing mul-

tiple KLTs to decorrelate the individual overlapping basis sources, rather than assume a

unimodal Gaussian source with uniform correlation. Contributions are made to this quan-

tisation scheme in the context of image coding, by replacing the KLT with the discrete

cosine transform (DCT). The resulting GMM-DCT-based block quantiser is computation-

ally simpler and achieves comparable performance to the KLT-based one. In addition to

this, a new memory-based scheme, which we term the multi-frame GMM-based block quan-

tiser, is introduced to further improve the rate-distortion efficiency of the single frame,

memoryless scheme by exploiting interframe correlation. We also propose a new product

code vector quantiser, called the switched split vector quantiser (SSVQ), that achieves

better rate-distortion performance and significantly lower computational complexity than

the split vector quantiser [123]. We apply and evaluate the performance of the multi-frame

GMM-based block quantiser and SSVQ in line spectral frequency (LSF) quantisation in

narrowband speech coding, LSF and immittance spectral pair (ISP) quantisation in wide-

band speech coding, and Mel frequency-warped cepstral coefficient (MFCC) quantisation

in distributed speech recognition.



Chapter 1 Introduction 5

1.3 Dissertation Organisation

1.3.1 Chapter Summary

This dissertation comprises two chapters on the theory and operation of various block

and vector quantisation schemes (Chapter 2 and 3, respectively), while the remaining

four chapters deal with the application of these schemes in lossy image coding (Chapter

4), narrowband speech coding (Chapter 5), wideband speech coding (Chapter 6), and

distributed speech recognition (Chapter 7). The chapters are described in detail below:

• Chapter 2 provides the theoretical basis of block quantisation, which includes the

Karhunen-Loève transform and its decorrelating and energy compaction characteris-

tics, optimum bit allocation, and the shortcomings of block quantisers on data with

non-stationary statistics and multimodal probability density functions. This leads

to the area of adaptive transform coding, where we provide a review of techniques

that have been reported in the image coding literature. Following this, we provide

a detailed description of the GMM-based block quantiser, which includes the esti-

mation of PDFs using Gaussian mixture models via the EM algorithm, allocation

of bits among and within clusters, and the minimum distortion block quantiser.

We then present our two proposed schemes, namely the GMM-DCT-based block

quantiser and multi-frame GMM-based block quantiser. Also, a novel technique for

encoding fractional (or, non-integer) bits in a fixed-rate block quantiser is presented,

accompanied by some algorithms for dealing with non-integer bit allocation.

• Chapter 3 begins with the theory of vector quantisation, which includes the so-

called ‘vector quantiser advantages’ [103]. This provides the foundation for identi-

fying the source of rate-distortion suboptimality in structurally constrained vector

quantisers, such as split and multistage vector quantisers. We analyse the ‘advantage’

losses in the split vector quantiser specifically, which leads us to the switched split

vector quantiser. Through simulations and plots, we show why and by how much

the switched split vector quantiser improves upon normal split vector quantisation

and relate these to two of the three vector quantiser advantages. The computational

complexity and memory requirements of SSVQ are also discussed.

• Chapter 4 first provides a broad review of quantisation techniques that have been
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applied to lossy image coding. These include vector quantisation, transform coding,

subband coding, and discrete wavelet transform-based coding. The difficulties that

are often encountered in subband and wavelet-based image coding involve the ex-

pansion of coefficients after the filtering of a finite length signal (such as a row or

column). Therefore, a detailed summary of non-causal and non-expansive4 filtering

techniques using the symmetric extension method is given which is complemented

with MATLAB simulations that implement subband and wavelet decompositions.

The rest of the chapter then presents and discusses the results of our image coding

experiments, using the KLT-based and DCT-based block quantiser (as a baseline),

the GMM-based block quantiser with integer and non-integer bit allocation, and the

GMM-DCT-based block quantiser. Image quality is judged based on peak signal-

to-noise ratios (PSNRs) and visual inspection of the decoded images. Finally, we

propose a method of reducing the block artifacts that are common in transform

coded images, by pre-processing the image using a discrete wavelet transform, ex-

tracting vectors using a tree structure that exploits spatial self-similarity, before

being quantised by the GMM-based block quantiser.

• Chapter 5 starts off with the preliminaries of narrowband speech coding, which in-

cludes speech production and linear prediction analysis. Following this, we describe

the operation of some popular speech coding algorithms that have been adopted in

industry and highlight the need for accurate quantisation of the LPC coefficients.

Following this, we review the various LPC parameter representations (reflection

coefficients, line spectral frequencies, immittance spectral pairs, etc.) and the quan-

tisation schemes that have been investigated in the speech coding literature. The

spectral distortion performance of popular schemes, such as scalar quantisers, split

vector quantisers and multistage vector quantisers, on LSF vectors from the TIMIT

database is also provided. These form a basis of comparison for the multi-frame

GMM-based block quantiser and switched split vector quantiser, which are evaluated

on LSF vectors from the TIMIT database. Quantisation performance is determined

using the average spectral distortion.

• Chapter 6 begins with the definition of wideband speech and its advantages over

toll-quality narrowband speech. We then briefly review the state-of-the-art coding

4That is, when filtering n input samples, n output samples are produced.
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schemes for wideband speech, such as the Transform Coded Excitation (TCX) coder,

and the industry standard coders such as the ITU-T G.722 and ITU-T G.722.2 (also

known as AMR-WB). Following this, we report the spectral distortion performance

of various quantisation schemes, such as scalar quantisers, the vector quantiser, and

the GMM-based block quantiser on the two competing LPC parameter representa-

tions in the wideband coding literature: line spectral frequencies (LSFs) and immit-

tance spectral pairs (ISPs). Also, we extrapolate the operating curve of the vector

quantiser to derive informal lower bounds on the bitrate required to transparently

code LSFs and ISPs. Finally, the rest of the chapter is dedicated to evaluating the

multi-frame GMM-based block quantiser and switched split vector quantiser. We

compare and contrast their spectral distortion performance on the LSF and ISP

representation.

• Chapter 7 investigates the application of multi-frame GMM-based block quantisers

for coding Mel frequency-warped cepstral coefficient (MFCC) vectors for distributed

speech recognition (DSR). The focus is on bitrate scalable quantisation schemes. We

begin the chapter with some background theory on automatic speech recognition.

Following this, we provide a general review of client/server-based speech recognition

systems and the various types of modes (NSR and DSR) that have been proposed

and reported in the literature. We also briefly describe the Aurora-2 DSR experi-

mental framework, which will be used extensively to evaluate the performance and

robustness to noise of the various DSR schemes. As well as examining the recog-

nition performance of DSR using the multi-frame GMM-based block quantiser, we

compare it with that using scalar quantisers, the vector quantiser, and the memory-

less GMM-based block quantiser.

• Chapter 8 collates the conclusions made from our evaluation of the block and

vector quantisation schemes, in the four application areas that were considered in

this dissertation. In addition to this, we discuss some topics for future research.

1.3.2 Composite Literature Review

Since this dissertation covers several distinct topics and application areas, each chapter

(apart from the Introduction and Conclusion) has its own literature review. Therefore,

the literature review of this dissertation is of a composite nature and comprises:
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• Section 2.2, which covers the basics of block quantisation, including the Karhunen-

Loève transform and bit allocation; Section 2.3 which covers the discrete cosine

transform; and Sections 2.4 and 2.5 which describe adaptive transform coders and

the GMM-based block quantiser;

• Section 3.3, which covers the Linde-Buzo-Gray algorithm [100] for the design of a

vector quantiser; Section 3.4 which describes the vector quantiser advantages [103];

Section 3.5 which lists the practical limitations of unconstrained vector quantisers;

and Sections 3.6 and 3.7 which cover the different types of structurally constrained

vector quantisers;

• Section 4.4, which covers the popular schemes used in image coding such as vector

quantisation, transform coding, subband coding, and wavelet-based coding and Sec-

tion 4.5, which provides a comprehensive summary and analysis of non-expansive

filtering techniques for the subband decomposition of images;

• Section 5.2, which covers preliminary topics such as speech production and linear

prediction analysis of speech; Section 5.3, which reviews the numerous linear pre-

diction speech coding algorithms and Section 5.4, which covers the various LPC

parameter representations used for representing short-term correlation information

in LPC-based speech coders;

• Section 6.2, which defines wideband speech and discusses its improved quality as well

as coders that have been investigated in the literature; Section 6.3, which describes

the operation of industry standard and state-of-the-art wideband speech coders; and

Section 6.4.2 which reviews the LPC parameter quantisation literature; and

• Section 7.2, which covers the preliminary topics on automatic speech recognition

such as feature extraction and pattern recognition and Section 7.3, which covers the

different modes of client-server speech recognition systems.
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1.4 Contributions and Resulting Publications

1.4.1 Contributions Made in this Dissertation

The work presented in this dissertation makes contributions in several different areas of

signal coding. These contributions are summarised as follows:

1. Section 2.6: A modified GMM-based block quantiser, termed the GMM-DCT-based

block quantiser, that replaces the KLT with the DCT, is proposed for image coding.

Because images exhibit a high degree of correlation and possess strong Gauss-Markov

properties, the DCT is an excellent alternative to the KLT and achieves similar

decorrelation and energy compaction properties to the latter. Furthermore, the

DCT is data independent, which permits the realisation of a computationally simpler

scheme.

2. Section 2.7.3: A GMM-based block quantiser that utilises interframe memory, termed

the multi-frame GMM-based block quantiser, is proposed for LPC parameter quanti-

sation in narrowband and wideband speech coding, as well as Mel frequency-warped

cepstral coefficients for distributed speech recognition applications.

3. Section 2.8: A novel method of encoding fractional bits in a fixed-rate GMM-based

block quantisation framework is described. The proposed method utilises a generali-

sation of the positional number system and allows the use and encoding of fractional

numbers of bits (or, integer number of quantiser levels) at a fixed bitrate, as opposed

to variable bitrate. By using an integer number of levels, which has finer granularity

than using an integer number of bits, better utilisation of the bit budget is possible.

4. Section 3.8: A new product code vector quantisation scheme, termed the switched

split vector quantiser (SSVQ), is proposed for the quantisation of LPC parame-

ters for narrowband and wideband speech coding. The SSVQ reduces the loss in

rate-distortion performance in split vector quantisers that are due to the vector par-

titioning. The resulting scheme encompasses improvements in both rate-distortion

and computational efficiency, at the expense of increased memory requirements.

5. Section 4.9: A block reduction technique for the GMM-based block quantisation of

images is proposed, which uses the discrete wavelet transform as a pre-processing
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step. Blocks of wavelet coefficients are extracted using a tree structure, similar to

that used in the embedded zerotree wavelet coder [158] and the wavelet tree-based

coder of [98], which exploits spatial self-similarity.

6. Section 6.4.5: An informal lower bound on the bitrate required to achieve transparent

coding of wideband LSFs and ISPs is derived. The difference between the perfor-

mance of LSFs and ISPs is later confirmed by all joint block and vector quantisation

experiments.

7. Section 6.4.8: A weighted Euclidean distance measure, based on the fixed weighting

system of a similar distance measure used in [123] for narrowband LSFs, is introduced

to improve the quantisation performance of the switched split vector quantiser on

wideband LSF vectors.

1.4.2 Journal Articles

Note: All references in this dissertation follow the IEEE reference and citation guidelines

prescribed in [1].

1. K.K. Paliwal and S. So, “A fractional bit encoding technique for the GMM-based

block quantisation of images”, Digital Signal Processing, vol. 15, pp. 255–275, May

2005.

2. K.K. Paliwal and S. So, “Low complexity GMM-based block quantisation of images

using the discrete cosine transform”, Signal Processing: Image Communication, vol.

20, pp. 435–446, June 2005.

3. S. So and K.K. Paliwal, “Scalable distributed speech recognition using Gaussian

mixture model-based block quantisation”, submitted to Speech Commun., 2005.

4. S. So and K.K. Paliwal, “Multi-frame GMM-based block quantisation of line spectral

frequencies”, to appear in Speech Commun., 2005.

5. S. So and K.K. Paliwal, “Efficient product code vector quantisation using the switched

split vector quantiser”, submitted to Digital Signal Processing, Nov. 2004.

6. S. So and K.K. Paliwal, “A comparative study of LPC parameter representations

and quantisation schemes in wideband speech coding”, submitted to Digital Signal
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Processing, May 2005.

7. S. So and K.K. Paliwal, “A comparison of LPC parameter representations for wide-

band speech coding”, to be submitted to IEEE Signal Processing Lett., 2005.

1.4.3 Conference Articles

1. S. So and K.K. Paliwal, “Efficient block coding of images using Gaussian mixture

models”, in Proc. Fourth Australasian Workshop on Signal Processing and Applica-

tions 2002, Brisbane, Australia, Sept. 2002, pp. 71–74.

2. K.K. Paliwal and S. So, “Low complexity GMM-based block quantisation of images

using the discrete cosine transform”, accepted by ICIP 20035.

3. K.K. Paliwal and S. So, “Low complexity Gaussian mixture model-based block quan-

tisation of images”, in Proc. Microelectronic Engineering Research Conference, Bris-

bane, Australia, Nov. 2003.

4. K.K. Paliwal and S. So, “Multiple frame block quantisation of line spectral frequen-

cies using Gaussian mixture models”, in Proc. IEEE Int. Conf. Acoust., Speech,

Signal Processing, Montreal, Canada, 2004, pp. I-149–152.

5. K.K. Paliwal and S. So, “Scalable distributed speech recognition using multi-frame

GMM-based block quantization”, in Proc. Int. Conf. Spoken Language Processing,

Jeju, Korea, Oct. 2004.

6. S. So and K.K. Paliwal, “Efficient vector quantisation of line spectral frequencies

using the switched split vector quantiser”, in Proc. Int. Conf. Spoken Language

Processing, Jeju, Korea, Oct. 2004.

7. S. So and K.K. Paliwal, “Multi-frame GMM-based block quantisation of line spectral

frequencies for wideband speech coding”, in Proc. IEEE Int. Conf. Acoust., Speech,

Signal Processing, vol. I, Philadelphia, USA, 2005, pp. 121–124.

8. S. So and K.K. Paliwal, “Switched split vector quantisation of line spectral fre-

quencies for wideband speech coding”, to appear in Proc. European Conf. Speech

Communication and Technology (Eurospeech), Lisbon, Portugal, Sept 2005.

5This paper was accepted by ICIP 2003 but was later withdrawn due to the authors’ inability to attend
the conference.
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9. S. So and K.K. Paliwal, “A comparison of LSF and ISP representations for wideband

LPC parameter coding using the switched split vector quantiser”, to appear in Proc.

IEEE Int. Symp. Signal Processing and Applications (ISSPA), Sydney, Australia,

Aug 2005.



Chapter 2

Efficient Block Quantisation

2.1 Abstract

In this chapter, we first review the block quantiser and how it has been applied as a

less complex alternative to vector quantisation. The energy compaction and decorrelation

characteristics of the Karhunen-Loève transform (KLT) and its role in the block quantiser

are also covered, with a mention of its limitations in practice and how the discrete cosine

transform (DCT) is used instead as a fast, source-independent alternative transform for

image data. The block quantiser makes use of the assumption that the statistical de-

pendencies, such as correlation, are uniform throughout the vector space, hence a single,

global KLT is expected to decorrelate all vectors. Also, the optimality of the KLT for

quantisation is itself highly dependent on how close the underlying PDF is to a Gaussian.

However, after analysing the PDFs of real-life image data, it becomes clear that these

assumptions are not valid and the mismatch causes performance degradation in the single

transform block quantiser. This leads to the concept of adaptive transform coders and we

provide a literature review of these techniques that have appeared in the image coding

area. The vector space is partitioned into regions that are relatively stationary and the

vectors within the region are quantised using a transform coder. It is desirable for the

vector space partitioning, transformation, and quantisation to be designed jointly in order

to minimise distortion. However, these adaptive transform coders are not bitrate scalable.

That is, the bitrate cannot be changed unless they are re-trained.

Next, we review a new paradigm of efficient transform coding design that has appeared

13
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in the literature and is based on source modelling. The GMM-based block quantiser,

which we describe in detail, uses a Gaussian mixture model to parametrically estimate the

source PDF. The scheme is bitrate scalable and soft decision-based, where each vector is

quantised multiple times and the best representation (minimum distortion) is determined

which can be computationally complex for large dimensional vectors. We then present our

modification of the GMM-based block quantiser for image coding, where the Gauss-Markov

nature of image data has made the DCT the preferred transform. Because the DCT is

source independent, only one transformation operation needs to be used. Furthermore,

because the DCT basis functions are fixed, no inverse DCT needs to be performed and

the minimum distortion calculation can be performed within the DCT domain. As a

result, the GMM-DCT-based block quantiser is considerably faster than the GMM-based

block quantiser. We also present a new GMM-based block quantiser that exploits memory

between multiple blocks or frames, resulting in better overall rate-distortion performance

than the memoryless scheme.

Traditional bit allocation for block quantisers has been done in a bit-wise fashion,

which presents no problem in quantiser index encoding. Fractional bits from the closed-

form bit allocation formula are truncated and negative bits are set to zero. The use of

quantiser levels, rather than quantiser bits, allows a finer granularity for allocation since

the allocated levels in bit-wise allocation are constrained to be powers of two. Also, the

cluster block quantisers within the GMM-based block quantiser are often allocated with

a fractional bitrate, thus there exists the need for scalar quantisers to operate at an in-

teger number of levels. However, binary encoding quantiser level indices from a block at

fixed-rate with non-uniform allocation is not as straightforward. Therefore, we present an

elegant and simple fractional bit encoding technique that maps quantiser level indices to

a single integer for each block. Also, heuristic compensation techniques for levels-based

scalar quantisers are described which deal with the truncation and negative allocation

issues.

Publications resulting from this research: [126, 127, 128, 129, 130, 131, 165, 167, 168,

170, 171, 174]
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2.2 Introduction to Block Quantisation

One of the most important results from Shannon’s rate-distortion theory is that quantis-

ing vectors is more efficient than quantising scalars [55]. From a theoretical perspective,

vector quantisation is the best coding solution. One advantage of vector quantisers over

scalar quantisers is the exploitation of statistical dependency between consecutive samples

[55]. Scalar quantisers, on the other hand, operate on individual data samples only and

thus do not take into account the dependencies that exist between these samples. Another

important result from the rate-distortion theory is that the performance of a vector-based

quantiser (such as the block quantiser and vector quantiser), in terms of distortion, im-

proves as the vector dimension is increased [59]. However, unconstrained vector quantisers

operating at high bitrates and large vector dimension, require an exorbitant amount of

memory and computations which, depending on the application, may make them imprac-

tical.

Transform coding has been used as a less complex alternative to unconstrained vector

quantisation1 [10]. First proposed by Kramer and Mathews [89] and mathematically

analysed by Huang and Schultheiss [72], it involves grouping n correlated samples into a

vector or block, x = {xi}n
i=1, linearly transforming each block to a new set of co-ordinates,

and then scalar quantising each component independently.

Block quantisation [72] can be considered a special case of transform coding, where

quantisation is performed by non-uniform scalar quantisers of fixed-rate [198]. Figure 2.1

shows a schematic of the block quantisation procedure. This contrasts with other trans-

form coders, where uniform scalar quantisers are used in conjunction with variable-rate

entropy coders. In fact, it was shown by Wood [199], that in the high resolution sense, the

entropy of the output of a uniform scalar quantiser is lower than that of a fixed-rate, opti-

mum non-uniform scalar quantiser, regardless of the source PDF. Therefore, uniform scalar

quantisation followed by entropy coding will generally be more efficient than non-uniform

scalar quantisers [199, 59], though the variable nature of the bitrate requires increased

complexity and causes problems with error propagation and buffer underflows/overflows

[55, 56]. The JPEG image compression standard is an example of a variable-rate transform

coder, where discrete cosine transform (DCT) coefficients are coded with scalar quantisers

1A block quantiser can be considered equivalent to constrained vector quantisation of transform coeffi-
cients.
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Figure 2.1: Schematic of a typical block quantiser

of uniform step sizes, followed by runlength and Huffman encoding [196].

The role of the transform is to remove linear dependencies between the components

of the block before they are quantised, since it is generally observed in practice that

the more independent the transformed coefficients, the more efficient scalar quantising

becomes [55]. Therefore, block quantisation allows the exploitation of correlation2 across

consecutive samples, similar to what vector quantisers do, and this leads to more efficient

coding3 [34].

One particular advantage of using a linear transform is that it may be more convenient

to quantise the data in another co-ordinate system. This allows bits to be allocated to

each component, relative to its importance in influencing the subjective quality of the

reconstructed signal [55]. For example, consider the coding of audio using a Modified

Discrete Cosine Transform (MDCT) based perceptual coder [177]. Since the MDCT is a

Fourier-based transform, the cosine bases are frequency-related. It is well-known in human

auditory perception studies that the ear: processes sound via critical bandwidth filters;

has a non-linear frequency response to loudness; and masks low-level tones in the presence

of a stronger tone [117]. Therefore, MDCT-based perceptual audio coders transform the

audio into a frequency-related domain where it is more convenient to exploit spectral-

based psychoacoustic phenomena and shape the quantisation noise in order to improve

the subjective quality of the reconstructed audio [177].

Other advantages of block quantisation, when compared with vector quantisation, in-

clude bitrate scalability and relatively low and fixed computational and memory require-

2It should be noted that correlation is a linear statistical dependency. Unconstrained vector quantisers,
however, can exploit non-linear statistical dependencies as well [55].

3Despite the common notion that scalar quantising independent or decorrelated data is better than
quantising correlated data, it has been shown recently [44] that decorrelation alone is insufficient for
optimal fixed-rate and variable-rate coding.
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ments. Bitrate scalability is the ability to alter the operating bitrate ‘on-the-fly’, without

requiring any quantiser re-design or re-training. As will be mentioned later in this chapter,

the allocation of bits in block quantisation can be expressed in closed-form4, hence any

change in the bitrate will require only a recalculation of the bit allocation only. The scalar

quantisers remain fixed. On the other hand, vector quantisers are designed for a specific

bitrate only, as it is related to the size of the codebook. In order to change the bitrate,

either the vector quantiser needs to be re-designed for this lower bitrate or it needs to store

and use different codebooks for different bitrates. Also, the block quantiser has relatively

low and fixed computational and memory requirements since it uses non-uniform scalar

quantisers, which can be implemented as a uniform scalar quantiser (rounding function)

with appropriate companding and expanding functions [183]. While for the vector quan-

tiser, search complexity and memory requirements increase exponentially with the number

of bits [59].

2.2.1 The Karhunen-Loève Transform

An orthogonal linear transform projects a zero-mean, n-dimension vector, x, onto a se-

ries of orthogonal basis vectors that span the transform space and form the rows of the

transformation matrix, P . The linear transformation is expressed as:

y = Px (2.1)

where y is the transformed vector containing the transform coefficients, {yi}n
i=1. The in-

verse linear transformation, where the transformed vector is converted back to the original

co-ordinates, is expressed as:

x = P−1y (2.2)

Because of the orthogonality condition where P T = P−1 [55], (2.2) can be rewritten as:

x = P T y (2.3)

4As well as closed form expressions, bit allocation can be performed using fixed-slope and greedy
algorithms as well [55, 147].
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The covariance matrix5 of the transformed vectors, Σy, is given as:

Σy = E[yyT ]

= E[Px(Px)T ]

= PE[xxT ]P T

= PΣxP T (2.4)

where Σx is the covariance of the original vector source and E[•] is the expectation op-

erator. As mentioned earlier, one desirable attribute of the linear transform is to be able

to decorrelate the data. That is, the covariance matrix of the transformed vectors should

be diagonal. By substituting U = P T , (2.4) can be expressed as an eigenvalue decompo-

sition, shown in (2.5) below, where the source covariance matrix, Σx, is diagonalised by

the matrix, U , whose columns consist of the eigenvectors, {v i}n
i=1, of the source [72]:

Σy = UTΣxU (2.5)

where Σy =




λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn




(2.6)

The main diagonal of Σy consists of the eigenvalues of the source, {λi}n
i=1, which are also

the variances of each transform coefficient. These eigenvalues (and their corresponding

eigenvectors) are rearranged in descending order, from largest to smallest. This type of

transform is called the Karhunen-Loève transform6 (KLT). The KLT projects the source

vectors onto a new basis set, called the principal components, which are effectively the

eigenvectors of the source covariance matrix. This means the KLT is a source-dependent

transform. That is, the KLT needs to be calculated for different sources. For any source,

there will always exist at least one unique KLT since covariance matrices are always

symmetric and positive semidefinite [56]. That is, their eigenvalues are non-negative [65].

5Since we are always assuming zero-mean vectors, the covariance matrix becomes equivalent to the
autocorrelation matrix, Rx, hence both terms can be used interchangeably here.

6Strictly speaking, the transform discovered by Karhunen [82] and Loève [102] operated on continuous
time signals. The analysis of discrete variables is attributed to Hotelling [71], who called it method of

principal components [198]. Therefore, the discrete KLT is also known as the eigenvector transform,
Hotelling transform, or principal component analysis (PCA) [198, 56]. From here on, use of the terms
‘KLT’ or ‘Karhunen-Loève Transform’ refer to the discrete version.
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Eigenvalue Decomposition Using Jacobi’s Method

Calculating the transformation matrix for the KLT requires finding n distinct eigenvec-

tors. There are various methods of finding eigenvectors and eigenvalues available in linear

algebra. One of them, called Jacobi’s method, works on square and real symmetric matri-

ces only. Since covariance matrices are always square and symmetric, Jacobi’s method is

a simple and well-suited algorithm for matrix diagonalisation, though it is not as robust

to ill-conditioned systems as other methods associated with singular value decomposition

(SVD).

Essentially, for each iteration, a rotation matrix, Ri, is designed to ‘zero out’ a non-

diagonal element, A(p, q) via [88]:

A1 = RT
1 AR1 (2.7)

After k iterations through Jacobi’s method, we have [88]:

Ak = RT
k RT

k−1 . . .R
T
1 AR1 . . .Rk−1Rk (2.8)

where Ak becomes a diagonal matrix. Setting U =
∏k

i=1 Ri, the columns will contain the

eigenvectors and the corresponding eigenvalues will appear on the diagonal of Ak.

Jacobi’s method is described below where the matrix, A, is square, symmetric, and

positive semidefinite [88].

Step 1:

Initialise an identity matrix, U , and set ε = 0.001.

Step 2:

Find the element with the largest magnitude, A(p, q), that is not on the main diagonal

(ie. p 6= q).

Step 3:

Setting:

f = −A(p, q) (2.9)
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and g =
A(p, p) − A(q, q)

2
(2.10)

calculate sin θ and cos θ using the following formulae:

sin θ =
h√

2(1 +
√

1 − h2)
(2.11)

cos θ =

√
1 − sin2 θ (2.12)

where h =





f√
f2+g2

, if g ≥ 0

− f√
f2+g2

, otherwise
(2.13)

Step 4:

Form the rotation matrix, R, by setting it to an identity matrix and setting the following

four elements:

R(p, p) = cos θ (2.14)

R(p, q) = sin θ (2.15)

R(q, p) = − sin θ (2.16)

R(q, q) = cos θ (2.17)

Step 5:

U = UR (2.18)

A = RT AR (2.19)

Step 6:

If the largest magnitude element not on the main diagonal of A is less than ε, stop. Else,

go to Step 2.

When used in the KLT, the eigenvectors are sorted such that their corresponding

eigenvalues are in descending order (ie. λ1 > λ2 > . . . > λn).
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Energy Compaction and Linear Approximation

The KLT tends to rotate the vector space such that the eigenvector with the largest

corresponding eigenvalue, is aligned with the first dimension [56]. Since the KLT is a

unitary transform where Euclidean distances are preserved, the total variance of all the

components remains unchanged after transformation [198, 55]. However, because the

eigenvalues, (and their corresponding eigenvectors) are naturally ordered in a descending

fashion in the KLT (ie. λ1 > λ2 > . . . > λn), the distribution of the coefficient variances

become skewed with the first eigenvector having the most variance. The compaction of

variance or energy of the source into the first few components is another property of KLT-

type of transformations that is useful for block quantisation since the skewed variance

distribution allows a prioritisation of the quantiser bit budget.

Consider the case of linear approximation (which in the pattern classification literature,

is known as dimensionality reduction), where n−m consecutive transform coefficients are

truncated and the remaining m coefficients are kept. That is:

ŷ = Imy (2.20)

where Im keeps the first m transform coefficients and zeros out the rest. Assuming the

distortion is MSE, it can be shown that the Karhunen-Loève transform is the optimum

transform for minimising MSE after linear approximation [34]. In other words, the mean

squared error distortion:

Dmse = E[‖x − x̂‖2] (2.21)

will be minimised when the transformation matrix, P , is that of the KLT. The proof is

given below and has been adapted from [143].

Let us assume that we have a set of n basis vectors, {φi}n
i=1, which are orthonormal.

That is:

〈φi,φj〉 = δi,j (2.22)

where 〈•, •〉 is the inner product and δi,j is the Kronecker delta. Any vector, x, can be

expressed as a linear combination of the basis functions:

x =
n∑

i=1

ciφi (2.23)
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where ci = 〈x,φi〉

Here ci are the transform coefficients. If we use only the first m transform coefficients to

reconstruct our approximated vector:

x̂ =
m∑

i=1

ciφi (2.24)

then the error vector between this and the original will be:

x − x̂ =
n∑

i=1

ciφi −
m∑

i=1

ciφi

=
n∑

i=m+1

ciφi

E[‖x − x̂‖2] = E



〈

n∑

i=m+1

ciφi,
n∑

i=m+1

ciφi

〉


Due to the constraint (2.22):

E[‖x − x̂‖2] = E




n∑

i=m+1

|ci|2



= E




n∑

i=m+1

|〈x,φi〉|2

 (2.25)

Equation (2.25) is a quadratic form, thus it can be reduced down to:

E[‖x − x̂‖2] = E




n∑

i=m+1

φT
i xxT φi




=
n∑

i=m+1

φT
i E[xxT ]φi

=
n∑

i=m+1

φT
i Rxφi (2.26)

where Rx is the autocorrelation matrix7 of x. The aim is to minimise E[‖x − x̂‖2] under

the constraint (2.22), which can be performed using Lagrangian minimisation:

∂

∂φk




n∑

i=m+1

φT
i Rxφi − λi〈φi,φi〉


 = 0 (2.27)

7Or covariance matrix, Σx, of the zero-mean vector, x
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where λi is the Lagrange multiplier. Using the following properties for finding derivatives

of vectors and matrices:

∂

∂φ
φT Rxφ = 2Rxφ

∂

∂φ
〈φ,φ〉 = 2φ

Equation (2.27) becomes:

2Rxφk − 2λkφk = 0

(Rx − λkI)φk = 0 (2.28)

where I is the identity matrix. Equation (2.28) is the typical eigenvalue problem which

is solved when {φk}m
k=1 are the eigenvectors of the autocorrelation matrix, Rx. The

Lagrange multipliers, {λk}m
k=1, become the corresponding eigenvalues. Therefore, the

KLT minimises the MSE for linear approximation. It is interesting to note that the above

proof is not dependent on the distribution of the vectors, x [115].

KLT Optimality of Correlated Gaussian Sources for Quantisation

Even though the KLT is the best linear orthogonal transform in the mean squared sense,

when coefficients are truncated in linear approximation and the remaining coefficients

are retained with infinite precision, this optimality does not necessarily hold after the

transform coefficients have been quantised [56, 34]. This was shown by Effros et al. [44],

where they proved that decorrelation is not only insufficient, but is also not necessary for

optimality, in the high resolution sense8. Also, there are sources where the KLT produces

independent coefficients, yet the transform coder is suboptimal [44]. Huang and Schultheiss

[72] showed that, under high resolution quantiser approximations, it can be shown that

the KLT is optimal if the input vectors are jointly Gaussian. From [72], the mean squared

error incurred by Lloyd-Max non-uniform scalar quantisers in block quantisation is given

8High resolution analysis is one of two asymptotic methods of analysing and obtaining closed-form
expressions of the performance of quantisers. The bitrate is assumed to be very high and the quantiser cells
and average distortion are small which allows us to assume uniform densities within each cell. Shannon’s
rate-distortion analysis assumes fixed and finite bitrate and high vector dimension [59].
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by:

Dmse = E[‖y − ŷ‖2] (2.29)

= K(b̄)2−2b̄

(
n∏

i=1

σ2
i

) 1

n

(2.30)

where b̄ is the average bitrate, σ2
i is the variance of the ith component, and K(b̄) is a

quantiser-related function (shown in Figure 2.7) which is asymptotically equal to π
√

3
2 for

Gaussian sources [199, 59]. In order to minimise Dmse, the product
∏n

i=1 σ
2
i must be

minimised as it is the only variable quantity. Using Hadamard’s inequality9 (
∏n

i=1 σ
2
i ≥

|Σy|) [34]:

Dmse ≥ K(b̄)2−2b̄|Σy|
1

n (2.31)

When the transform is the KLT, Σy is diagonal and hence the inequality becomes an

equality [34]:

Dmse = K(b̄)2−2b̄|Σx|
1

n (2.32)

Therefore, the KLT is the best transform, in the high resolution sense, for minimising the

MSE distortion when the input vectors are jointly Gaussian. Huang et al. [72] showed that

for fixed-rate quantisation, Gaussian-matched Lloyd-Max scalar quantisers were optimal

when minimising the MSE for each component separately. Segall [154] later showed that

the best scalar quantiser for minimising MSE over all components, on average and assum-

ing high resolution, was also the Lloyd-Max scalar quantiser. And finally, Goyal et al. [57]

proved the optimality of the KLT for correlated Gaussian sources without making any high

resolution assumptions [44].

In order to appreciate the importance of the KLT in improving the efficiency of scalar

quantising correlated Gaussian sources, a computer simulation was performed where two

dimensional random vectors were generated, as shown in Figure 2.2. The vectors are

jointly Gaussian with the following covariance matrix:

Σx =




4.5 4.0

4.0 6.0


 (2.33)

9Hadamard’s inequality says that for a positive semidefinite matrix, the product of the elements on the
main diagonal is greater than the determinant of the matrix, or is equal if the matrix is diagonal [34].
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Figure 2.2: Scatter diagram of joint Gaussian random source with covariance matrix given
by (2.33)
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Figure 2.3: Estimated PDF of joint Gaussian random source with covariance matrix given
by (2.33)
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Figure 2.4: Block quantisation using 3 bits/sample with no KLT applied (SNR=14.70
dB); (a) Scatter diagram of joint Gaussian random source with covariance matrix given
by (2.33); (b) Estimated marginal PDF of component x1; (c) Estimated marginal PDF
of component x2; (d) An overlay of the lattice of reproduction points (circles) on original
data.

Figure 2.3 shows the estimated PDF10 of the data. It can be seen in Figure 2.3 that

the distribution has a certain ‘tilt’, indicative of the statistical dependency that exists

between the two components, x1 and x2.

If no KLT is applied and each component is quantised using a 3 bit Lloyd-Max non-

uniform scalar quantiser, the signal-to-noise ratio (SNR) of this coder is 14.70 dB. Figures

2.4(b) and (c) show the estimated marginal PDFs of x1 and x2 where most of the mass

is contained within the range of −5 . . . 5 and this determines the range of the Lloyd-Max

scalar quantisers. In Figure 2.4(d), the lattice of reproduction points of the two scalar

quantisers is overlaid on top of the original vectors. It can be observed that there is a

significant fraction of reproduction points falling in areas which do not contain any data

points. Thus there is a ‘wastage’ of reproduction points since the correlation, represented

10There are, in fact, many methods for estimating the PDF. The method we have adopted in this work
uses normalised histograms. In order to simplify the terminology, we refer to these normalised histograms
as estimated PDFs throughout the dissertation.
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Figure 2.5: Scalar quantisation of KLT coefficients k1 and k2 using 3 bits/sample; (a) Scat-
ter diagram of transformed (KLT) joint Gaussian random source; (b) Estimated marginal
PDF of k1; (c) Estimated marginal PDF of component k2; (d) An overlay of the lattice of
reproduction points (circles) on transformed (KLT) data.

by the ‘tilt’, cannot be exploited by the scalar quantisers from the marginal PDFs.

Figure 2.5(a) shows the transformed data points where it can be seen that the KLT

has removed the ‘tilt’ or correlation from the data. The first component now has a larger

variance than the second, as can be observed in Figures 2.5(b) and (c). Therefore, it can

be said that more energy has been packed into the first eigenvector and the bit allocation

algorithm should assign more bits to the scalar quantiser of this component. In this case,

of the 6 bits available in the bit budget for each vector, 4 bits have been assigned to the

first eigenvector while 2 bits to the second component. After the inverse KLT is applied

and the vectors are transformed back to the original co-ordinate system of x1 and x2, it

can be seen in Figure 2.6 that the resulting lattice of reproduction points is tilted in a

similar way to the original data and there are fewer points falling in empty areas. In other

words, the correlation between x1 and x2 has been been exploited by the block quantiser

through the use of the KLT. The SNR of this system is 16.70 dB, thus the application of

the KLT has resulted in a 2 dB improvement over just independent scalar quantising of
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Figure 2.6: Block quantisation using 3 bits/sample with KLT applied (SNR=16.70 dB).
Reproduction points (circles) and original data is also shown.

each vector component.

It is useful to quantify the coding gain achievable using the KLT in a block quantiser

over no KLT performed and scalar quantising each vector sample independently. The

samples are assumed to be generated by a weakly stationary Gaussian source, hence each

sample has a common variance, σ2
x [55]. From [72], the MSE distortion for each vector (of

dimension n), of a typical block quantiser operating at b̄ bits/sample, using high resolution

approximations, is given by:

Dbq = nK(b̄)2−2b̄|Σx|
1

n (2.34)

The MSE distortion of a vector (of dimension n), when each of its components are coded

individually using a Gaussian Lloyd-Max scalar quantiser operating at b̄ bits/sample and

no transformation applied, is given by (assuming high resolution) [72]:

Dsq = nK(b̄)σ2
x2−2b̄ (2.35)
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Therefore, the coding gain is:

Dsq

Dbq
=

nK(b̄)σ2
x2−2b̄

nK(b̄)2−2b̄|Σx|
1

n

=
σ2

x

(
∏n

i=1 λi)
1

n

(2.36)

Because the KLT is a unitary transform, the variance is preserved. That is, the sum of

the variances of the transform coefficients (ie. eigenvalues) is the same as that of the

original samples,
∑n

i=1 σ
2
i =

∑n
i=1 λi [198]. Therefore, since the individual variances of

the samples, σ2
x, are common, the numerator of (2.36) can be rewritten in terms of the

eigenvalues:
Dsq

Dbq
=

1
n

∑n
i=1 λi

(
∏n

i=1 λi)
1

n

(2.37)

which is the ratio of the arithmetic mean to the geometric mean of the eigenvalues. This

ratio is always greater than or at least equal to unity and is higher when the vector

components are more correlated [55]. That is, the more correlated the vectors, the greater

is the benefit of using block quantisation over scalar quantisation.

2.2.2 Non-Uniform Scalar Quantisation

After the n dimension input vectors are transformed, producing n transform coefficients,

each coefficient is independently scalar quantised. Since the distortion performance of any

quantiser depends on the PDF of the input source [59], it is important to match the scalar

quantisers to the PDF of the transform coefficients. Lloyd [101] introduced two methods

for designing non-uniform scalar quantisers that matched any arbitrary source PDF. The

second method was later re-derived by Max [111] and so the two methods are known as

the Lloyd-Max algorithm.

As mentioned in the previous section, a special property of the KLT is that for jointly

Gaussian sources, the transform coefficients are independent and Gaussian-distributed

[55, 56]. Therefore, non-uniform scalar quantisers, specially designed to quantise Gaus-

sian sources with minimum distortion (Lloyd-Max), are used in block quantisation. Even

though not all sources are jointly Gaussian, the Gaussian assumption is generally a rea-

sonable one since the transform coefficients are formed from linear combinations of vector

components. When the dimension of the vectors is large, the PDF of the transform co-
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efficients tends to approach a Gaussian distribution due to the Central Limit Theorem

[28].

2.2.3 Bit Allocation

The role of bit allocation in block quantisation is to determine how to assign the budget

of btot bits to the n scalar quantisers such that the overall distortion, D, is minimised.

Since the distribution of the transform coefficient variances is non-uniform, it comes from

the linear approximation property of the KLT that the number of bits assigned should

be relative to the variance of that component, since components from subspaces spanned

by the smallest eigenvalues contribute very little to the final reconstruction [34]. That is,

more bits are assigned to components with larger variance (high energy) while less bits to

components of small variance (low energy).

The minimisation of the distortion is of a constrained nature, since there are a limited

number of bits to allocate. Huang and Schultheiss in [72] derived the optimal bit alloca-

tion formula for block quantising correlated and identically distributed Gaussian vectors.

The distortion is assumed to be MSE. Their high resolution derivation, which involves

Lagrangian minimisation, is presented below.

The distortion of a single Lloyd-Max non-uniform scalar quantiser for a Gaussian

source, operating at b bits, is given as [72]:

D = K(b)σ22−2b (2.38)

where σ2 is the variance of the source. Given the variance and number of bits assigned

to the ith component is λi and bi, respectively, the average distortion incurred by a block

quantiser on an n-dimension vector is:

D =
1

n

n∑

i=1

K(bi)λi2
−2bi (2.39)

The goal is to minimise (2.39) under the fixed-rate constraint of:

btot =
n∑

i=1

bi (2.40)
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Figure 2.7: Plot of K(b) as a function of the number of bits, b, for the Lloyd-Max scalar
quantisation of a unity variance Gaussian source. The dashed line is the high resolution

asymptote, K(∞) = π
√

3
2 (after [72]).

Figure 2.7 shows the quantiser function, K(b), as a function of the number of bits,

b, for a Gaussian source, based on the error data from [111]. Since K(bi) asymptotically

approaches a constant, K = π
√

3
2 , at high bitrates, we use this to simplify the derivation.

We also replace the 2−2bi with e−2bi ln(2) [72]. Using Lagrangian minimisation, where the

multiplier is β, the expression to be minimised becomes:

∂

∂bj

[
1

n

n∑

i=1

Kλie
−2bi ln(2) − β(btot −

n∑

i=1

bi)

]
= 0

− 1

n
λjK2 ln(2)e−2bj ln(2) + β = 0

Rearranging this equation:

λje
−2bj ln(2) =

nβ

K2 ln(2)

= C

where C is a constant. Solving for bj :

bj =
lnλj − lnC

2 ln(2)
(2.41)
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Substituting this into the fixed bitrate constraint, (2.40):

btot =
n∑

i=1

[
lnλi − lnC

2 ln(2)

]

lnC =
1

n
ln

(
n∏

i=1

λi

)
− 2 ln (2)

btot

n
(2.42)

Therefore, substituting (2.42) back into (2.41):

bj =
1

2 ln(2)

[
lnλj −

1

n
ln

(
n∏

i=1

λi

)
+ 2 ln (2)

btot

n

]

bj =
btot

n
+

1

2
log2

λj

(
∏n

i=1 λi)
1

n

(2.43)

The bit allocation formula of (2.43) allows us to distribute btot bits to the n scalar

quantisers in such a way as to minimise the overall MSE distortion. It can be seen the

number of bits allocated is proportional to the variance of the component, hence more bits

will generally be given to the first few transform coefficients, where most of the energy has

been packed into.

2.2.4 Problems with the KLT in Transform Coding

Though the KLT has optimal properties that are useful for transform coding, such as

decorrelation and energy compaction, it has inherent disadvantages which have prevented

it from being used in practical transform coders. Firstly, the transform is calculated

from the source covariance matrix, and hence is source dependent [152, 34]. For the

decoder to be able to perform the inverse transformation, it needs to know either the

transformation matrix or the source covariance matrix, for the specific data to be decoded.

These parameters need to be transmitted as side information, thus incurring transmission

overhead. Alternatively, a static and global KLT matrix can be derived from training data

and used in both encoding and decoding. However, this leads to the problem of source

mismatch and suboptimal coding for data that is not part of and is statistically different

to the training set [116].

Secondly, there are sources where the covariance matrix is (or is close to being) singular

which leads to the KLT not being able to be uniquely defined [116]. It has been shown by

Effros et al. [44] that for sources where the KLT is not unique, the ‘worst’ KLT can give
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distortion performance that is 1.5 dB lower than the ‘best’ KLT.

Lastly, the KLT can be a computationally complex operation. For a vector dimension

of n, the KLT requires 2n2−n flops11. It is not amenable to fast and efficient computation,

unlike the fast Fourier transform (FFT).

2.3 The Discrete Cosine Transform

The discrete cosine transform (DCT) transforms a vector, x, to another vector, y, by

multiplying it with a transformation matrix, D, which consists of cosine basis functions

[143]:

y = Dx (2.44)

where:

D(i, j) = ci cos

(
2j + 1

2n
iπ

)
(2.45)

and

ci =





1√
n
, if i = 0

√
2
n , otherwise

(2.46)

For image applications where a two dimensional DCT is required and blocks or ma-

trices, X, of an image are operated on, the resulting coefficients are multiplied with the

transpose of D in order to transform along the second dimension. In other words, the 2-D

DCT is separable and can be expressed as (for a n× n block):

Y = DXDT (2.47)

where X is the n × n matrix, Y is the transformed matrix and D(i, j) is the (i, j)th

element of the transformation matrix.

The DCT is popularly used as an approximation to the KLT. For first order Gauss-

Markov processes12 with exponential autocorrelation, R(k) = ρ|k|, and a correlation co-

efficient, ρ, that is within the range of 0.5 and 1, the DCT has similar decorrelation and

11In our work, each addition, multiplication and comparison is considered one floating point operation
(flop)

12A Gauss-Markov process is defined as xi = ρxi−1 + u, where ρ is the correlation coefficient and u is a
Gaussian random variable of unit variance and zero mean [55].
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Figure 2.8: Scalar quantisation of DCT coefficients d1 and d2 using 3 bits/sample; (a) Scat-
ter diagram of transformed (DCT) joint Gaussian random source; (b) Estimated marginal
PDF of component d1; (c) Estimated marginal PDF of component d2; (d) An overlay of
the lattice of reproduction points (circles) on transformed (DCT) data.

energy packing characteristics as the KLT13 [78]. The n-point DCT is equivalent to the

discrete time Fourier transform of the signal symmetrically extended with a period of 2n.

For real-life signals, which are normally lowpass, there are no artificial discontinuities in

the periodically extended blocks, hence the smoothness leads to better energy packing

than the FFT [34]. Secondly, the transformation matrix of the DCT contains no terms re-

lated to a source statistic such as covariance and hence the same matrix can be applied to

all vectors generated from all sources [116]. And finally, because the DCT is related to the

discrete Fourier transform [34], fast and efficient implementations are available. The JPEG

image coding standard uses the DCT to transform image pixels into an energy-compact

form [196].

In order to compare the performance of the DCT with the KLT in a block quantisation

framework, the same correlated Gaussian data shown in Figure 2.2 was quantised using

13It is worth noting that the autocorrelation matrices of stationary processes have a Toeplitz structure
and that as the dimensionality increases, the eigenvectors converge to complex exponentials [34]. Therefore,
the discrete Fourier transform and its related transforms asymptotically converge to the KLT.
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Figure 2.9: Block quantisation using 3 bits/sample with DCT applied (SNR=16.45 dB).
Reproduction points (circles) and original data is also shown.

a 3 bits/sample block quantiser that uses the DCT. Figure 2.8(a) shows the transformed

data. It can be seen that the decorrelation characteristics of the DCT are similar to that

of the KLT, where most of the ‘tilt’ in the data points has been removed. Figures 2.8(b)

and (c) shows the estimated marginal PDFs of the DCT components, where it can be

observed that the variance of d1 is higher than d2, thus demonstrating the energy packing

property of the KLT.

After scalar quantisation in the DCT domain, the resulting lattice of quantiser repro-

duction points in the original vector space is shown in Figure 2.9 with an SNR of 16.45 dB.

As expected, the SNR of the DCT-based block quantiser is slightly lower than the KLT-

based one. However, compared with the scalar quantisation of each component without

any transform applied, the DCT offers lower distortion for the same bitrate. Therefore

the DCT is a fast alternative to the KLT, though it is suboptimal in terms of coding

performance. Since most image sources can typically be modelled as Gauss-Markov, the

DCT is particularly popular in image coding applications.
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2.4 Adaptive Transform Coding

2.4.1 Introduction

Even though the KLT, in combination with the Lloyd-Max scalar quantiser, has been

proven to be optimal for correlated and identically distributed Gaussian sources [72, 154,

57], real-life sources rarely have PDFs that are Gaussian or even unimodal. Figure 2.10

shows the image ‘goldhill’ along with its PDF in two dimensions. Consecutive pixels from

the image are taken as a vector. It can be observed that the source PDF (Figure 2.10(b))

is multimodal with a global mean of (112, 112). If a block quantiser was applied to these

vectors, it will align the Lloyd-Max quantiser reproduction lattice to match the global

Gaussian, depicted in Figure 2.10(c). It can be seen that while the quantiser is focused in

the region around (112, 112) where most of the mass is centred, it will fail to reproduce

the pixel values at the sharp peak located at around (230, 230) accurately. This mismatch

will invariably cause a decrease in distortion performance of the block quantiser.

The quantiser mismatch is two-fold. Firstly, the block quantiser, as mentioned above,

assumes the PDF to be unimodal and Gaussian. As can be seen from Figure 2.10(b), this is

certainly not the case and the optimality of the KLT for correlated Gaussian sources is not

valid. And secondly, the block quantiser assumes the correlation is uniform throughout the

vector space [13]. Figure 2.10(d) shows the first eigenvector of the global covariance matrix.

However, at a finer localised level, the correlation may not necessarily be uniform and the

local eigenvectors may point in different directions14. In other words, the assumption of

global stationarity is not valid for most data sources, such as images [40]. Performance

gains are expected to be achieved if the vector space is partitioned into disjoint regions

where the statistics are relatively stationary. Designing a KLT for each region allows them

to exploit the local correlation, allowing a better match with the block quantisers. This

has led to the idea of adaptive transform coding.

2.4.2 Literature Review

Dony and Haykin [40] considered a scheme where the vector space is partitioned into

classes, using an unsupervised, linear subspace classifying algorithm called optimally in-

14Note that because of the scale and relatively low dimensionality, finer level eigenvectors may be difficult
to visualise in Figure 2.10(b).
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Figure 2.10: (a) The image ‘goldhill’; (b) PDF in two dimensions; (c) Contour plot of
global ‘optimal’ Gaussian PDF; (d) Direction of first eigenvector
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tegrated adaptive learning (OIAL). Their reasoning is that Euclidean distance-based clas-

sifiers, such as K-means [104] and LBG [100], are unsuitable for linear transform coding

because they do not incorporate the vector norm. That is, two vectors which differ by a

scalar multiple will be classified into different classes by K-means, when in fact, they would

be appropriately represented by the same transformation bases [40]. The linear subspace

classifier groups vectors into classes, based on the maximisation of the expected norm of

the projected vectors, or alternatively speaking, minimising the MSE between the original

vector and linearly approximated vector reconstructed from a reduced dimensional sub-

space [40]. As shown previously, the orthogonal bases which will minimise MSE in linear

approximation are those of the KLT.

Archer and Leen [9] describe the adaptive transform coding problem as a local PCA and

consider it an alternative to non-linear PCA, which partitions vector space using smooth

and curved boundaries or manifolds, as opposed to the former, which uses straight, local

hyperplanes. Their technique classifies vectors into subspaces of varying dimension, rather

than a fixed global dimension, as was done by Dony et al. [40]. The ‘dimension allocation’

is a Lagrangian optimisation algorithm that minimises the expected distortion, subject to

a fixed average dimension [9].

Later, Archer and Leen [11] noted that all previous adaptive transform techniques

used clustering methods that minimised MSE due to dimensionality reduction rather than

distortion induced by quantisation. Their modified algorithm consisted of a constrained

version of the Linde-Buzo-Gray algorithm [100] (CLBG), which clusters the vectors based

on minimum quantiser distortion [11]. The CLBG transform coder achieved an SNR of

2.5 to 3 dB higher than the global transform coder. A further increase of 1 dB was

achieved by replacing the KLT with the coding optimal transform (COT), which is a

special transform designed to minimise quantiser distortion rather than the MSE that

is due to dimensionality reduction [12, 13]. This stems from the fact that the KLT is

only optimal after quantisation, in the MSE sense, if the source is Gaussian. There is no

guarantee that the vectors in each disjoint region obtained from the clustering process are

a realisation from a Gaussian source, thus the optimality of the KLT reduces to that of

dimensionality reduction only, which we have shown to be always valid, regardless of the

source density function. In fact, it was shown that the COT reduces to the KLT when the

data is Gaussian [12].
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Figure 2.11: Voronoi regions from LBG algorithm. The dots represent the original data
points, circles represent the centroids from the K-means algorithm, and the lines show the
boundaries or decision surfaces which separate clusters

Effros et al. [43] described a scheme called weighted universal transform coding (WUTC),

where the quantisation process is split into two stages. In the general weighted universal

coding scheme, for each vector, the first stage selects a code from a family of codes, while

the second stage quantises the vector using that code [43]. In the context of WUTC, each

transform code consists of a transform and bit allocation [43]. The family of codes used

in the first stage is designed using an entropy-constrained version of the generalised Lloyd

algorithm (GLA). When applied to image coding, the WUTC was able to achieve an SNR

of up to 3 dB over a single transform-based coder [43].

2.4.3 Using K-Means Clustering

In this section, we consider the case of using the basic K-means clustering algorithm and

designing block quantisers for each cluster. This process is suboptimal because the vector

space partitioning and quantiser design are performed independently and not optimised

jointly to minimise distortion. However, the advantage of this type of scheme is bitrate

scalability. That is, the bitrate of the quantisation scheme can be dynamically changed,

without requiring any re-training of the models or quantiser. This is because the scalar
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quantiser levels used are predefined and only the bit allocations are adaptively changed.

The adaptive transform coding schemes mentioned in the previous sub-section, which

include a constraint for minimising quantiser distortion [43, 11, 10], partition the vector

space adaptively and produce transform and quantisation parameters that are dependent

on the operating bitrate. Also, this K-means hard clustering scheme will serve as a useful

comparison with the soft GMM-based clustering scheme, which will be discussed in the

next section. The only difference between the two is the a priori assumption of the PDFs of

each cluster being Gaussian and the use of the Expectation-Maximisation (EM) algorithm,

in the GMM-based block quantisation scheme.

The K-means [104] or LBG [100] algorithm classifies vectors into classes or clusters,

based on the minimum Euclidean distance. If the distortion measure is MSE, these cen-

troids form the codebook of a vector quantiser, which is the best quantiser in the MSE

sense, for a given dimension. The clusters are bounded by the intersection of various hy-

perplanes and these form regions called Voronoi regions, as shown in Figure 2.11. Then a

block quantiser is designed for each cluster. Bits may be distributed to each block quan-

tiser uniformly, or non-uniformly based on a constrained minimisation formula (similar to

the one contained in Section 2.5.3) that minimises the MSE.

This simple scheme is expected to perform better than the traditional block quantiser

because it employs multiple transforms that adapt to the local statistics of different regions.

Therefore, we refer to this scheme as the K-means-based multiple transform block quantiser.

The performance of this scheme will depend on the PDF of the vectors within each cluster.

Though the KLT decorrelates vectors, it will not produce independent coefficients unless

the vectors are Gaussian distributed. Decorrelation and even statistical independence,

are not sufficient for optimal transform coding, as was shown in [44], unless the source

is Gaussian. Because the K-means algorithm partitions vectors based on the unweighted

Euclidean distance, with no regard for the underlying PDF, then there is no guarantee that

the vectors inside each cluster will be Gaussian distributed. Hence the block quantisers

will perform suboptimally. However, this optimality condition of Gaussian PDFs for block

quantisers can be satisfied by imposing an a priori distribution on each cluster, which is

the main novelty of the GMM-based block quantiser, to be discussed in the next section.

The K-means-based multiple transform block quantiser will be evaluated in image

coding experiments, in Chapter 4.
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2.5 Gaussian Mixture Model-Based Block Quantisation

2.5.1 Source Modelling for Quantiser Design

The probability density functions (PDF) of real life sources are rarely Gaussian. Since the

scalar quantisers in traditional block quantisers are designed to quantise Gaussian sources

efficiently, any PDF mismatch will invariably cause a degradation in performance. Rather

than assuming the source PDF to be a standard function such as Gaussian, Laplacian,

etc., one can design a quantiser that matches the source PDF as close as possible. The

K-means algorithm, otherwise known in the literature as the generalised Lloyd algorithm

(GLA) and Linde-Buzo-Gray (LBG) algorithm15, allows one to design vector quantisers

which match the PDF of training data and quantise it with minimum distortion, via the

Lloyd conditions [55, 100].

There have been numerous studies in the coding literature on source PDF modelling for

quantiser design. These can be broadly classified as either non-parametric or parametric

modelling. Ortega and Vetterli [118] estimated the source model in a non-parametric

fashion using piecewise linear approximation. No side information is required as they used

a backward adaptation scheme which allows the decoder to derive the source model based

on the previous quantised values. Similarly, multidimensional histograms were used by

Gardner and Rao [52] to model the PDFs of line spectral frequencies (LSF) in order to

evaluate the high-rate bounds of split vector quantisers.

In relation to parametric modelling, Su and Mercereau [181] applied Gaussian mixture

models (GMM) in the estimation of the PDF of DC (zero frequency) transform coefficients

in DCT-based transform coding of images while the remaining AC (higher frequency)

coefficients were modelled using generalised Gaussians (GG). It has been known, with

regards to the distribution of DCT coefficients, that the DC coefficient has a Gaussian-

like PDF16 while the AC coefficients have a Laplacian-like PDF [143]. Archer and Leen

[10, 13] used GMMs to form a probabilistic latent variable model from which they derived

optimal transform coding design algorithms.

15Notable differences between the K-means algorithm and GLA/LBG algorithm are the initialisation
used as well as the former’s sequential nature [100]. Due to its sequential nature, the K-means algorithm
is therefore more suited for clustering applications than optimal quantiser design. Since the refinement
steps, which are based on the Lloyd conditions for optimality, are essentially the same, we will use the
terms ‘K-means algorithm’, ‘GLA’, and ‘LBG algorithm’, interchangeably in this paper.

16Originally, a Rayleigh and Gaussian distribution were thought to be appropriate models for DC and
AC coefficients, respectively [143].
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On the speech side, Hedelin and Skoglund [66] used GMMs for designing and evalu-

ating high-rate (approximately 20 bits) vector quantisers of LSFs. The codebook size of

these vectors quantisers is very large and in order to prevent ‘overfitting’, which causes

suboptimal performance on disjoint data, there needs to be a very large set of training

vectors [66]. The idea is to find a GMM that can accurately model the PDF of line spectral

frequencies. This GMM can then be used to artificially generate a large training set of

vectors which can then be used to design vector quantisers. They made two modifications

to the GMM estimation procedure which are optimised for vector quantiser design. One

modification constrained the shape the multivariate Gaussians to match the boundaries

of certain PDFs more accurately, otherwise known as GMMs with bounded support [66].

The next modification involved applying gradient-based optimisation to the Expectation-

Maximisation algorithm to produce the high rate optimised (HRO) estimation algorithm

[66]. The aim is minimise quantiser distortion rather than log-likelihood [66].

Subramaniam and Rao [183] used GMMs in combination with transform coding to

quantise line spectral frequencies. The GMM-based block quantiser17 of [183] models

any arbitrary source of data vectors as a mixture of individual and overlapping Gaussian

sources (or, clusters). GMMs can be used to approximate arbitrary densities and have

been used in many applications, such as speech recognition [204] and speaker identification

[146].

One useful view of the GMM, where the data vectors are assumed to be incomplete and

that there is hidden and unobserved data, is that each observation vector is assumed to be

generated by one of the Gaussian sources, depending on the weight or probability of that

cluster [22]. Using the GMM framework for source modelling allows us to decompose any

complex and arbitrary PDF into a series of Gaussian basis PDFs and for each Gaussian

basis source, we can then design efficient quantisers. This is analogous to the transform

coding idea of breaking the signal down into basis components and designing individual

quantisers for each one.

Block quantisers [72] are known to be efficient for correlated Gaussian sources [56],

hence one is designed for each cluster. Because an observation vector is assumed to be

17The original scheme of Subramaniam and Rao [183] was termed as parametric vector quantisation,
where the features of scalability, compact representation, and bitrate independent complexity were high-
lighted as advantages over vector quantisers. We have taken a different interpretation of this scheme and
view it as an improved version of the block quantiser, that is matched to arbitrary PDFs rather than the
standard Gaussian.
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generated by one Gaussian source only, then the cluster block quantiser for that source

will code it with minimal distortion, in the absence of other overlapping cluster block

quantisers. However, the overlapping of Gaussian clusters coupled with the relatively low

complexity of block quantisers allows us to use a soft-clustering approach to choose the

best cluster block quantiser based on minimum distortion, rather than maximum likelihood

[183].

This quantisation scheme differs from the adaptive transform coders [40, 43, 13] found

in the image coding literature, where the vector space is partitioned into disjoint regions

and transform coders are designed for each region. The aim of these adaptive transform

coders is to partition the vector space into regions of similar statistics, in conjunction with

the design of transform coders, in order to minimise quantiser distortion [13]. Whereas

for the GMM-based block quantiser, the aim is to approximate the source PDF accurately

using a GMM, decomposing it into multiple overlapping Gaussian clusters [183]. Block

quantisers, which can code correlated Gaussian sources efficiently, are then designed for

each cluster.
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The main advantages of the GMM-based block quantiser, compared with vector quan-

tisers, are [183]:

• Compact representation of the source PDF, stored at the encoder and decoder;

• bitrate scalability with ‘on-the-fly’ bit allocation; and

• low search complexity and memory requirements which are independent of the bitrate

of the system.

Since the GMM parameters for the estimated PDF and the KLT transformation matrices

are properties of the source and thus independent of the bitrate, this procedure only needs

to be done once (training). The GMM parameters and KLT transformation matrices are

stored at the encoder and decoder, hence there is no transmission overhead associated

[183]. With regards to bitrate scalability, closed-form expressions exist for bit allocation

among GMM clusters as well as within each cluster, which allows for fast computation by

both the encoder and decoder, should there be a change in the bitrate. The non-uniform

scalar quantisers are also bitrate scalable and can be implemented as a rounding function

accompanied by appropriate companding and expanding functions. This efficient scalar

quantiser implementation also limits the number of searches required in the GMM-based

block quantiser to be dependent only on the number of clusters in the GMM, and not the

bitrate [183].

The GMM-based block quantiser can be broken down into two stages: the training

stage (PDF estimation) and encoding stage (bit allocation and minimum distortion block

quantisation). These will be described in the following sub-sections. In the training stage,

a GMM is calculated, using the training vectors, to produce a mean, weight, and covariance

matrix for each Gaussian cluster (or, mixture component). An eigenvalue decomposition

is performed on the covariance matrix of each cluster, to produce a KLT matrix, P , and

a set of eigenvalues, {λ}. In the encoding stage, the cluster weights and eigenvalues are

used to determine the bit allocation, given the target bitrate. The rest of the parameters,

such as the cluster mean and KLT matrix are then used in the minimum distortion block

quantisation of the vectors.
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2.5.2 PDF Estimation Using Gaussian Mixture Models and the EM

Algorithm

The probability density function, P , as a mixture of multivariate Gaussians, N (x;µ,Σ),

is given by:

P (x|M) =
m∑

i=1

ciN (x;µi,Σi) (2.48)

M = [m, ci, . . . , cm,µ1, . . . ,µm,Σ1,

. . . ,Σm] (2.49)

where N (x;µ,Σ) =
1

(2π)
n
2 |Σ| 12

e−
1

2
(x−µ)T

Σ
−1(x−µ) (2.50)

and
m∑

i=1

ci = 1 (2.51)

where x is a source vector, m is the number of mixture components (or, clusters), and

m is the dimensionality of the vector space. ci,µi and Σi are the probability, mean, and

covariance matrix of the ith mixture, respectively. Note the words ‘mixture component’

and ‘cluster’ will be used interchangeably in this paper.

The parametric model parameters, M, are initialised by applying the LBG algorithm

[100] on the training vectors representing the source distribution and m clusters are pro-

duced, each represented by a mean or centroid, µ, a covariance matrix, Σ, and a cluster

weight, c. These form the initial parameters (k = 0) for the GMM estimation procedure.

Using the Expectation-Maximisation (EM) algorithm [37], the maximum-likelihood esti-

mate of the parametric model is computed iteratively and a final set of means, covariance

matrices, and weights are produced. The EM algorithm is described below.

Expectation Step (E-step)

In the (k + 1)th E-step, the a posteriori probability of the ith cluster, given the model,

M, and vector, xj , is calculated for all s vectors and m clusters:

p(i|xj ,M(k)) =
c
(k)
i N (xj;µ

(k)
i ,Σ

(k)
i )

∑M
m=1 c

(k)
m N (xj ;µ

(k)
m ,Σ(k)

m )
(2.52)

where i = 1, 2, . . . ,m and j = 1, 2, . . . , s.
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Figure 2.12: The image ‘barbara’ and its PDF in two dimensions

Maximisation Step (M-step)

With the a posteriori probabilities from the E-step, the (k+ 1)th M-step re-estimates the

cluster weights, means, and covariance matrices.

c
(k+1)
i =

1

s

s∑

j=1

p(i|xj ,M(k)) (2.53)

µ
(k+1)
i =

∑s
j=1 p(i|xj ,M(k))xj∑s

j=1 p(i|xj,M(k))
(2.54)

Σ
(k+1)
i =

∑s
j=1 p(i|xj ,M(k))(xj − µ

(k+1)
i )(xj − µ

(k+1)
i )T

∑s
j=1 p(i|xj ,M(k))

(2.55)

Each iteration of the EM algorithm is guaranteed to increase or leave unchanged the

likelihood of the GMM, which converges to a local optimum.

L(M(k+1)|x) ≥ L(M(k)|x) (2.56)

where the log-likelihood of the GMM, given the vectors, {xi}s
i=1, is expressed as:

L(M|x) =
1

s

s∑

j=1

lnP (xj|M) (2.57)

=
1

s

s∑

j=1

ln

[
m∑

l=1

clN (xj;µl,Σl)

]
(2.58)

In order to appreciate the role and effectiveness of using a GMM to model the PDF,

two dimensional vectors (consecutive horizontal pixels) were extracted from the image
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Figure 2.13: PDF and GMM of the image ‘barbara’: (a) Original PDF; (b) Single cluster
GMM (Gaussian); (c) Contour plot of original PDF; (d) Contour plot of the single cluster
GMM (Gaussian)
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Figure 2.14: PDF and GMM of the image ‘barbara’: (a) Original PDF; (b) 4 cluster
GMM; (c) Contour plot of original PDF; (d) Contour plot of the 4 cluster GMM

‘barbara’. The image and the PDF of the vectors are shown in Figure 2.12. Firstly, it can

be seen from the PDF that consecutive pixels are highly correlated since the image has a lot

of smooth and uniform regions. Also, it can observed that the PDF is multimodal which

implies that a single unimodal Gaussian is insufficient and this is confirmed in Figures

2.13(b) and (d), though the GMM does capture the global correlation (tilt). In single

transform block quantisation, a Lloyd-Max scalar quantiser lattice is designed to be aligned

with this unimodal Gaussian and consequently there will be a loss of performance due to

mismatch with the complex multimodal PDF of the original data. Also, local correlation

in the source cannot be exploited since the global KLT aligns the scalar quantiser lattice

to the predominant tilt of the PDF, though it can seen that at least for 2D image vectors,

local correlations appear somewhat uniform and point in the same ‘direction’ as the global

correlation. This interesting observation will be revisited again in a later section which

will detail a DCT-based quantisation scheme.
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Figure 2.15: PDF and GMM of the image ‘barbara’: (a) Original PDF; (b) 16 cluster
GMM; (c) Contour plot of original PDF; (d) Contour plot of the 16 cluster GMM
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Figure 2.16: PDF and GMM of the image ‘barbara’: (a) Original PDF; (b) 32 cluster
GMM; (c) Contour plot of original PDF; (d) Contour plot of the 32 cluster GMM
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Figure 2.14 shows a 4 cluster GMM. It can be seen that the two peaks in the lower

left corner of the original have been captured by a Gaussian mixture component. In the

GMM-based block quantiser, a block quantiser is designed for each mixture component of

the GMM, hence one will be designed for the mixture component in the lower left, which

will exploit the local correlation and match the density more efficiently than the single

Gaussian case of Figure 2.13.

Increasing the number of clusters to 16 and 32, as shown in Figures 2.15 and 2.16,

provides much better modelling of the original multimodal PDF by the GMM. Most of

the peaks in the original PDF have been captured by the GMM and consequently, block

quantisers will be positioned in these regions to match the local statistics. It is worth

noting that these Gaussian mixture components will overlap each other and depending on

the number of bits assigned, the resulting scalar quantiser lattices of each block quantiser

will also overlap. This suggests that the GMM provides a soft partitioning of the vector

space so a soft decision will need to made when choosing which cluster block quantiser to

use for quantising a given vector.

In the incomplete data interpretation of the GMM, each vector is assumed to be

generated by one Gaussian source at a time and the unobservable random variable is the

cluster number, whose distribution is determined by the cluster probabilities, c. The GMM

can be used to generate random vectors which possess the same PDF characteristics via

the following procedure:

1. Form cumulative probabilities from the c’s, which partition the range of [0 . . . 1] to

each mixture component;

2. use a random variable of uniform distribution between 0 and 1 to select the mixture

component;

3. generate Gaussian random vector with the mean and covariance of the selected

mixture component.

Using this process, one can generate a large number artificial training vectors for designing

quantisers, which is what Hedelin and Skoglund [66] have done in their GMM-based vector

quantiser for the coding of line spectral frequencies.
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2.5.3 Bit Allocation

There are two types of bit allocation that are required: intercluster bit allocation and in-

tracluster bit allocation. Bitrate scalability is a feature of the GMM-based block quantiser

[183]. The bit allocation, depending on the chosen bitrate, is done ‘on-the-fly’ by both the

encoder and decoder, based on the common GMM and KLT parameters. Therefore, the

bit allocation is fixed and synchronised between the encoder and decoder. For the purpose

of ‘on-the-fly’ bitrate scalability, the bit allocation procedure needs to be computationally

efficient. For this reason, classical bit allocation algorithms, based on the high-resolution

performance of Gaussian scalar quantisers [72], are preferred over the more optimal allo-

cation algorithm of Riskin [147].

Intercluster Bit Allocation

With intercluster bit allocation, the range of quantiser levels is partitioned to each of the

m cluster block quantisers. The derivation given in [182, 184] is presented below. For a

fixed-rate quantiser, the total number of quantiser levels is fixed:

2btot =
m∑

i=1

2bi (2.59)

where btot is the total number of bits in the bit budget, bi is the number of bits assigned

to cluster i, and m is the number of clusters. Since the cluster weights can be thought of

as probabilities of occurrence of each cluster [183], the average distortion is approximated

by18:

Dtot =
m∑

i=1

ciDi(bi) (2.60)

Using the high resolution approximation for distortion of a single Lloyd-Max scalar quan-

tiser, the total distortion of a block quantiser is [183]:

Di(bi) = Knλi2
−2

bi
n (2.61)

λi =




n∏

j=1

λi,j




1

n

(2.62)

for i = 1, 2, . . . ,m

18Note that this is based on the assumption is that there is negligible overlap between clusters.
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where n is the dimension of the vectors, m is the number of clusters, λi,j is the jth

eigenvalue of cluster i, and K is a constant which is asymptotically equal to π
√

3
2 for

Gaussian sources [199, 59].

Using Lagrangian minimisation, where the multiplier is β:

∂

∂bj

[
m∑

i=1

ciKnλi2
−2

bi
n + β(

m∑

i=1

2bi − 2btot)

]
= 0

β2bj − 2Kcjλj2
−2

bj

n = 0

Rearranging this equation to separate out the constants:

2bj(n+2

n )

cjλj
=

2K

β

= G

2bj = (cjλj)
n

n+2G
n

n+2 (2.63)

Substituting into the constraint (2.59):

2btot =
m∑

i=1

2log2(ciλiG)
n

n+2

= G
n

n+2

m∑

i=1

(ciλi)
n

n+2

G
n

n+2 =
2btot

∑m
i=1(ciλi)

n
n+2

(2.64)

Substituting this back into (2.63):

2bj = 2btot
(cjλj)

n
n+2

∑m
i=1(ciλi)

n
n+2

(2.65)

The number of quantiser levels given to the cluster block quantiser is proportional to the

geometric mean of the eigenvalues and the probability of that cluster.

Intracluster Bit Allocation

After the bit budget is partitioned to each cluster, the bits need to be allocated to each

of the n components within each cluster block quantiser using existing bit allocation

techniques for transform coding [55, 183]:
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Figure 2.17: Minimum distortion block quantisation (Q – cluster block quantiser)

bi,j =
bi
n

+
1

2
log2

λi,j
(∏n

j=1 λi,j

) 1

n

(2.66)

for i = 1, 2, . . . ,m

where λi,j and bi,j are the jth eigenvalue and number of bits allocated to component j of

cluster i, respectively.

2.5.4 Minimum Distortion Block Quantisation

Figure 2.17 shows a diagram of minimum distortion block quantisation. At first glance,

it can be seen to consist of m independent Gaussian block quantisers, Qi, each with their

own orthogonal matrix, P i, and bit allocations, {bi,j}n
j=1. The following coding process is

also described in [183].

To quantise a vector, x, using a particular cluster i, the cluster mean, µi, is first

subtracted and its components decorrelated using the orthogonal matrix, P i, for that

cluster. The variance of each component is then normalised by the standard deviation to

produce a decorrelated, mean-subtracted, and variance-normalised vector, z i:

zi =
P i(x − µi)

σi
(2.67)

These are then quantised using a set of n Gaussian Lloyd-Max scalar quantisers as de-

scribed in [72] with their respective bit allocations producing indices, q i
19. These are de-

19The non-uniform scalar quantisers may be replaced with uniform scalar quantisers with appropriate
companding and expanding, as is done in [183].
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Figure 2.18: Example of quantiser level encoding and cluster number partitioning

coded to give the approximated normalised vector, ẑi, which is multiplied by the standard

deviation and correlated again by multiplying with the transpose, P T
i , of the orthogonal

matrix. The cluster mean is then added back to give the reconstructed vector, x̂i.

x̂i = P T
i σiẑi + µi (2.68)

The distortion between this reconstructed vector and original is then calculated, d(x− x̂i).

The above procedure is performed for all clusters in the system and the cluster, k,

which gives the minimum distortion is chosen:

k = argmin
i

d(x − x̂i) (2.69)

A suitable distortion measure is chosen based on the application. For example, in spectral

quantisation for speech coding, a suitable distortion measure would be spectral distortion,

while for image coding, a psychovisually-inspired weighted distance measure may be used.

The simplest and most general distortion measure is mean-squared-error. It is noted that

the search complexity is a function of the number of clusters, m, rather than the bitrate

[183]. Thus it is a computational advantage over full search vector quantisers where the

search complexity is an exponential function of the bitrate [59].

2.5.5 Quantiser Index Encoding

Each quantised vector has associated with it, a number identifying which cluster was

used for coding. As proposed in [183], this side information can be made inherent in the

encoding. For an m cluster system operating at b bits per vector, log2m bits are required

to uniquely identify each cluster. Therefore, on average, b − log2m bits are available for
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quantising each vector which is equivalent to 2b/m quantiser levels. Hence, our range of

quantiser levels has been partitioned into m segments.

In effect, this partitioning of the range of quantiser levels allows the cluster number to

be found by determining which partition the block code belongs to. An example of this

encoding scheme is shown in Figure 2.18 where a total of 3 bits are available to encode

each block and the system uses 2 clusters. Cluster 1 has been assigned 5 levels (2.322 bits)

while cluster 2 has the remaining 3 levels (1.583 bits). If cluster 1 was deemed the most

suitable for encoding the current block, its quantiser levels would be contained within the

range of 000 . . . 100. Therefore, the decoder can easily determine which cluster the block

belongs to by working out which partition the code falls into. Hence this removes the need

for extra side information to be transmitted20.

The example also shows that the number of levels assigned to the block quantiser

belonging to each cluster are not powers of two and hence the bits assigned to the quantisers

are fractional.

2.5.6 Computational Complexity and Memory Requirements

As described by Subramaniam and Rao [183], one of the salient features of the GMM-

based block quantiser is the independence of computational complexity and memory re-

quirements to the bitrate. This contrasts with the unconstrained vector quantiser, whose

codebook, and therefore storage requirements as well as search complexity, grows exponen-

tially with the number of bits. Rather than using a non-uniform scalar quantiser, where

quantiser levels need to be stored, a uniform scalar quantiser with appropriate companding

and expanding functions is a fast and efficient alternative [183].

Table 2.1 shows complexity of each operation of the m cluster, n dimensional GMM-

based block quantiser. It can be observed that the complexity of the scheme is dependent

on the number of clusters, m, and the complexity of the distortion measure used, ndist.

The memory requirements of the GMM-based block quantiser, as given in [183], is

given by:

2nCE+1 +m(n2 + 3n) floats (2.70)

20If the partitions were of the same size, then this scheme is equivalent to explicitly sending bits for
identifying the cluster number.
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Table 2.1: Bitrate independent computational complexity of the GMM-based block quan-
tiser (after [183])

Operation Complexity (flops)

Mean subtraction mn
Decorrelation m(2n2 − n)

Scaling mn
Compander + rounding + expander mn(2nCE + 2)

Rescaling mn
Correlation m(2n2 − n)

Mean addition mn
Distortion calculation mndist

Final comparison m

Total 2mn(2 + 2n+ nCE) +mndist +m

2.6 GMM-based Block Quantisation using the Discrete Co-

sine Transform

By observing Figure 2.17, we can see that a transformation and inverse transformation is

performed for all clusters. Each cluster, with its own local statistics, will possess its own

unique transformation matrix. In additional to this, because the orthogonal bases of the

transform space vary between clusters, then any distance measure such as MSE will need

to be calculated in the original space, thus the need for inverse transformations. It all

comes down to the source dependent nature of the KLT. We may remove the extra steps

of computation by replacing the KLT with a source independent transform that possesses

similar properties. If we assume that the role of the KLT is to decorrelate samples before

scalar quantising them independently, and that the source is Gauss-Markov with a high

degree of correlation, then the discrete cosine transform (DCT) is a good candidate as it has

been shown to approach the optimality of the KLT under these conditions [116]. Therefore,

this DCT-based scheme, which we refer to as the GMM-DCT-based block quantiser, will

be particularly suited to the coding of images, where the source is known to be well

approximated by a Gauss-Markov process.

Suboptimality in the GMM-DCT-based block quantiser will be a result of the fixed

transform as well as the suboptimality of the DCT itself. With the KLT-based scheme,

multiple transforms are designed for each cluster which are adapted to the correlation

of that region. Therefore, we should expect the GMM-DCT-based block quantiser to
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Figure 2.19: PDF estimation and bit allocation procedure for the GMM-DCT-based block
quantiser

perform reasonably well for sources which have a dominant global correlation. As we have

observed in the PDF examples in Section 2.5.2, there is a large dominant global correlation

in consecutive pixels of images, which is mostly due to the large proportion of smooth and

uniform regions, where pixels tend to have similar values of luminance. Therefore, we will

apply the GMM-DCT-based block quantiser to low complexity image coding. Despite the

fixed transform, the GMM-DCT-based block quantiser retains the advantage of accurate

PDF modelling and the capturing of multiple modes, thus it is expected to perform better

than traditional block quantisers.

2.6.1 PDF Estimation

Figure 2.19 shows the block diagram of the PDF estimation procedure for the GMM-

DCT-based block quantiser. By using a GMM, the PDF is modelled as a composite

source of Gaussians. Assuming that these mixture components are themselves Gauss-

Markov processes, then applying a DCT on each mixture component should not impact

much on the distortion performance. Since the DCT is source independent and fixed, then

only one transform needs to be performed. Therefore, each image block is transformed

first by the DCT and the GMM is estimated based on the DCT coefficients. It is assumed

that the vectors will be decorrelated by the DCT, hence only diagonal covariance matrices

are used in the EM algorithm.



Chapter 2 Efficient Block Quantisation 59

m

mm

µ

+

+

+

+

+

+
µ

−

−

−

+

+

+

DCT

µ

µ

m

1/σ σ

µ

µ

m1/σ σm

1/σ σ1

2

1

2

1

2

1

2
data
input

 Q

 Q

 Q

 Q

 Q

 Q

distort.

2

1 1

2

−1

−1

−1

min

Figure 2.20: Schematic of the modified GMM-based block quantiser based on DCT (Q –
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2.6.2 Minimum Distortion Block Quantisation

Figure 2.20 shows the block diagram of minimum distortion block quantisation for the

GMM-DCT-based coder. As the DCT bases are constant, there is no need for multiple

transformations as well as inverses for distance measurements. That is, the MSE distortion

calculation can be performed in the DCT domain. It is helpful to compare the compu-

tational complexity (in flops21) of the two types of transformations. The computational

complexity of a single KLT is 2p4 − p2 or 8128, assuming 8 × 8 blocks. For an m-cluster

system, the number of flops is therefore 4mp4 − 2mp2 (including inverse transformation).

For the case of the DCT, the computational complexity is constant at 4p3 − 2p2 or 1920

for a block of 8 × 8 for all values of m. Therefore, for a 16 cluster GMM-based block

quantiser, the number of flops used for the transformation step in the DCT-based scheme

is less than 1% of that required in the KLT-based scheme.

2.7 GMM-Based Block Quantisation with Memory

2.7.1 Introduction

Correlation or memory often exists between the components of successive vectors which

constitutes coding redundancy. The block quantiser and GMM-based block quantiser

described thus far, exploit intravector (within a vector) correlation only. Therefore, coding

21In this study, we consider each multiplication and addition to represent one floating point operation
(flop)
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gains are expected to be achieved if intervector (across vectors) correlations are exploited

by the quantisation scheme. In this section, two GMM-based block quantisation schemes

which exploit memory across vectors are described.

2.7.2 Predictive GMM-Based Block Quantisation

Two configurations of a GMM-based block quantiser with memory were described in [183],

where the differences between successive LSF frames are quantised, similar to differential

pulse code modulation (DPCM) and predictive vector quantisation [183, 55]. In the first

configuration (Figure 2.21), referred to as the ‘modified case’ [183], existing codebooks and

transformation matrices for the memoryless scheme are used for quantising the difference

vectors with no subtraction of the cluster mean. In the second configuration (Figure
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2.22), referred to as the ‘trained case’ [183], the codebooks and transformation matrices

are trained based on vector differences.

The first-order predictor tries to predict the current vector, xi, using the previous

quantised vector, x̂i−1, using the following linear prediction equation:

x
p
i (j) = ajx̂i−1(j) where j = 1, 2, . . . , n (2.71)

where aj is the jth linear prediction coefficient and x
p
i is the predicted vector of the current

vector, xi. Given the training vector set, we use the previous training vector rather than

the quantised one. Assuming each vector has a dimension of n and the training vector set

has N vectors, we wish to minimise the mean squared prediction error22:

E =
N∑

i=2

n∑

j=1

[xi(j) − ajxi−1(j)]
2 (2.72)

∂

∂ak





N∑

i=2

n∑

j=1

[xi(j) − ajxi−1(j)]
2



 = 0

N∑

i=2

[xi(k) − akxi−1(k)]xi−1(k) = 0 (2.73)

Rearranging to find the kth linear prediction coefficient:

ak =

∑N
i=2 xi(k)xi−1(k)∑N

i=2[xi−1(k)]2
where k = 1, 2, . . . , n (2.74)

The predicted vector, xp, is subtracted from the input vector, x, to give an error vector,

e, which is quantised by the minimum distortion block quantiser. The predicted vector

is added to the quantised error vectors on the output of each cluster block quantiser and

the one which incurs minimum distortion is chosen. This quantised vector, x̂, is also fed

back to the predictor.

As with most predictive coding schemes, problems occur when the input vectors have

rapidly changing statistics, where the intervector correlations become low [45]. In these

cases, the predictor performs poorly which increases the occurrence of quantised vectors

having large errors. In order to reduce the number of these outlier vectors, a ‘safety-net’

scheme [45] may be used, where each vector is quantised using both the memoryless and

memory-based quantiser. The quantised vector from both schemes are compared with the

22The following derivation is equivalent to the covariance method of linear prediction [14].
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original and the one with the least distortion is chosen.

2.7.3 Multi-Frame GMM-Based Block Quantisation

Another method of exploiting correlation across components is to use the KLT. Also,

an important result of Shannon’s rate-distortion theory [155] is that better efficiency is

gained by increasing the dimensionality of the vectors to be quantised. Because KLTs are

present in the block quantisers of the GMM-based block quantisation scheme, decorrelation

between p successive vectors of dimension n can be achieved by concatenating them into

a longer vector of dimension np and performing an np×np KLT. That is, we concatenate

p successive vectors, {x(i)}p
i=1, to form longer vectors:

[
x

(1)
1 , x

(1)
2 , . . . , x(1)

n

]T
+
[
x

(2)
1 , x

(2)
2 , . . . , x(2)

n

]T
+ . . . +

[
x

(p)
1 , x

(p)
2 , . . . , x(p)

n

]T
=⇒

[
x

(1)
1 , x

(1)
2 , . . . , x(1)

n , x
(2)
1 , x

(2)
2 , . . . , x(2)

n , . . . , x
(p)
1 , x

(p)
2 , . . . , x(p)

n

]T
(2.75)

By doing this, the redundancies that exist across p consecutive frames can be exploited by

the KLT, which decorrelates the LSFs within each frame, as well as of other frames. Also,

the dimensionality of the vectors is increased, which as a result of rate-distortion theory,

should lead to improvements in the distortion-rate performance.

The multi-frame GMM-based block quantiser is equivalent to the idea of matrix quan-

tisation [187], where matrices of vectors are quantised. The distortion measure between

each matrix is the sum or average of the distortion measure of each vector within the

matrix. If the individual distortion measures are convex functions and differentiable, then

their sum or average will also have the same properties [187].

The disadvantages of this scheme include higher computational complexity, delay, and

memory requirements. Also, correlation between vectors on the boundary of the con-

catenated vectors is not exploited by this scheme. As opposed to the predictive schemes,

however, the multi-frame GMM-based block quantiser is less prone to producing outlier

vectors with large errors that are caused by rapidly changing statistics. Also, only minimal

structural changes to the GMM-based block quantisation scheme are required.



Chapter 2 Efficient Block Quantisation 63

2.8 Non-Integer Bit Allocation and Encoding at a Fixed-

Rate

2.8.1 Introduction

Traditionally, the design of individual scalar quantisers for each respective component of a

block is done by allocating quantiser bits to components based on their relative variances.

This is the method presented in [72] which leads to the non-uniform bit allocation formula

(2.43). An inherent problem with fixed-rate block quantisation is how to handle binary

words of unequal lengths, as a result of the non-uniform bit allocation [198]

The constraint used in the minimisation derivation is that the sum of the bits to encode

a block is constant, and so fixed-rate coding is assumed. That is:

btot =
n∑

i=1

bi (2.76)

where n is the size of the blocks, bi is the number of bits allocated to the ith component,

and btot is the total number of bits in the bit budget. However, the number of bits in

(2.43) is assumed to be an unbounded continuous variable, which is not true in practice

[55]. The number of bits for scalar quantisation is typically a non-negative integer, hence

the optimality, in the high resolution sense, is not preserved. The solution to this is to

set negative bit allocations to zero, truncate fractional numbers of bits to integers, and

compensate for the bits gained or lost from the previous two procedures heuristically in

order to approach the fixed bitrate. Segall [154] derived a bit allocation formula which

added a further constraint, namely that the number of bits assigned to each component

must be non-negative.

The closest one can get to a continuous number of bits in fixed-rate coding is to use

integer quantiser levels [199], which is similar to what is done in variable-rate coders like

JPEG [196]. By noting that the relation between quantiser levels, l, and quantiser bits, b,

is b = log2 l, then (2.76) can be written as:

log2 ltot =
n∑

i=1

log2 li

= log2

n∏

i=1

li
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Table 2.2: Example of integer bit allocation table

3 2 1 1

Table 2.3: Example of binary coding a block

101 11 0 0 x

ltot =
n∏

i=1

li (2.77)

which effectively says that in terms of quantiser levels, the product of all the individual

levels, li, must equal the total, ltot = 2btot . While this conversion from bits and levels

is fairly easy, the encoding of quantiser levels in a block is not so straightforward. To

demonstrate the problem, it is best to use a simple example.

Consider a fixed-rate cluster block quantiser, in the context of GMM-based block

quantisation, that uses blocks of size 4 and the number of bits allocated to coding each

block is 7.492 bits. This means that the target bitrate is 1.873 bits per sample. Also,

assume the integer bit allocation calculated for the source is shown in Table 2.2. One

can see that in terms of integer bits, the allocated bitrate is only 1.75 bits per sample,

rather than the target 1.873 bits per sample. Therefore, under-allocation has occurred.

However, the encoding of a block is fairly straightforward. If the quantiser indices for each

component are shown in Table 2.3 (where the ‘x’ shows an unused bit that is padded on

to ensure constant bitrate). Then this block would be encoded as 101110002 or 18410.

However, consider an allocation table based on integer levels in Table 2.4. The total

levels allocated are 9 × 5 × 2 × 2 = 180 while the target number of levels is 27.492 ≈ 180.

The effective bitrate achieved when using quantiser levels is 1.8729 bits per sample which

is very close to the target bitrate of 1.873. Therefore when using quantiser levels, more

of the bit budget is utilised and this should translate to better performance. Another

way of achieving a fractional bitrate is using variable-rate entropy coding. This is what is

Table 2.4: Example of fractional bit allocation table

9 5 2 2
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essentially done in JPEG, where scalar quantisers, based on quantiser levels, are applied

on discrete cosine transform coefficients [196]. However, in contrast with the levels-based

block quantiser considered in this paper, JPEG uses uniform scalar quantisation coupled

with runlength and Huffman encoding which is known to significantly outperform fixed-

rate block quantisation, at high resolutions [198]. However, we are only considering a

fixed-rate quantiser which does not have the added complexity of variable-rate schemes,

such as buffering.

However, the method of encoding these levels is not as straightforward as encoding

bits. The complication arises from the fact that fractional bits are used and it is not

well-defined as to how one can allocate a fractional part of the bit budget to each compo-

nent, remembering that the total number of levels consists of a product of the individual

component levels rather than a sum. For example, in the first component of Table 2.4,

where 9 levels are allocated, this corresponds to approximately 3.17 bits while in the sec-

ond component, 3 levels corresponds to approximately 2.322 bits, etc. That is, how is

one to combine these fractional bits so that the block can be coded into an integer of 180

levels or 7.492 bits? In order to develop an understanding into how one may approach the

solution to this problem, one needs to investigate positional value number systems and its

generalisations.

2.8.2 Positional Value Number Systems

Most common number systems used are positional value systems where the value of a digit

is determined by its position [186]. For example, consider the number 351210. The value

is determined by multiplying each digit with its positional value or weight, w. That is,

351210 = 3 × 103 + 5 × 102 + 1 × 101 + 2 × 100. Each positional weight is related to the

number of states or levels that can occur in the previous position. For example, in the

decimal system:

• The least significant position (position 1) can take on 10 different levels or numerals

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9);

• the next least significant position (position 2) can take on 10 different levels as well.

Each level in position 2 represents 10 ‘lots’ of levels of position 1, thus the positional

weight is 10;
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Table 2.5: System of positional weights

Position n . . . 4 3 2 1

Num. of levels ln . . . l4 l3 l2 l1
w

∏n−1
i=0 li . . . l3l2l1 l2l1 l1 1

Table 2.6: Positional weights for the S number system

Position 4 3 2 1

Num. of levels 7 8 2 5

w 80 10 5 1

• each level in position 3 represents 10 ‘lots’ of levels of position 2 which each have

the weight of 10, thus the positional weight is 10 × 10 = 100; and so forth.

This system of determining the positional weights is summarised in Table 2.5. As

shown in the Table, the positional weights are determined by:

wn =
n−1∏

i=0

li where l0 = 1 (2.78)

For the decimal case, the number of levels, l, is equal to 10 for all positions. With this

system defined, it allows other number systems to be created where each position may have

different levels. For example, consider the number system, S, whose positional weighting

system is shown in Table 2.6. To find the decimal equivalent of a number 2013S :

2013S = 2 × 80 + 0 × 10 + 1 × 5 + 3 × 1

= 16810

There are two ways of converting a decimal number into the S number system. Method

1 involves repeated division with each positional weight. One obtains the digits by trun-

cating the quotient and continuing the division on the remainder as shown in Table 2.7.

Method 2 involves repeated division with the number of levels. One obtains the digits via

the remainders, as shown in Table 2.7.

It can be seen that the mapping from any number system of defined levels to the

decimal system is a one-to-one mapping and is reversible.
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Table 2.7: Example of converting decimal to the S number system via method 1

80 168

10 rem 8 2

5 rem 8 0

1 rem 3 1

rem 0 3

Table 2.8: Example of converting decimal to the S number system via method 2

5 168

2 33 rem 3

8 16 rem 1

7 2 rem 0

0 rem 2

2.8.3 Fractional Bit Encoding

Using the concept of positional value number systems where any arbitrary system of

defined levels can be mapped to a decimal number, it is possible to apply the technique

to quantising blocks using a fractional number of bits, within a fixed-rate framework.

Consider a fixed-rate GMM-based block quantiser which operates on vectors of di-

mension n with the total bit budget, btot. After the application of (2.65), bi bits are

assigned to the ith cluster block quantiser, where bi may be fractional. After the appli-

cation of (2.43), the bit allocation is obtained for each component of this cluster block

quantiser, bi = [bi,1, bi,2, bi,3, . . . , bi,n], which are fractions and these are converted to in-

teger quantiser levels, li = [li,1, li,2, li,3, . . . , li,n]. The encoding number system for this

cluster block quantiser is the same as Table 2.5 consisting of a series of positional weights,

wi = [wi,1, wi,2, . . . , wi,n], which are calculated via (2.78). These positional weights remain

fixed since the bit allocation is based on the static GMM and KLT parameters. Each trans-

formed block, y = [y1, y2, . . . , yn], is quantised to produce levels indices, q = [q1, q2, . . . , qn].

These level indices of the block are then encoded into a btot-bit integer, z, via the following

formula:

z = wqT (2.79)

=
n∑

i=1

wiqi (2.80)
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In order to decode this code, z, into the respective levels for the block, the procedure

shown in either Table 2.7 or 2.8 is followed.

It is useful to show that the range of integers that result from this fractional bit

encoding is within that of a btot-bit integer. The maximum level for component i is li − 1,

thus using (2.78) and (2.80), the maximum possible integer is given by:

z =
n∑

j=1


(lj − 1)

j−1∏

i=0

li




=
n∑

j=1


lj

j−1∏

i=0

li −
j−1∏

i=0

li




= ln

n−1∏

i=0

li −
n−1∏

i=0

li + ln−1

n−2∏

i=0

li

−
n−2∏

i=0

li + ln−2

n−3∏

i=0

li − . . . − 1 (2.81)

The second term and third term cancel each other and the fourth cancels with the fifth,

etc. in (2.81). Thus only the first term and last remain.

z = ln

n−1∏

i=0

li − 1 (2.82)

= ln

n−1∏

i=1

li − 1 since l0 = 1 (2.83)

=
n∏

i=1

li − 1 (2.84)

= ltot − 1 (2.85)

= 2btot − 1 (2.86)

Therefore it has been shown that the range of the block code, z, is from 0 to 2btot − 1

which is also that of a btot-bit integer.

2.8.4 Heuristic Algorithms for Compensating Quantiser Levels

Under-allocation

‘Under-allocation’ can occur because of the truncation of the number of levels to make

them integers. The remaining levels can then be assigned heuristically based on ‘Fixed
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Slope’ or Pareto optimality [59] and is similar to Riskin’s algorithm [147]. The idea is to

approximate which component results in the most distortion drop when given an extra

level while at the same time ensuring the product of the levels is equal to or below the

target.

The high resolution performance of a Lloyd-Max scalar quantiser provides a way of

approximating which component would lead to the largest drop in distortion if an extra

level was assigned. The formula can be modified to be in terms of levels by substituting

b = log2 l.

D(b) = λK2−2b (2.87)

D(l) =
λK

l2
(2.88)

The distortion drop that would result when adding an extra level is therefore approximated

by:

∆D = D(l) −D(l + 1) (2.89)

=
λK

l2
− λK

(l + 1)2
(2.90)

= λK

[
2l + 1

l2(l + 1)2

]
(2.91)

Therefore the variables which determine the distortion drop are the variance of the com-

ponent, λ, as well as the number of levels, l, already assigned to that component. It is

apparent that when l is large, the denominator of (2.91) increases faster than the numer-

ator. Or in other words, as the operating rate of the scalar quantiser becomes higher,

the performance improvement resulting from an extra level ‘thins out’. Hence this agrees

with the convex exponential behaviour of scalar quantisers predicted by high resolution

analysis. The high resolution approximation may not be accurate at low rates so (2.91)

serves as a guide only.

Once the estimated distortion drops of each component are determined, then the next

step is to choose the component whereby an increase in levels will result in the total levels

not exceeding the target. This can be done by calculating the change in the total product
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of levels if one component is increased by one.

l
(0)
tot =

n∏

i=1

li (2.92)

If a level is added to component j:

l
(1)
tot = (lj + 1)

n∏

i=1,i6=j

li (2.93)

=
n∏

i=1

li +
n∏

i=1,i6=j

li (2.94)

Hence the increase in the number of levels is:

∆l = l
(1)
tot − l

(0)
tot (2.95)

=
n∏

i=1,i6=j

li (2.96)

If the increase in the total number of levels resulting from giving a level to a certain

component is more than what is required, then the component with the second most

distortion drop is tested and so forth. Once a component has been chosen, its expected

distortion drop is updated.

Over-allocation

‘Over-allocation’ occurs when the target bitrate is low and some of the allocated bits

become negative. These are set to zero which makes the total number of bits exceed the

desired total. The components which, when having a quantiser level taken away, induce

the least distortion increase are chosen. This procedure is repeated until the total product

of the levels falls below the allocated number. Therefore, the over-allocation situation

becomes one of under-allocation and the process outlined in the previous section can be

followed.

In order to approximate the increase in distortion as a result of removing a quantiser

level from a component, a similar derivation to the under-allocation case can be performed:

D(b) = λK2−2b (2.97)

D(l) =
λK

l2
(2.98)
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The distortion increase that would result when subtracting a level is therefore approxi-

mated by:

∆D = D(l − 1) −D(l) (2.99)

=
λK

(l − 1)2
− λK

l2
(2.100)

= λK

[
1 − 2l

l2(l − 1)2

]
(2.101)

2.9 Chapter Summary

This chapter provided a general introduction to block quantisation, which is an example

of a transform coder. The decorrelating properties of the Karhunen-Loève transform

and its role in block quantisation were described. We also reviewed the discrete cosine

transform as a useful alternative transform to the KLT. For sources which have Gauss-

Markov properties, the DCTs decorrelating ability is similar to that of the KLT, hence

the DCT is popularly used in image coding.

We provided a literature review of adaptive transform coding schemes, which resolve

the problems of data non-stationarity by partitioning the vector space into local regions

and designing transforms adapted to the statistics of each region. Additionally, a simple

scheme using K-means clustering and local block quantisers was described and this formed

a useful baseline for evaluating the recent schemes that utilise Gaussian mixture models

for estimating the PDF. Following this, we gave a detailed summary of the GMM-based

block quantisation scheme of [183].

In Section 2.6, we presented our modification to the GMM-based block quantiser,

that replaces the KLT with a DCT. Due to the data independence property and fixed

orthogonal bases of the DCT, the complexity of the new GMM-DCT-based block quantiser

is considerably lowered. This modified scheme is expected to be competitive with the KLT-

based GMM-based block quantiser for image coding, since images tend to have Gauss-

Markov statistics and are highly correlated. In Section 2.7.3, we described our multi-

frame GMM-based block quantiser, that exploits interframe correlation using the KLT.

Successive frames are concatenated to produce larger frames.

In Section 2.8, a new bit encoding technique was introduced that allows the use and
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encoding of fractional bits in a fixed-rate block quantiser. This scheme uses the concept of

a generalised positional number system and is simple in implementation. To complement

this fractional bit technique, we also described some heuristic algorithms for dealing with

bit allocation issues.



Chapter 3

Efficient Vector Quantisation

3.1 Abstract

In this chapter, we firstly review the vector quantiser and discuss its ‘advantages’ over

the scalar quantiser. Specifically, these advantages are the space-filling advantage, the

shape advantage, and the memory advantage. It is important to understand why vector

quantisers always perform better than any other quantisation scheme over a given vector

dimension, because this will provide the basis for our investigation on improving structured

and constrained vector quantiser schemes which, despite having much lower computational

and memory requirements, have suboptimal quantisation performance.

The main focus of this chapter is on improving the efficiency of the split vector quan-

tiser (SVQ), in terms of computational complexity and rate-distortion performance. In

split vector quantisers, vectors are partitioned into subvectors of lower dimensionality and

these are quantised by individual vector quantisers. Though it has lower computational

and memory requirements than those of the exhaustive-search vector quantiser, the vector

splitting process adds numerous constraints to the codebook, which leads to suboptimal

quantisation performance. Specifically, the reduced dimensionality affects all three vector

quantiser advantages. Therefore, we introduce a new type of hybrid vector quantiser,

called the switched split vector quantiser (SSVQ). We show that by using a switch vec-

tor quantiser stage, which is a full dimension, unconstrained vector quantiser, the SSVQ

addresses the memory and shape suboptimality of SVQ, leading to better quantiser per-

formance. In addition to this, the SSVQ has lower computational complexity than the

73



74 Chapter 3 Efficient Vector Quantisation

SVQ, though these improvements come at the expense of higher memory requirements for

storing the codebooks.

Publications resulting from this research: [166, 169, 170, 171, 172, 173]

3.2 Introduction

Vector quantisation (VQ) can be viewed as a generalisation of scalar quantisation where,

instead of mapping scalar values to a finite set of reproduction scalars, it maps vectors to

a finite set of reproduction code-vectors. The basic definition of a vector quantiser Q of

dimension n and size K is a mapping of a vector from n dimensional Euclidean space, Rn,

to a finite set, C, containing K reproduction code-vectors [55]:

Q : Rn → C (3.1)

where C = {yi; i ∈ I} and yi ∈ Rn [55]. Associated with each reproduction code-vector is

a partition of Rn, called a region or cell, S = {Si; i ∈ I} [59]. The most popular form of

vector quantiser is the Voronoi or nearest neighbour vector quantiser [55], where for each

input source vector, x, a search is done through the entire codebook to find the nearest

code-vector, yi, which has the minimum distance [152]:

yi = Q[x] if d(x,yi) < d(x,yj) for all i 6= j (3.2)

where d(x,y) is a distance measure between the vectors, x and y. The regions in a

nearest neighbour vector quantiser are also called Dirichlet or Voronoi regions [103] and

these are shown in Figure 3.1, where the mean squared error (MSE) is used as the distance

measure. Depending on the coding application, other more meaningful distance measures

may be used such as the Mahalanobis distance [105], Itakura-Saito distance [76], or other

perceptually-weighted distance measures [108].

If the dimension of the vectors is n and a codebook of K code-vectors is used, each

vector will be represented as a binary code of length dlog2Ke bits. Hence the bitrate of

the vector quantiser is given by 1
n dlog2Ke bits/sample [152].
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Figure 3.1: Voronoi regions of a nearest neighbour (MSE) vector quantiser, showing the
input vectors (dots), code-vectors (circles), and hyperplanes defining each Voronoi region
(lines)

3.3 Vector Quantiser Design Using the Linde-Buzo-Gray

Algorithm

The Lloyd conditions for optimality form the basis of the methods of Lloyd [101] and Max

[111] for designing minimum distortion non-uniform scalar quantisers. These conditions

are stated as follows [101]:

1. The best reproduction value within a partition is the centroid; and

2. the best partition is formed by values which are closest to the centroid (nearest

neighbour condition)1.

Using these conditions, it is possible to design optimum non-uniform scalar quantisers for

any arbitrary density in an iterative fashion by continually finding new centroids (condition

1), adjusting the cell boundaries (condition 2), re-calculating centroids (condition 1), ad

infinitum. The distortion is guaranteed to decrease or remain the same after each iteration,

giving a local optimal solution. Lloyd [101] and Max [111] derived tables of quantiser levels

1For the scalar case, the boundaries of each partition are mid-way between the reproduction values.
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Figure 3.2: Successive code-vectors and Voronoi regions during the design of a 4 bit
vector quantiser using the LBG algorithm: (a) After first split and refinement; (b) after
second split and refinement; (c) after third split and refinement; (d) after final split and
refinement.

for the Gaussian density while Paez and Glisson [120] provided quantiser tables for other

densities such as gamma and Laplacian.

The Linde-Buzo-Gray (LBG) algorithm, also known as the generalised Lloyd algorithm

(GLA), is an extension of the iterative Lloyd method I [101], for use in vector quantiser

design. Because the LBG algorithm is not a variational technique2, it can be used for

cases where: the probability distribution of the data is not known a priori ; we are only

given a large set of training vectors; and the source is assumed to be ergodic [100]. The

LBG algorithm involves refining an initial set of reproduction code-vectors using the Lloyd

conditions, based on the given training vectors. The iterative procedure is stopped after

the change in distortion becomes negligible.

Linde et al. [100] also introduced a ‘splitting’ technique for initialising the LBG al-

gorithm, rather than assume an arbitrary set of reproduction code-vectors. In the LBG

splitting technique, the centroid, y
(1)
1 , of the entire training set, is split into two code-

vectors, via a perturbation procedure, y
(1)
1 + ε and y

(1)
1 − ε. Then the training set is

classified to these two code-vectors, based on the nearest neighbour criterion, and the cen-

2That is, it does not require the evaluation of derivatives, as opposed to Lloyd method II [100].
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troids of these two clusters are refined using the Lloyd conditions to give the code-vectors

for a 1 bit vector quantiser, y
(2)
1 and y

(2)
2 . These code-vectors are split and the process

continues until we reach the desired number of code-vectors, {y (k)
i }K

i=1, at the kth step.

Figure 3.2 shows the code-vectors and Voronoi regions after each successive step of the

LBG algorithm.

3.4 Advantages of Vector Quantisation

Shannon [156] showed that quantising a vector of data points is more efficient than quan-

tising individual scalar values, in the rate-distortion sense. When the dimension of the

vectors is arbitrarily large, the operational rate-distortion function of the vector quan-

tiser can approach the Shannon limit [59]. Therefore, for a given bitrate and dimension,

the vector quantiser will, theoretically, incur the least distortion of any quantiser. The

question to ask is why, and by how much, does a vector quantiser gain over the scalar

quantiser?

Makhoul [108] noted four properties of vectors that should be exploited by quantisers in

order for them to “result in optimal performance”. These are namely: linear dependency,

non-linear dependency, probability density function shape, and dimensionality. Each of

these properties are described briefly below.

3.4.1 Linear and Non-Linear Dependency

Linear dependency refers to the correlation between vector components. As seen in the

previous chapter on block quantisation, correlation between components constitutes re-

dundancy. A quantiser that can exploit linear dependencies or correlation between vector

components will result in better quantiser performance. With the exception of vectors

originating from a Gaussian source, non-linear dependency between vector components

remains, even after decorrelation [108]. Block quantisers and transform coders, which

utilise the KLT to decorrelate the vectors, cannot exploit non-linear dependencies, hence

they are suboptimal. An optimum quantiser should be able to exploit both linear and

non-linear dependencies between vector components.
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3.4.2 Dimensionality

In higher dimensions, cell shapes3 become an important factor in determining quantiser

performance. Working in higher dimensions allows an optimal quantiser to have the flex-

ibility of using different cell shapes. For example, scalar quantising each component of a

two dimensional vector with a uniformly distributed PDF results in square cells only, with

the reproduction code-vector appearing in the centroid [108]. If we are considering MSE

as the distortion measure, then the MSE incurred when representing all random vectors

within a square cell by its centroid, is given by [108]:

Es =
∆4

6
(3.3)

where ∆ is the length of each side of the square cell. If we consider hexagonal-shaped

quantiser cells, which are possible only for quantisers that operate at and are ‘aware’ of

two (or, higher) dimensions, then the MSE incurred when representing vectors within the

cell by its centroid, is given by [108]:

Eh =
5
√

3

8
δ4 (3.4)

where δ is the length of each side of the hexagonal cell. Assuming that the cell sizes are

equal4 and neglecting edge effects, comparing the MSEs of the two cell shapes [108]:

Eh

Es
=

5
√

3

9

= 0.962 (3.5)

Therefore, we can see that using hexagonal cells results in approximately 0.17 dB less MSE

than when using the square cells of scalar quantisation, for the same number of bits. If the

distortions of both shapes are made equal, then it can be shown that the hexagonal cells

are about 1.94% larger than square cells, hence they can cover the same area and incur

the same quantiser distortion with lesser cells, which corresponds to a saving of 0.028 bits

[108].

3In higher dimensional space, regions bounded by numerous hyperplanes are termed as polytopes [108].
However, for the sake of simplicity, we will refer to them as cells.

4Which means that they have equal areas, hence the number of square cells to cover a certain area is
the same as that of hexagonal cells. Since we have the same number of cells, then they require the same
number of bits.
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In summary, going to higher dimensions allows more freedom in choosing cell shapes

that either minimise distortion for the same number of bits, or use less bits to achieve the

same amount of distortion.

3.4.3 Probability Density Function Shape

The distortion of a quantiser is also highly dependent on how well it matches the proba-

bility density function of the data. Therefore, an optimal quantiser places more quantiser

reproduction values in regions of high probability and less in regions of low probability.

Cell size, rather than shape, is important in this regard, as smaller cell sizes allow a closer

packing of reproduction vectors (or, cell centroids).

Lookabaugh and Gray [103] described three ‘advantages’ of the vector quantiser over

the scalar quantiser and showed that they addressed Makhoul’s properties of vectors [108].

They quantitatively defined the vector quantiser advantage, ∆(n, r), where n is the dimen-

sionality and r is the power of the distortion measure5, as the “ratio of the distortion of

repeated scalar quantisation to that due to vector quantisation”. Assuming a stationary

source, the vector quantiser advantage can be decomposed into three parts:

∆(n, r) = F (n, r)S(n, r)M(n, r) (3.6)

where each of the terms on the right denote the space-filling advantage, the shape advan-

tage, and the memory advantage, respectively [103]. These will be described in the next

subsections.

3.4.4 Space-Filling Advantage

According to [103], the space-filling advantage is the ratio of the coefficient of quantisation

of scalar quantisation, C(1, r), to that of n-dimensional vector quantisation, C(n, r). That

is:

F (n, r) =
C(1, r)

C(n, r)
(3.7)

5r = 2 is mean squared error [103]
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Since Gersho [53] conjectured the coefficient of quantisation to be dependent on the

inverse of the polytope or cell volume. This means that a quantiser whose cells can fill

more space will have a smaller coefficient of quantisation. For a two-dimensional (n = 2)

vector quantiser using MSE (r = 2) as the distortion measure, the optimal cell shape is

the hexagon [55, 103]. As we have observed with regards to the dimensionality property of

vectors, hexagonal cells occupy more area than square cells (scalar quantisation). Hence

C(2, 2) < C(1, 2) which means F (2, 2) > 1.

Therefore, due to the space-filling advantage, which utilises Makhoul’s dimensionality

property [108], vector quantisers will always do better than scalar quantisers, regardless

of the source PDF, in the high resolution sense.

3.4.5 Shape Advantage

According to [103], the shape advantage, S(n, r), is dependent on the shape of the marginal

PDF. Values of S(n, 2), calculated for standard densities (Gaussian, Laplacian, Gamma),

show that the vector quantiser is expected to perform at least 1.14 dB (for a Gaussian

density and n = 2) better than the scalar quantiser, due to the shape advantage alone

[103]. In this case, the vector quantiser is able to exploit the PDF shape property described

by Makhoul [108].

3.4.6 Memory Advantage

According to [103], the memory advantage, M(n, r) is the ratio of the n/(n+ r)th “norms

of the vector’s probability density and the product of its marginals”. Therefore, the mem-

ory advantage is dependent on how much statistical dependency exists between vector

components, and is therefore related to Makhoul’s linear and non-linear dependence prop-

erty of vectors [108]. For independent and identically distributed (iid) vectors, the source

PDF is equivalent to the product of the marginal PDFs, thus the memory advantage for

iid vector sources is equal to 1 [103]. In other words, the vector quantiser has no memory

advantage when quantising vectors whose components are statistically independent.

An interesting result that can be drawn from these vector quantiser advantages, is

that when quantising vectors that are statistically independent, though there will be no
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Figure 3.3: Vector quantisation using 3 bits/sample (SNR=17.21 dB) of random Gaussian
vectors with covariance matrix given by (2.33)

memory advantage, the vector quantiser will manage to outperform the scalar quantiser

because of the space-filling and shape advantages [103]. Figure 3.3 shows a 3 bits/sample

vector quantiser applied on random Gaussian vectors with a covariance matrix give by

(2.33). Because the source is Gaussian, the KLT will produce independent components,

or in other words, remove all dependencies (linear and non-linear). This fact allows us

to compare the block quantiser with the vector quantiser having no memory advantage

and relying solely on the space-filling and shape advantages. Based on the high resolution

results of [103], the expected vector quantiser advantage, ∆(2, 2) = F (2, 2)S(2, 2), is 1.31

dB. The SNR of the 3 bits/sample block quantiser was 16.70 dB while the SNR of the

vector quantiser is 17.21 dB, giving an advantage of roughly 0.5 dB. Therefore, even

on independent vectors, the vector quantiser will always perform better than the scalar

quantiser. The discrepancy between high resolution theory and experiment is mostly due

to the low bitrate. Comparing the locations of reproduction code-vectors in Figures 2.6

and 3.3, it can be said that the code-vectors of the scalar quantiser are constrained to lie

in a rectangular grid, unlike those of the vector quantiser, which are not constrained but

are free to appear anywhere, forming arbitrary cell shapes.
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3.5 Practical Limitations of Unconstrained Vector Quanti-

sation

Though the unconstrained vector quantiser is the optimal quantiser for achieving the low-

est distortion at a given bitrate and dimension, its exponentially-growing computational

complexity and memory requirements often render it impractical for applications where a

high bitrate is required. A b bit, n dimensional vector quantiser will possess a codebook

of 2b code-vectors. In terms of the memory requirements and computational complex-

ity, this vector quantiser needs to store n2b floating point values and compute 3n2b − 1

kflops/vector6, respectively, when using the mean squared error as the distance measure.

For image coding applications, blocks of 8×8 = 64 are typically quantised by transform

coders such as JPEG [196], and this is considered the optimum block size [198, 116].

Quantising each block using a full search, unconstrained vector quantiser at a bitrate of

0.25 bits/pixel, requires 262 kflops/pixel of computations and 4.2 million floats of memory

for storing the codebook. In narrowband speech coding, linear predictive coding (LPC)

parameter vectors of dimension 10 need to be quantised at 20 bits/vector using a full

search, unconstrained vector quantiser, to achieve transparent quality. This corresponds

to a computational complexity of about 42 Mflops/vector and a memory requirement of

10.5 million floating point values.

Another problem related to vector quantiser design is that at high bitrates and dimen-

sionality, where the codebook is large, the LBG algorithm will require a larger amount

of training vectors in order to design a codebook that is representative of the source.

Otherwise, there will be too much ‘over-fitting’ of the training set [66].

3.6 Product Code Vector Quantisers

3.6.1 Introduction

In order to make vector quantisers practical for large dimension and high bitrates, a

structure can be imposed on the codebook to decrease the search complexity and/or

storage requirements. One way of achieving this is to use decompose the codebook into

6In our calculations, each addition, multiplication, and comparison is considered a floating point oper-
ation (flop).
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a Cartesian product of smaller codebooks [59, 55]. The idea of using product codes was

first introduced by Sabin and Gray [149] with their shape-gain vector quantiser, in which

vectors are quantised using both a shape codebook and gain codebook. Indices for each

codebook are then transmitted to the decoder, which reconstructs the vector using its

stored shape and gain codebook.

The definition of a product code vector quantiser is one with a codebook, C = {y i}K
i=1,

that consists of m codebooks, {Ci}m
i=1, where Ci = {ui,j}Ki

j=1, such that [55]:

C = C1 × C2 × . . .×Cm (3.8)

where × symbolises the Cartesian product. The code-vectors, u, in each of the smaller

codebooks, combine in a permutative fashion to form the product code-vectors, y. There-

fore, the effective size of the product codebook is [55]:

K =
m∏

i=1

Ki (3.9)

However, the actual size of the product codebook, which consists of the sum of the in-

dividual codebook sizes, is generally smaller than that of the effective product codebook

[55]:

K ≥
m∑

i=1

Ki (3.10)

The advantages are that with smaller codebooks, code-vector searches are reduced

and in most cases, the memory requirements are reduced as well. These come at the

cost of suboptimal coding performance as the product code vector quantiser codebook has

structural constraints [55]. Also, the lowest complexity product code vector quantisers

typically use sequential or independent searching and design and this leads to suboptimal

product code-vectors being chosen or generated [55]. Also the issue of bit allocation among

the various codebooks arises [59], which can often complicate design and lead to further

suboptimality.



84 Chapter 3 Efficient Vector Quantisation

x 1 x 2 x 3 x n

Quantiser 1

Vector Vector

Quantiser 2

input vectors

subvectors

Figure 3.4: Block diagram of a two part split vector quantiser (after [87])

3.6.2 Split Vector Quantisers

An m part, n dimensional split vector quantiser (SVQ)7 [123] operating at b bits/vector,

divides the vector space, Rn, into m lower dimensional subspaces, {Rni

i }m
i=1, where n =

∑m
i=1 ni. Independent codebooks, {Ci}m

i=1, operating at {bi}m
i=1 bits/vector, where b =

∑m
i=1 bi, are then designed for each subspace.

Figure 3.4 shows the block diagram of a two part split vector quantiser. In order to

quantise a vector of dimension n, the vector is split into subvectors of smaller dimension.

Each of these subvectors are then encoded using their respective codebooks. The memory

and computational requirements of the SVQ codebook are smaller than that of an un-

structured VQ codebook. In terms of the number of floating point values for representing

the SVQ codebooks as opposed to that of unstructured VQ:

m∑

i=1

ni2
bi ≤ n2b (3.11)

while the effective number of code-vectors of the resulting product codebook is the same

as that of unstructured VQ at the same bitrate:

m∏

i=1

2bi = 2b (3.12)

Therefore, the computational complexity and memory requirements of SVQ can be reduced

7Split vector quantisation is also known to as partitioned vector quantisation [55]
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considerably, by splitting vectors into more parts. In fact, the transform coder can be

considered a special case of SVQ (when m = n) operating on transform coefficients [59].

However, reductions in complexity and storage come at the cost of suboptimal coding

performance. More specifically, since SVQ is quantising vectors of smaller dimension, this

reduces the vector quantiser’s ability to exploit the dimensionality property of vectors

[108], or alternatively speaking, it reduces the space-filling advantage [103]. Due to the

structural constraints of the vector splitting, the lower dimensionality also reduces the

shape advantage [103]. In addition to this, the independent quantisation of the subvec-

tors means that linear and non-linear dependencies between the components cannot be

exploited, and this reduces the memory advantage. Therefore, splitting vectors into more

parts decreases the coding efficiency of the vector quantisers. The transform coder makes

up for this loss of coding performance through decorrelation but it cannot make up for

the losses due to non-linear dependencies as well as inefficient quantiser cell shapes.

Because there are independent vector quantisers, the bits need to be allocated to each

of them. Generally, assigning each subvector quantiser an equal number of bits, whenever

possible, results in a good compromise between quantisation performance and complexity

[123]. The split vector quantiser was first introduced by Paliwal and Atal [122, 123] for

quantisation of line spectral frequencies (LSF) in narrowband CELP speech coders and is

used in the Adaptive Multi-Rate Narrowband (AMR-NB) codec [2]. SVQ is also used for

quantising Mel-frequency cepstral coefficients (MFCCs) in the ETSI Distributed Speech

Recognition (DSR) standard [47]. These will be discussed in later chapters.

3.6.3 Multistage Vector Quantisers

Figure 3.5 shows the block diagram of another type of product code vector quantiser8, first

introduced by Juang and Gray [80], called the multistage vector quantiser (MSVQ). It is

also referred to as a multistep, residual or cascaded vector quantiser [59]. Each vector, x,

is quantised by a coarse vector quantiser to produce an approximate vector, x̂1 = Q[x].

The quantisation error or residual, e1 = x − x̂1, is calculated and this is quantised by

another vector quantiser, giving a quantised version of the residual vector, ê1 = Q[e1].

This process of determining the residual vector, quantising it, etc. can be continued,

8The codebook of the multistage vector quantiser is formed by the direct sum of codebooks from each
stage. However, it can also be viewed as a product code vector quantiser, in the sense that the final
codebook is formed from a Cartesian product of the individual codebooks [59].
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Figure 3.5: Block diagram of a three-stage multistage vector quantiser (Ii denotes the ith
quantiser index)

depending on how many stages are used. The decoder takes the indices, Ii, from each

vector quantiser stage and adds them to get the reconstructed vector, x̂:

x̂ = x̂1 +
m−1∑

i=1

êi (3.13)

where m is the number of stages.

Because each stage is an independent vector quantiser, bits need to be allocated to

each of them. With each vector quantiser operating at a lower bitrate, the memory

and computational requirements are reduced. Comparing the total size (in number of

floating point values) of the codebooks of an m stage, n dimensional MSVQ operating at b

bits/vector, with that of an equivalent unconstrained vector quantiser of the same bitrate

and dimensionality:
m∑

i=1

n2bi ≤ n2b (3.14)

where bi is the number of bits given to the ith stage vector quantiser and b =
∑m

i=1 bi.

We can see that search and memory requirements of the MSVQ, while lower than those of

the unconstrained vector quantiser, are not as low as those of the split vector quantiser,

where the dimensionality of the codebooks is reduced, in addition to the bitrate.

The MSVQ is generally suboptimal because of the constrained structure of the code-
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multistage vector quantiser (where M = 4). Each of the 4 paths is labelled.

books as well as the sequential nature of the design and code-vector searches [59, 93, 90].

The greedy-based, sequential design of MSVQs, where each stage is designed independently

using the LBG algorithm to minimise the distortion of the error from the previous stage,

is suboptimal, in general [59]. The sequential design algorithm at each stage assumes that

“subsequent stages are populated with zero vectors only” [93]. Also, the greedy-based

sequential searching, where a codevector is independently selected, such that it minimises

the distortion at each stage, does not generally give optimal product code-vectors9 [59, 90],

since at each stage, it is assumed that “the vectors from all subsequent stages are zero”

[93].

The M-L searched multistage vector quantiser, also known as the tree-searched multi-

stage vector quantiser, was introduced by LeBlanc et al. [93] which used a more optimal

searching algorithm than the traditional sequential search. At the first stage of the MSVQ,

M code-vectors are selected such that they give the least distortion. M residual vectors

are calculated and a search of the second stage codebook is performed for each of the M

residual vectors. This causes M paths to be created in the MSVQ. At the final stage, the

path which gives the lowest overall distortion is chosen [93]. The M-L search codebook

search procedure is shown in Figure 3.6 where M = 4. It was shown that the performance

of the M-L searched MSVQ approached that of the full-search vector quantiser for small

values of M [93].

9In contrast, sequential code-vector searches in the split vector quantiser are optimal (given the code-
book), in the mean squared sense. SVQ loses its performance in the splitting of vectors, which reduces
dimensionality and adds constraints to the subvector codebooks [93].
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Figure 3.7: A 3 bit tree structured vector quantiser

LeBlanc et al. [93] also proposed several codebook design algorithms which attempt

to minimise overall distortion of the reproduction algorithms. Sequential optimisation

trains the codebook for each stage sequentially, fixing previous stage codebooks, in order

to minimise overall distortion [93]. Iterative sequential optimisation initialises with the

traditional sequential design. Then for each stage, the codebook is re-trained while keeping

all other stages fixed, in order to minimise overall distortion [93].

3.7 Tree Structured and Classified Vector Quantisers

The tree structured vector quantiser (TSVQ) [26], as shown in Figure 3.7, enforces a tree

structure on the vector quantiser codebook [55]. By doing so, the number of code-vector

searches is considerably reduced. The greedy method of designing a TSVQ is to recursively

run the LBG algorithm on training vectors that are classified to each branch [59].

To quantise a vector, x, it is firstly compared with the code-vector in each branch

node. The branch node code-vector which is closest to x determines the path through

the tree until we reach the code-vector at the leaf node, which completes the search. For

a b bit TSVQ, only 2b distortion calculations are required, as opposed to 2b searches

in an unconstrained, exhaustive search vector quantiser. Therefore, the computational
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complexity of TSVQ is very low [59]. However, the memory requirements of the TSVQ

codebook are higher than the unconstrained vector quantiser. For an n-dimensional, b bit

TSVQ, the total memory requirement (in floats) is:

memoryTSV Q = n
b∑

i=1

2i (3.15)

Hence for our 3 bit TSVQ example, we need to store 14 code-vectors of dimension n.

The performance of TSVQ is generally suboptimal due to the sequential searching

algorithm and the structural constraint on the codebook. The path that is chosen through

minimising the distortion at each stage, does not necessarily terminate at the optimum

code-vector [55]. Also, the greedy method of designing the TSVQ does not necessarily

produce an optimal TSVQ codebook either [59].

Related to the TSVQ are the classified vector quantiser (CVQ), introduced by Rama-

murthi and Gersho [141] and the switched vector quantiser, used by Wang and Gersho [197].

Instead of having the binary branch structure, CVQ and switched VQ use m branches,

each leading to a codebook representing a certain class. A classifier is used on vectors to

be quantised, in order to determine the best codebook.

3.8 Switched Split Vector Quantisation

3.8.1 Hybrid Vector Quantisation Schemes

In the literature, hybrid vector quantisers have been investigated, where two or more of

the VQ schemes are combined. Examples include the two stage vector quantisation-lattice

vector quantiser (VQ-LVQ) by Pan and Fischer [132] and tree structured two stage vector

quantisation-pyramidal lattice vector quantiser (TSVQ-PLVQ) by Pan [133]. A hybrid of

split and classified vector quantisation was investigated by Zhou and Shoham [205]. The

computational cost is reduced by replacing the full search vector quantisers with classified

vector quantisers while the quantisation performance remained about the same as that of

the full search-based SVQ [205].

In this section, we investigate the use of a hybrid of switch vector quantisation and

split vector quantisation, called the switched split vector quantiser (SSVQ). It is different
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than the hybrid scheme considered by Zhou and Shoham [205], where they split vectors

to be quantised by CVQs. In our scheme, vectors are classified using an exhaustive search

switch vector quantiser and are then quantised by individual split vector quantisers. The

advantage of classifying before splitting is that global dependencies between vector com-

ponents are exploited in the first stage. Also, the suboptimality of splitting is then limited

to local regions rather than the entire vector space. Hence, it will be shown that the SSVQ

provides a better trade-off than traditional split vector quantisers in terms of bitrate and

distortion performance, and offers a lower computational complexity, though at the cost

of an increase in memory requirements.

3.8.2 Suboptimality of Split Vector Quantisers

As we have discussed in Section 3.6.2, the coding performance of split vector quantisation

is suboptimal because vector quantisers are designed independently within each lower

dimensional subspace. This condition causes linear and non-linear dependencies that exist

across these subspaces to not be exploited [55]. In addition to this, the vector splitting

constrains the shape of the quantiser cells as well as the ability of the code-vectors to match

the marginal PDF shape. In essence, all three vector quantiser advantages described by

Lookabaugh and Gray [103] are affected by the vector splitting. In order to illustrate the

shortcomings of SVQ and how it may be improved, we consider the simple case of designing

a two-part SVQ for two dimensional vectors and examine each type of suboptimality.

Loss of the Memory Advantage

It is readily apparent that when the number of parts, m, is equal to the vector dimension, n,

SVQ becomes equivalent to scalar quantising each vector component independently [123].

Similar to that from [55], Figure 3.8(a) shows the probability density function of vector

data with two correlated components, x and y. For a 4 bit SVQ (2 bits per partition), each

vector, [x, y], is partitioned and a codebook is designed for each partition based on the

marginal PDFs shown in Figs. 3.8(b) and (c). The resulting SVQ has an effective codebook

of 16 code-vectors, as shown in Figure 3.8(d), while coding requires only 22 + 22 = 8

searches. It can be observed that the resulting SVQ is suboptimal, as there are 8 product

code-vectors which do not fall in areas of finite probability. In other words, the vector
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Figure 3.8: Illustrating the memory suboptimality of a 4 bit two-part split vector quantiser
in two dimensions (after [55]) (a) Two dimensional PDF (shaded areas indicate uniform
probability, white areas indicate zero probability); (b) Marginal PDF of component y; (c)
Marginal PDF of component x; (d) Product codebook of 4 bit split vector quantiser

partitioning in SVQ does not allow for the exploitation of dependencies between subvectors,

x and y. One would expect an improvement in the quantisation performance if subvectors

are first ‘decorrelated’ before independent quantisers are designed. This is analogous to

block quantisation or transform coding [72], where a Karhunen-Loève Transform (KLT)

is used to decorrelate individual vector components before they are independently coded

using non-uniform scalar quantisers.

Loss of the Space Filling Advantage

Figure 3.9 shows the product code-vectors of the two-part SVQ operating on two dimen-

sional Gaussian random vectors that are statistically independent. The covariance matrix

of this random source is:

Σ =




6 0

0 1


 (3.16)

For each vector quantiser, the best polytope in one dimension is the interval [103]. This

results in the product code-vectors lying on a rectangular grid, hence the Voronoi regions

are rectangular. However, in two dimensions, the optimum cell shape in two dimensions
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Figure 3.9: Illustrating the space-filling and shape suboptimality of an 8 bit two-part split
vector quantiser in two dimensions

is the hexagon [53]. Therefore, we can see that the lower dimensionality has constrained

the quantiser cell shape in a way that reduces the space-filling advantage of vector quan-

tisation. For our example of two dimensional vectors, the reduced dimensionality results

in a theoretical loss of 0.17 dB, according to the results of [103].

Loss of the Shape Advantage

Each of the subvector quantisers has no problem with matching the marginal PDF shape

of each dimension as they are equivalent to the Lloyd-Max non-uniform scalar quantiser,

which are optimal (at least, locally) for one dimension. However, Figure 3.9 also shows

that the product code-vectors of the two-part SVQ do not match the elliptical shape of the

marginal PDF in two dimensions. Therefore, the reduced dimensionality has constrained

the shape advantage, which in the case of our example, results in a theoretical loss of 1.14

dB for a Gaussian source, according to the results of [103].

3.8.3 Switched Split Vector Quantisers

As have seen in the previous section, using the two dimensional vector space analogy, we

have shown how the split vector quantiser effectively becomes equivalent to the scalar
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quantising of the vector components when the number of parts is equal to the vector

dimension. In block quantisation, applying a decorrelating linear transformation on the

vectors can improve the coding efficiency of the independent scalar quantisers. Likewise in

the SVQ case, we need to find a way of exploiting dependencies (linear and non-linear) be-

tween the subvectors before quantising them independently using vector quantisers. This

leads to our new product code vector quantiser called the switched split vector quantiser.

Unconstrained vector quantisers are well known to have the ability of exploiting linear

(ie. correlation) and non-linear dependence among vector components [55]. Therefore, in

SSVQ, an initial unconstrained vector quantiser (the switch vector quantiser) is used to

classify10 the vector space into Voronoi regions or clusters, which allows the exploitation

of linear and non-linear dependencies across all dimensions. Then for each cluster, a local

split vector quantiser is designed. The novelty of SSVQ is to populate the vector space

with a number of different split vector quantisers such that they are positioned to exploit

global dependencies. Each split vector quantiser is adapted to the local statistics of the

Voronoi region and the suboptimalities of SVQ are localised.

Figure 3.10 shows a schematic of SSVQ codebook training. The LBG algorithm [100] is

first applied on all vectors to produce m centroids (or means), {µi}m
i=1. In the Euclidean

distortion sense, these centroids are the best representation of all the vectors in that

10As opposed to other classified vector quantisation schemes, we use unsupervised classification in order
to exploit vector component dependencies.
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region. Hence, we can use them to form the switch vector quantiser codebook which will

be used for switch-direction selection. All the training vectors are classified based on the

nearest-neighbour criterion:

j = argmin
i

d(x − µi) (3.17)

where x is the vector under consideration, d(x − µi) is a suitable distortion measure

between two vectors, and j is the cluster (or, switching direction) to which the vector is

classified. With the training vectors classified to the m clusters, local SVQ codebooks

are designed for each cluster (or, switching direction) using the corresponding training

vectors.

Figure 3.11 shows a block diagram of SSVQ coding. Each vector to be quantised is

first switched to one of the m possible directions based on the nearest-neighbour criterion

defined by (3.17), using the switch VQ codebook, {µi}m
i=1, and then quantised using the

corresponding SVQ.

The SSVQ decoder needs to know which SVQ was chosen to quantise each vector. This

can be done by transmitting the switching direction number as explicit side information.

However, a more efficient way is to implicitly code this information by partitioning the

quantiser index range, similar to the one in GMM-based block quantisers [183]. Assuming
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Figure 3.12: Quantiser index partitioning for 3 bit SSVQ with two-way switch

an SSVQ operating at b bits per vector and m-direction switch, we require log2m bits to

uniquely identify all possible switching directions. Therefore, each split vector quantiser

would be given a budget of (b − log2m) bits or 2b/m indices. This suggests that the

overall quantiser index range of 2b can be divided into m partitions, each containing the

valid indices which a particular SVQ can assign. The decoder can determine which SVQ

was used for encoding a vector by finding which partition the quantiser index belongs

to. Figure 3.12 shows an example of dividing the quantiser index range for a 3 bit SSVQ

with a two-directional switch. Since one bit is needed to uniquely identify each switching

direction, 2 bits are allocated to each of the SVQs. The binary indices, 000, 001, 010, 011,

are valid for the SVQ of switching direction 1 while 100, 101, 110, 111, are valid indices for

the SVQ of switching direction 2. Note that if the same number of levels were assigned

to each partition, this scheme would be equivalent to explicitly sending bits that identify

the switch number.

In a minimum-distortion sense, it would be logical to quantise each vector using all the

split vector quantisers and then pick the one which results in the least distortion. This

is an approach taken in multiple transform domain split vector quantisation [114] and

similarly, in Gaussian mixture model-based block quantisation [183]. The disadvantage

with this ‘soft’ decision scheme is the high computational complexity which results from

each vector being quantised multiple times. SSVQ reduces the complexity by employing

a switch, which makes a ‘hard’ decision based on nearest neighbour classification in order

to determine the SVQ that would most likely quantise with the least distortion. As such,

there will be a distortion penalty incurred by using the ‘hard’ decision, though this is

offset by a considerable reduction in computational complexity.

One modification that can be made, in order to lower the suboptimality introduced by
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Figure 3.13: Illustrating the memory advantage of the switched split vector quantiser (a)
Two dimensional PDF (shaded areas indicate uniform probability, white areas indicate
zero probability); (b) Product codebook of 4 bit switched split vector quantiser (dashed
line shows boundary between switch cells while numbers indicate switching direction)

the ‘hard’ decision made by the switch vector quantiser, is to adopt a scheme similar to

the M-L search MSVQ. Specifically, instead of choosing one switching direction, we choose

M switching directions, quantising using their respective SVQ codebooks, and pick the

one which incurs the least quantiser distortion. This is a compromise between the ‘hard’

decision (M = 1) and a full-search, ‘soft’ decision (M = m), and quantiser performance is

expected to improve, though at the expense of an increase in computational complexity.

3.8.4 Advantages of the Switched Split Vector Quantiser

The Memory Advantage of SSVQ

Returning to our two dimensional PDF example, as shown in Figure 3.13, the SSVQ

(with two switching directions) quantises the entire vector space with two initial code-

vectors and classifies them into two clusters. Then two-part split vector quantisers are

designed for each cluster. As we can see in Figure 3.13(b), the initial unconstrained vector

quantiser (which we referred above as the switch vector quantiser) has exploited the global

dependencies between the two vector components and two-part split vector quantisers are

positioned to reflect this dependency. In contrast to the product code-vectors of Figure

3.8(d), the SSVQ product code-vectors are better placed. Therefore, the switch vector

quantiser, which is unconstrained, allows the SSVQ to exploit at least some of the global

dependencies that would, otherwise, have not been exploited by SVQ. Therefore, SSVQ

should recover some of the memory advantage lost due to vector splitting.

For a quantitative look at SSVQ, correlated Gaussian random vectors of two dimensions
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with a covariance matrix of:

Σ =




4.5 4.0

4.0 6.0


 (3.18)

were generated and quantised using a two-part SVQ and two-part SSVQ at 8 bits/vector.

The SSVQ uses 16 switching directions and each part was allocated 2 bits. Figure 3.14(a)

and (b) shows the resulting product code-vectors of the SVQ and SSVQ, respectively. It

can be observed in Figure 3.14(a) that the SVQ has not exploited the correlation in the

vectors, characterised by the tilt. This has resulted in a large amount of code-vectors

that fall in areas where there are no vectors. In comparison, Figure 3.14(b) shows the

switch code-vectors (marked as crosses) have captured the major dependency between the

components, x1 and x2. Each of the local SVQs have been placed according to these switch

code-vectors where we can see a better utilisation of the code-vectors. The 8 bits/vector

SSVQ has made a 2.58 dB gain in SNR over the SVQ.

The Shape Advantage of the SSVQ

In order to observe the shape advantage of the SSVQ over SVQ, we have generated some

memoryless Gaussian random vectors with a covariance of (3.16). Because the vectors have

no memory, any gains in SNR are mostly due to the shape advantage. In this example,

where the same vector splitting is used for both SSVQ and SVQ, there will be no space-

filling advantage of SSVQ over SVQ since both split vectors into subvectors of the same

dimensionality, which constrains the quantiser cell shapes to be the same (in this case,

rectangular).

Figures 3.15(a) and (b) show the product code-vectors of an 8 bits/vector split vector

quantiser and 8 bits/vector switched split vector quantiser, respectively. In both cases,

there are a total of 28 = 256 code-vectors. For the SSVQ, 16 switching directions were

used and 2 bits were assigned to each subvector in the local SVQs. When observing Figure

3.15(a), we can see that the lattice of SVQ code-vectors does not match the marginal shape

of the two dimensional PDF, which is elliptical. In comparison, the code-vectors resulting

from SSVQ, as shown in Figure 3.15(b), match the elliptical shape of the marginal PDF

more closely than the rectangular shape of the SVQ. In terms of SNR, we see that the

shape advantage gain of SSVQ over SVQ is approximately 0.5 dB.
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Figure 3.14: Comparing product code-vectors of: (a) 8 bits/vector split vector quantiser
(SNR=20.32 dB); with (b) 8 bits/vector switched split vector quantiser (SNR=22.9 dB).
The correlated Gaussian random vectors are represented as dots, the code-vectors as cir-
cles, and the switch code-vectors of SSVQ as crosses.
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Figure 3.15: Comparing product code-vectors of: (a) 8 bits/vector split vector quantiser
(SNR=21.29 dB); with (b) 8 bits/vector switched split vector quantiser (SNR=21.78 dB).
The memoryless Gaussian random vectors with covariance of (3.16) are represented as
dots, the code-vectors as circles, and the switch code-vectors of SSVQ as crosses.
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3.8.5 Computational Complexity and Memory Requirements

The main advantages of SSVQ are the better trade-off between bitrate and distortion

and low computational complexity. In this section, we examine the latter characteristic

and compare it to that of the split vector quantiser. Computational complexity will be

measured in flops/vector, where each addition, multiplication, and comparison is counted

as one floating point operation (flop). We also assume the use of a weighted mean squared

error distance measure, similar to the one proposed in [123]. This increases the complexity

of the vector quantiser from 3n2b − 1 to 4n2b − 1 flops, where n and b are the vector

dimension and number of bits, respectively.

There are a number of design parameters of the SSVQ and these are stated below:

• dimension of the vectors, n;

• the number of bits allocated to the switch vector quantiser, bm, and number of
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switching directions, m = 2bm ;

• the total number of bits, btot;

• number of parts in vector splitting, s;

• dimension of the subvectors, {ni}s
i=1, where n =

∑s
i=1 ni; and

• bits allocated to each of the subvectors, {bi}s
i=1, where

∑s
i=1 bi = btot − bm.

The computational complexity of the switch vector quantiser is given by:

complexityswitch = 4n2bm − 1 (3.19)

while the complexity of each split vector quantiser is given by:

complexitySV Q =
s∑

i=1

(4ni2
bi − 1) (3.20)

Therefore, the total complexity of the switched split vector quantiser is given by:

complexitySSV Q = 4n2bm − 1 +
s∑

i=1

(4ni2
bi − 1) (3.21)

In order to get an idea of the reduction in computational complexity that SSVQ requires

as opposed to that of the split vector quantiser, Figure 3.16 shows the computational

complexity of a two-part SSVQ as a function of the number of bits, bm, for the switch

vector quantiser. The bitrate is 24 bits/vector and the vectors are of dimension 10. Vectors

are split into (4, 6) or (3, 3, 4) for the two-part and three-part SSVQ, respectively. Bits

are assigned uniformly to the subvectors whenever possible. When bm = 0, the SSVQ

reverts to a single split vector quantiser. We can see that the single SVQ has the highest

computational complexity and as we use more switching directions, the computational

complexity of SSVQ drops. This is because the number of bits available for each SVQ

decreases as bm increases. Also shown in Figure 3.16 is the computational complexity of

a three-part SSVQ where we can see that the further split results in a quantiser of much

lower complexity.

The memory requirements, as a number of floating point values, of the SSVQ is given
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Figure 3.17: Memory requirements (in number of floats) of two-part and three-part 24
bits/vector SSVQ (dimension 10) as a function of number of bits for switch vector quan-
tiser.
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by:

memorySSV Q = n2bm + 2bm

s∑

i=1

ni2
bi (3.22)

Figure 3.17 shows the memory requirements, as a number of floats, of the codebooks for

the same two-part and three-part SSVQ considered above, as a function of the number

of bits for the switch vector quantiser. We can see that for SSVQ, the gains made in

quantiser performance and reductions in computational complexity come at the expense

of an exponential increase in the memory requirements, with the SVQ (bm = 0) having

the lowest memory. This is a disadvantage of the SSVQ scheme and may be minimised by

using more vector splitting. Looking at Figure 3.17, the memory requirements of the three-

part SSVQ are not as high as the two-part SSVQ. Therefore, at this bitrate and vector

dimension, the three-part SSVQ is a more practical scheme, with a moderate memory

requirement.

3.9 Chapter Summary

This chapter provided a general review of vector quantisation, its advantages over the

scalar quantiser, and its limitations, with regards to its exponential growth of complexity as

a function of the number of bits and dimensionality. Product code vector quantisers, such

as the split and multistage vector quantiser, alleviate the complexity issue by dividing the

quantisation process into codebooks of lower dimensionality, or sequential and independent

stages, respectively. These structural constraints though cause suboptimal quantisation

performance. We have also identified and analysed the main source of suboptimality in

the split vector quantiser (SVQ), namely the vector splitting which degrades the memory

advantage, the shape advantage, and the space-filling advantage. In order to address

at least two of these suboptimalities, we have introduced a new type of product code

vector quantiser called the switched split vector quantiser (SSVQ), which consists of a

hybrid of a full-dimension, unconstrained switch vector quantiser and numerous split vector

quantisers. The first stage (ie. switch vector quantiser) allows the SSVQ to exploit global

statistical dependencies as well as match the marginal PDF shape of the data, which would

otherwise have not been exploited by normal SVQ. Also, the tree structured characteristic

of the switch vector quantiser provides a dramatic reduction in search complexity. We

have shown via computer simulations of 2-D vector quantisation how SSVQ is superior
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to SVQ in terms of quantisation performance and computational complexity. The only

disadvantage of SSVQ is the increase in memory requirements.



Chapter 4

Lossy Image Coding

4.1 Abstract

This chapter investigates the application and performance of efficient block quantisation

schemes to the lossy coding of greyscale images. We begin the chapter with some prelim-

inaries of digital images, their representation, as well as their statistical properties. Also,

mean squared error (MSE) and peak signal-to-noise ratio (PSNR) are defined, which are

used to objectively measure the quality of the coded images. Following this, we provide

a general review of image coding techniques that have been extensively investigated in

the literature, focusing mainly on vector quantisation, transform coding, subband coding,

and wavelet-based coding. Due to the complications and difficulties involved in the filter-

ing of finite length signals and achieving perfect reconstruction in subband and wavelet

decompositions, we provide an extensive summary of the non-causal filtering and signal

extension techniques from [106]. Included are examples as well as MATLAB simulations

which demonstrate, step-by-step, the process of non-expansive filtering via symmetric ex-

tension.

Following the literature review, we present results and discussion of our image coding

experiments using various block quantisation schemes. The performance of the traditional

block quantiser, which assumes Gaussian data and uses the Karhunen-Loève transform,

is used as a baseline to highlight the improvements gained from more advanced schemes.

Because images are non-stationary, correlation is not uniform throughout the image vector

space, thus the need for multiple transforms, each of which are adapted to a region of rel-

105
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ative stationarity. We investigate a simple scheme that demonstrates this concept, called

the K-means-based multiple transform block quantiser. In this quantisation scheme, the

image space is partitioned using the K-means algorithm and block quantisers are designed

for each Voronoi region or cluster. While there are tangible improvements in the rate-

distortion performance over the traditional block quantiser, there are certain inadequacies

that affect the efficiency of the KLT. This leads us to GMM-based block quantisation

and we show through PSNR results and visual comparisons of the reconstructed images,

that this scheme performs better, in the rate-distortion sense, than the block quantisation

schemes considered thus far. We also compare a GMM-based block quantiser that uses

fractional bit allocations with one that uses integer bits and show that there is a finite

gain in PSNR. Following this, we examine the performance of the GMM-DCT-based block

quantiser, which is computationally less expensive than the KLT-based scheme. Finally,

a simple method for reducing block artifacts in GMM-based block quantisation is pre-

sented, which uses the discrete wavelet transform (DWT) as a pre-processing step. We

show that at the same bitrate, number of clusters, and vector dimensionality, the prepro-

cessed GMM-based block quantiser achieves higher PSNRs and reduced block artifacts

than the same scheme operating on spatial blocks only.

Publications resulting from this research: [126, 127, 128, 129, 165]

4.2 Introduction

In contrast with digital speech and audio data, image data spans over space rather than

over time. The image signals are usually band-limited analog signals1, which are converted

to digital form through sampling at or above the Nyquist sampling rate [142]. As images

are two-dimensional, discretisation is done in both dimensions. Each discretised point in

an image is known as a picture element, a pixel, or a pel.

For greyscale images, each pixel has a certain scalar quantised value which represents

the luminance. For a b-bit greyscale image, the luminance goes from 0 (black) to 2b − 1

(white). Therefore, for a one bit image, luminance values are either a 0 or 1. Such

binary images are used commonly for facsimiles [20]. Greyscale images used in research

1If they are not band-limited, low-pass anti-aliasing filters are applied before sampling.
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Figure 4.1: A typical 8-bit greyscale image ‘bird’ with mapping between colour and lumi-
nance value

are commonly 8-bit images, where each pixel has a luminance value within the range of

0 to 255 and all values in between are a certain level of grey. An example of an 8-bit

greyscale image is given in Figure 4.1.

The rectangular arrangement of pixels in an image allows them to be represented as a

two dimensional array. This representation allows the image to be specified as a data type

for use in coding algorithms. Individual pixels can be quantised using scalar quantisers or

DPCM, which exploits spatial redundancy from neighbouring pixels. Rows and columns

of an image can be extracted as one dimensional vectors from the array. This allows

direct manipulation by various algorithms such as subband and wavelet coding, where

row and column filtering can be performed separately (assuming the use of separable

filters). Likewise, due to the two dimensional nature of image data, statistical dependencies

exist across both dimensions, which suggests that square or rectangular blocks of pixels

are a suitable atomic data representation for block-based quantisation schemes, such as

transform coding and vector quantisation, to exploit these dependencies [54].

Assuming an isotropic covariance function2 for image data and that correlation is

uniform in both dimensions, then it can be shown that the covariance function at any

pixel, which is indicative of spatial correlation, decreases rapidly beyond the vicinity of 8

neighbouring pixels [20]. Therefore, a popular block size used in block-based image coding

is 8 × 8 pixels, which forms vectors of dimension 64.

2Σ(i, j) = σ2e−α
√

i2+j2 , where σ2 is the variance of the image and i and j is the distance away from
the reference pixel [20].
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4.3 Distortion Measures for Image Coding

For images, the amount of compression is usually expressed as the bitrate which is mea-

sured in bits per pixel (bits/pixel or bpp). In other words, it is the average number of bits

required to represent one pixel.

In lossy image coding, a measure of the distortion or degradation in quality is required3.

A common measure for the loss of information is the mean squared error (MSE), which is

calculated using the following equation:

MSE =
1

mn

m∑

i=1

n∑

j=1

[
I(i, j) − Î(i, j)

]2
(4.1)

where m and n are the dimensions of the image, I(i, j) and Î(i, j) are the pixel values at

location (i, j) in the input and output image, respectively.

The objective quality of the resulting images in comparison with the original is usually

represented by the signal-to-noise ratio (SNR), in decibels:

SNR = 10 log10

∑m
i=1

∑n
j=1 [I(i, j)]2

∑m
i=1

∑n
j=1

[
I(i, j) − Î(i, j)

]2 (4.2)

or in terms of the mean squared error:

SNR = 10 log10

1
mn

∑m
i=1

∑n
j=1 [I(i, j)]2

MSE
(4.3)

The numerator is the average power of the input image while the denominator is the

average power of the error between the two images.

For images, peak signal-to-noise ratio (PSNR) in decibels, is commonly used as well:

PSNR = 10 log10
(2b − 1)2

MSE
(4.4)

where b is the number of bits used to represent a pixel in the input image. The numerator

is the square of the largest possible pixel value in the input image. For an 8-bit greyscale

image, the numerator is equivalent to 2552.

3Whereas for lossless compression, no information is lost during the compress and hence the distortion
is zero
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4.4 Overview of Image Coding Techniques

4.4.1 Vector Quantisation

As we have discussed in the previous chapter, vector quantisers are the best quantisers

for achieving minimum distortion for a given bitrate and vector dimension. In fact, as

the dimensionality increases, the operating rate-distortion performance approaches the

Shannon limit.

Because of the two dimensional nature of image data, statistical dependencies exist

across these dimensions. Therefore, image vectors are normally formed from two dimen-

sional square blocks of size, k × k, and vector quantisers are expected to exploit the

dependencies (the memory advantage) between pixel values within the block.

Figure 4.2 shows the image ‘lena’, that was quantised using a 9 bit full-search vector

quantiser. The bitrate was 0.5625 bits/pixel and each vector is formed from a block of

4× 4 pixels. The codebook, which has 1024 entries, was trained using 18 greyscale images

of the same dimension, of which ‘lena’ was a part of.

Gersho and Ramamurthi [54] were the first to apply this powerful technique to the

problem of image coding. Square blocks of k = 2, 3, 4 were quantised at 6, 7, 8 bits,

respectively [54]. One observation was that the decoded images were of remarkable quality,

given the very low bitrate. However, there were noticeable artifacts in edge areas, referred

to as the ‘staircase effect’, which became more noticeable as k was increased [54]. The

‘staircase effect’ can be seen in Figure 4.2(b). These artifacts are attributed to the lack

of suitable edge blocks in the vector quantiser codebook. This was remedied by using

a classifier, which determined whether an image block contained edges or not, and two

separate codebooks were then designed for each class [54]. In fact, this is equivalent to

supervised classified vector quantisation.

Despite the optimality, unconstrained vector quantisers for image coding are limited

to small dimensions and low bitrates due to their computational complexity and memory

requirements growing exponentially. Furthermore, the training of a high bitrate vector

quantiser requires a very large training set. Mismatch between the trained codebook and

an image to be quantised, which is not part of the training set, also leads to degraded

quality. Therefore, the training set should be large and representative of the images to
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(a) (b)

Figure 4.2: The image ‘lena’ (512×512) coded using a vector quantiser at 0.5625 bits/pixel
and 4×4 blocks: (a) Entire coded image (PSNR=31.29 dB); (b) Close-up of an edge region,
showing the ‘staircase effect’.

be quantised [54]. And finally, compared with scalar quantiser-based schemes, such as

transform coding, DPCM, etc., vector quantisers are not scalable in bitrate. That is, if

the bitrate is changed, then the codebooks need to be re-trained.

To quantise larger image blocks and at higher bitrates, constrained vector quantisation

schemes such as product code vector quantisers are a suitable alternative, with their lower

complexity and storage requirements. Transform coding, which will be discussed in the

next sub-section, can be considered a special case of a product code vector quantiser

operating on transform coefficients.

4.4.2 Transform Coding

As we have discussed in Chapter 2, transform coding is a less complex alternative to

vector quantisation and is effective on vector sources that have a high degree of correlation.

Because correlation exists across both dimensions, transform coders can exploit this by

forming vectors from blocks of k × k pixels. For typical image data with a correlation

coefficient of 0.95, we have mentioned that the covariance function for each pixel, which

is a measure of the spatial correlation4, decreases significantly when more than 8 pixels

away [20, 116]. As most of the spatial correlation exists within an 8 × 8 block, then not

much coding gain can be achieved for larger block sizes. In addition, the computational

4The covariance function is equal to the correlation when the image has zero mean.
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Figure 4.3: Block diagram of the lossy JPEG image coding standard

and memory requirements for performing the transformation for generally increase with

block size.

The most popular transform coder for images is the JPEG standard [196], which is

shown in Figure 4.3. Non-overlapping blocks of 8 × 8 pixels are taken from the image to

be coded and these are transformed using a two-dimensional DCT. Assuming the image

data to be highly correlated and generated by a Gauss-Markov process, the DCTs ability

to compact energy into the lower coefficients is similar to that of the KLT [116]. Each

transformed block is scalar quantised via division by a quantisation table of step sizes. The

step sizes increase as we go higher in frequency and this is relative to the psychovisual

importance of the coefficient. As a result of the scalar quantisation process, many high

frequency coefficients are zeroed. In order to increase the efficiency of subsequent entropy

coding, the quantised DCT coefficients are scanned in a zig-zag fashion, which order large

values at the beginning of the data stream followed by a sequence of zeros. The sequence

of zeros are truncated and represented by a special end-of-block (EOB) symbol. The DCT

coefficients are then coded by runlength encoding (RLE) and Huffman encoding.

It is important to note that the lossy JPEG coder, with its use of entropy coding, is

a variable-rate transform coder. This contrasts to the block quantiser, which is a fixed-

rate transform coder. At high bitrates, the variable-rate coder has the advantage of better

quantisation performance due to the combination of uniform scalar quantisers and entropy

coding while the fixed-rate coder has the advantage of lower complexity requirements (ie.

no need for buffering). Also, in the case of the JPEG coder, adjusting the bitrate is done

via a quality factor, which is used to appropriately scale the fixed quantisation tables of

step sizes. Consequently, it is more difficult to meet a certain target bitrate with variable-

rate transform coders, like JPEG, than with fixed-rate transform coders, such as the block

quantiser.

One of the disadvantages with transform coding is the introduction of block artifacts,
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(a) (b)

Figure 4.4: Showing the block artifacts of JPEG: (a) The image ‘bird’ coded at low bitrate
(quality 8); (b) Close up of coded image, showing the 8 × 8 blocks.

as seen in Figure 4.4. This problem is caused by the discontinuities that result from

the rectangular windowing of the image data. Various methods of reducing blocking

artifacts include the use of overlapping blocks and low-pass filtering boundary pixels [145].

Disadvantages of these methods include an increase in bitrate and blurring, respectively

[110]. Malvar and Staelin [110] investigated the lapped orthogonal transform (LOT). The

idea of the LOT is to map blocks of n samples, to n basis functions which are l samples in

length, such that l > n. Therefore, longer blocks of l samples are formed from the smaller

blocks which overlap each other by l−n samples [110]. This achieves the overlapping effect

but since there are only n transform coefficients to quantise, there will be no increase in

bitrate. Furthermore, the LOT basis functions decay toward zero at their boundaries,

which leads to a reduction in block artifacts [110].

Transform coders which use a single transformation and quantisation scheme, assume

that images are stationary, ie. the statistics throughout the image are uniform [13]. Un-

fortunately, this is not true as images contain edges and textures which have different

spectral characteristics than those of smooth regions. Chen and Smith [28] investigated

an adaptive scheme, where after each image block was transformed using the DCT, the

resulting transformed blocks are classified based on the amount of activity, as measured

by the energy level of the AC coefficients. That is, high activity blocks, such as edges or

textures, will disperse energy among the high frequency (AC) coefficients, while smooth

blocks will tend to concentrate energy in the DC coefficient. Classification is done using

an equiprobable partition of the cumulative distribution function of the AC energies, with
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Figure 4.5: Uniform splitting of frequency spectrum into four subbands (after [136])

more bits being assigned to blocks of higher activity or AC coefficient energy and fewer

bits given to blocks of lower activity [28]. Therefore, each block to be coded is classified

based on activity, and then scalar quantised using the bit allocation of that class.

Adaptive transform schemes [9, 10, 11, 12, 13, 40, 43] discussed in Section 2.4, go further

in addressing this problem of the non-stationarity of image data, by designing multiple

transformations and quantisers to adapt to the local statistics of the image vector space.

4.4.3 Subband Coding

In subband coding, a set of low-pass and high-pass filters, known as a filterbank, are

used to split the frequency spectrum into subbands, which are then quantised separately.

Figure 4.5 shows the frequency band splitting performed by a uniform four-band subband

coder. The idea is that different bitrates, or even different quantisation schemes, can be

used for each subband, depending on the statistics of that band [200].

Referring to Figure 4.6, the input signal, x(n), is passed through the analysis filterbank

which consists of a low-pass filter, h1(n), and a high-pass filter, h2(n). These filters split

the signal spectrum into two subbands. Assuming the input is n samples, this low-pass and

high-pass filtering produces two signals, each with n samples, bringing the total number of

samples to 2n. The outputs of the analysis filterbanks are then downsampled by two (or

by M for an M -band subband coder) which reduces the number of samples back to n. In

effect, this decimates the sampling frequency of each subband and therefore demodulates
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Figure 4.6: Block diagram of a two-band subband coder
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Figure 4.7: Brick-wall filter with ideal filter response

the subband to baseband [201]. After the downsampling, each subband is quantised with

an appropriate number of bits, depending on the energy content or significance of that

subband, and transmitted to the decoder. At the decoding or synthesis stage, the two

bitstreams are dequantised, upsampled by two, and filtered with another set of subband

filters. The outputs of the filters are summed together and an appropriate gain applied if

necessary, depending on the properties of the filters. The upsampling is done by inserting

a zero between each sample.

With no quantiser, the subband coder can be designed to be a lossless technique. That

is, when data is coded and decoded using a subband coder, the output data should be the

same as the input. This property is known as perfect reconstruction and shows that, in

theory, the subband coding process is perfectly reversible. In practice, only near-perfect

reconstruction can be achieved due to the limited accuracy of the filter coefficients.

The ideal subband filter with a vertical transition band, shown in Figure 4.7, is often

called a ‘brick-wall’ filter and can only be approximated using realisable digital filters.
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Figure 4.8: Frequency response of quadrature mirror filters (after [79])

Initial problems that occurred when using these included aliasing problems and ringing

artifacts [142]. Esteban and Galand [46] introduced a new type of subband filter that

avoided the aliasing problems and these were called quadrature mirror filters (QMFs),

whose ideal frequency response is shown Figure 4.8. The high pass QMF is obtained

from the low pass QMF, h(n), by the formula, (−1)nh(n), therefore H1(z) = H(z) and

H2(z) = H(−z).

Rather than attempting to approximate the ideal subband filters, QMFs were designed

to cancel out the aliasing effect of the filter transition band [201]. The aliasing distortion

can be shown to be equal to:

D =
1

2
[G1(z)H(−z) +G2(z)H(z)]X(−z) (4.5)

To set the aliasing distortion to zero, the following condition must be satisfied by the

QMFs:

G1(z) = H(z) (4.6)

G2(z) = −H(−z) (4.7)

The perfect reconstruction property can therefore be expressed as (assuming an even-

length linear phase QMF) [136]:

|H(ω)|2 + |H(ω − π)|2 = 1, for all ω (4.8)
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Figure 4.9: Frequency response of the Johnston QMF (8-taps)

Figure 4.9 and 4.10 shows this perfect reconstruction property for the 8-tap and 16-tap

Johnston QMFs respectively.

A popular set of QMFs used in audio subband coding are the Johnston filters [79, 142].

Generally, the more taps there are in the QMF, the better the separation ability and

therefore efficiency [152]. This is shown before in Figures 4.9 and 4.10 where the magnitude

responses of an 8-tap and 16-tap Johnston filter are shown. However, too many taps can

lead to problems with the accumulation of errors due to coarse quantisation. As opposed

to human hearing, because the human visual system is more sensitive to phase changes

[8], only linear phase (symmetric) QMFs are used in subband image coding.

Vetterli [192] extended the QMF idea to two or more dimensions, which was necessary

for the subband coding of images. The idea was to use separable filters, where a two-

dimensional QMF can be separated into two one dimensional filters [20]:

h(m,n) = h1(m)h2(n) (4.9)

This simplifies the implementation of two dimensional subband coding where the row and

columns can be filtered separately, similar in operation to the separable transform. Figure

4.11 shows one ‘level’ of a subband decomposition which produces four subbands, labelled
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Figure 4.10: Frequency response of the Johnston QMF (16-taps)

LL (low-low), LH (low-high), HL (high-low), and HH (high-high).

Subband coding can be considered a more general case of transform coding [142]. In or-

der to compare and contrast the two coding schemes, consider the case of transform coders

(at least, Fourier-based ones). The frequency spectrum is divided uniformly into spectral

lines or bins and these are processed (ie. quantised) in the frequency domain. Whereas

in subband coding, the frequency spectrum may be split uniformly or non-uniformly into

bands of frequencies. The outputs of the filters are time domain signals, hence the quan-

tisation is performed in the time domain.

There are many different configurations of subband decompositions. The two most

common are shown in Figure 4.12. The octave subband decomposition, also known as

dyadic subband decomposition, is typically used for the wavelet transform, which will be

discussed later.

Subband coding was first applied to speech coding by Crochiere et al. [32]. Since then,

it has made inroads in speech coding standards such as the ITU-T G.722 (at 48/56/64

kbps) and G.726, and in audio coding standards such as the MPEG 1 layer 1/2/3 coding

[152]. Its direct application to image coding was first investigated by Woods and O’Neil

[200]. In their study, the subband image coder achieved higher SNRs than the adaptive
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Figure 4.12: Subband decomposition configurations: (a) Uniform subband decomposition;
(b) Octave or dyadic subband decomposition
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DCT transform coder of Chen and Smith [28], at bitrates below 1.5 bits/pixel. An adaptive

subband coding scheme was also presented, where subbands were classified as either busy,

non-busy, or quiet, and this coder outperformed all other quantisation schemes considered

in the study, including the vector quantiser and differential vector quantiser [200].

The most significant advantage of subband/wavelet image coding over transform coding

is the latter operates on blocks of the image while the former operates on the entire image.

Consequently, subband/wavelet image coders do not suffer from the block artifacts that

are commonly encountered in low bitrate transform coding. Typical artifacts in subband

image coding include ‘ringing’ occurring around the edges [142], which are mostly due to

coarse quantisation of the high frequency subbands which contain the edge information.

4.4.4 Wavelet-Based Image Coding

Wavelets and their Properties

With the short-time Fourier transform (STFT), a signal is time windowed5 into segments

and the frequency spectra is determined for each segment via a discrete Fourier transform

[112]. This results in a two-dimensional data representation known as the time-frequency

representation6. While this representation is adequate for signal analysis, it has inherent

disadvantages. To obtain high resolution in the frequency domain (narrowband), the time

window has to be made wider, in order to capture longer data lags, but this results in

low resolution in the time domain. On the other hand, to obtain high resolution in the

time domain, a shorter time window is required but this in turn degrades the frequency

resolution to wideband [158]. This trade-off between time and frequency is intrinsic and

was first discovered by Gabor [50], popularly known as the Gabor uncertainty principle:

∆ω∆t ≥ 1

2
(4.10)

Since the basis functions of the STFT are of fixed size in time and frequency, the time-

frequency resolution is fixed as well [58]. Relating this to DCT-based transform image

coding, because the basis functions (cosines) have fixed spatial area and frequency band-

width, smooth and edge regions are represented by transform coefficients at the same

5For the case of images, the signals span space rather than time.
6The time-frequency diagram was first introduced by Gabor [50], where the time-frequency window is

a special Gaussian function (Gabor function) and the transform later called a Gabor transform
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spatial-frequency resolution. Consequently, edge information tends to result in energy

being dispersed to many transform coefficients. A higher bitrate is therefore required to

reconstruct the edge information accurately [158].

Wavelets allow a signal to be analysed at different scales or support widths. The

wavelet basis set consists of functions with different support widths to trade-off time and

frequency resolution [68]. Wavelets with wide support examine large regions of the signal

and hence are suitable for low frequency content or analysing ‘trends’ while those with

short support examine small regions of the signal and hence are suitable for high frequency

content or analysing ‘anomalies’ [68, 158]. Because wavelets often have compact support,

the decomposition of a signal at a time instant consists of only those wavelets that are

located in (or, translated to) that region. Other wavelets that are outside the vicinity

do not contribute to the reconstruction. This contrasts to the Fourier transform, whose

complex exponential basis functions have global support and exist for all time, or in the

case of the STFT, exist throughout the analysis window [38]. The property of compact

support is of benefit to the image coding problem, as wavelets with short support have

excellent spatial resolution and this allows edge information to be represented by sparser

wavelet coefficients. Therefore, encoding edge information will not require as high a bitrate

as one would need in a DCT-based transform coder.

Wavelets are a set of basis functions that are generated through dilations and transla-

tions of a single function, ψ(t), called the mother wavelet [7].

ψa,b(t) = |a|− 1

2 ψ

(
t− b

a

)
(4.11)

where a specifies the dilation factor (scale) and b the amount of translation. High frequency

resolution (or, small scale) wavelets which have a narrow width, correspond to a < 1 while

low frequency (or, large scale) wavelets which have a wider width, correspond to a > 1

[7]. The mother wavelet also satisfies the following property

∫ ∞

−∞
ψ(x)dx = 0

which implies the function is oscillatory [7].
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The continuous wavelet transform (CWT), c(a, b), of a signal, f(t), is defined as:

c(a, b) =

∫
f(t)ψ∗

a,b(t)dt (4.12)

where a and b are the scale and translation of the wavelet, respectively. As opposed to the

time-frequency representation of the STFT, the CWT produces a time-scale representation

[191].

It should be noted that the scale, a, and translation, b, in (4.12) are continuous vari-

ables. In order to limit the number of wavelet basis functions, the scale and translations

are discretised, with c(a, b) becoming a set of wavelet coefficients. The resulting wavelet is

termed a discrete wavelet [191]. In order for the wavelet transform to be non-redundant

and easily computed, the basis functions need to be orthogonal. A dyadic discretisation

of the scale and translation, a = 2m and b = 2mn, is popular and results in the following

wavelet functions [7]:

ψm,n(t) = 2−
m
2 ψ

(
2−mt− n

)
(4.13)

which form an orthogonal basis in L2(R)7. A wavelet series decomposition can then be

performed on a continuous signal, f(t):

f(t) =
∑

m,n

c(m,n)ψm,n(t) (4.14)

where:

c(m,n) = 〈ψm,n(t), f(t)〉 (4.15)

Multiresolution Analysis and the Discrete Wavelet Transform

Burt and Adelson [25] proposed the Laplacian pyramidal coder, shown in Figure 4.13,

which introduced the concept of approximating an image at different resolutions. An

image is firstly low-pass filtered to reduce the bandwidth and downsampled by two to

produce a lower resolution approximation of the image. This lower resolution image is

upsampled and passed through an interpolation filter to give a predicted image, which is

subtracted from the original to produce a residual image. The pixel values of the residual

image are sparser (ie. have lower entropy) and therefore, are more amenable to coding

7This is the space of square integrable functions.
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Figure 4.13: Laplacian pyramidal image coder

[25]. The above process can be recursively applied on the approximated image and as a

result, smaller and smaller approximated and residual images are produced, forming the

Gaussian and Laplacian pyramid, respectively. The disadvantage of this method is that

residual image is the same size as the original, and together with the smaller approximated

image, there is actually more data produced as a result of the process [34].

Mallat [109] introduced the concept of multiresolution analysis (MRA) using wavelets,

which is similar to the Laplacian pyramid idea. That is, a lower resolution approximation

of an image is found, effectively via a low-pass and downsampling operation. However,

the loss of information (residual), as a result of going to the coarser approximation, is

represented more efficiently than in the Laplacian pyramidal coder and does not lead to

an increase in data. This is the basic operation of the discrete wavelet transform (DWT).

In the DWT, two sets of basis functions are required: the wavelet function, ψm,n(t),

and its associated scaling function, φm,n(t). Like the wavelet function, the scaling function

can be dilated and translated to form an orthogonal basis set:

φm,n(t) = 2−
m
2 φ(2−mt− n) (4.16)

The scaling basis functions are used to approximate the image at different scales. In other

words, they span successive approximation spaces [7]:

. . . ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ . . . (4.17)

where at resolution 2m:

Vm = span {φm,n(t) : m,n ∈ I} (4.18)
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The wavelets, ψm,n(t), span an orthogonal complementary space:

Wm = span {ψm,n(t) : m,n ∈ I} (4.19)

The two function spaces Vm and Wm constitute the resolution of 2m and together, com-

plement to form a function space of finer resolution of 2m−1 [7]:

Vm−1 = Vm ⊕Wm (4.20)

One interpretation of this is that when a signal needs to be represented in a coarser

resolution space, Vm, there will be some information loss, which is represented by the

complementary wavelet space, Wm [7, 112]. The coarser resolution of the signal is decom-

posed into scaling basis functions, φm,n(t), while the information loss is decomposed into

wavelet basis functions, ψm,n(t). An alternative way of interpreting the DWT is viewing

the various dilated wavelet basis functions as a set of constant Q-factor band-pass filters8

centred at octave frequencies. The scaling functions, which are essentially low-pass filters,

cover the rest (lower part) of the spectrum [191].

Implementing the Discrete Wavelet Transform

Mallat [109] showed that the DWT can be implemented using a subband coding algorithm.

This simplifies the implementation as appropriate filterbanks can be derived from the

wavelets and the subband coding algorithm can be applied.

Equation (4.20) and its interpretation lends itself to the idea of subband filtering. The

function space, Vm, represents the low-frequency information of the signal, Lm. While the

function space, Wm, represents the high-frequency information, Hm, of the signal that is

removed. Or quite simply:

Vm−1 = Vm ⊕Wm︸ ︷︷ ︸
wavelet interpretation

⇔ Lm−1 = Lm +Hm︸ ︷︷ ︸
subband interpretation

(4.21)

The subband algorithm fits in well with finding the discrete wavelet transform. When

a(m,n) and c(m,n) are the wavelet coefficients in the Vm (or low subband) and Wm (or

8The Q factor of a band-pass filter is defined as the product of its centre frequency with its bandwidth.



124 Chapter 4 Lossy Image Coding

high subband), respectively, decomposition of the DWT can be expressed as [7]:

c(m,n) =
∑

k

h2(2n− k)a(m− 1, k) (4.22)

a(m,n) =
∑

k

h1(2n− k)a(m− 1, k) (4.23)

h2(n) = (−1)nh1(1 − n) (4.24)

h1(n) =
√

2

∫
φ(x− n)φ(2x)dx (4.25)

where h1 and h2 are low-pass and high-pass filters respectively. The original image is set

to be finest resolution, m = 0.

With regards to performance, there are some characteristics of the DWT that make

it suitable for image coding. Wavelets tend to produce smooth, regular, and short filters

which are appropriate for images. Most areas in an image are smooth and the scaling

functions approximate them well [7]. Short DWT filters reduce the accumulation of quan-

tisation errors in high frequency subbands. Subband QMFs used in audio are often too

long (eg. 32 taps or more) and these are not suitable for image coding [193]. Also, the step

response of short filters tends to have less oscillations and these have a major influence on

the coding of edges [192].

It must be noted that the wavelet and scaling functions are assumed to be orthonormal.

This results in only one filter that is needed to be specified and both analysis and synthesis

filter banks can be derived from it. However, there are no non-trivial orthonormal linear

phase FIR wavelet filters with the perfect reconstruction property except for the Haar

wavelets [7]. Rather than orthonormality, a less restricting condition can be used called

biorthogonality. Biorthogonal wavelet filters define an extra set of basis functions, bringing

the total to four: φ(t), φ̃(t), ψ(t), ψ̃(t). The ‘tilde’ functions become the synthesis basis

functions while the other two form the analysis basis functions. For perfect reconstruction,

given the biorthogonal low-pass filter pairs, h1 and g1 [7]:

h2(n) = (−1)ng1(1 − n) (4.26)

g2(n) = (−1)nh1(1 − n) (4.27)

Table 4.1 shows the filter coefficients for the biorthogonal 9/7-tap wavelet filter given
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Figure 4.14: Discrete wavelet transform of greyscale test images: ‘lena’, ‘bird’, ‘camera-
man’ (using 9/7-tap biorthogonal wavelet filters)

in [7]. Figure 4.14 shows the original greyscale test images ‘lena’, ‘bird’, and ‘camera man’

as well as their wavelet transform (using the 9/7-tap wavelet filter). It can be observed

that most of the energy of the image has been compacted into the LL subband, where

the low frequency information or ‘trends’ of the image have been captured by the scaling

functions. The coefficients in the other subbands are very sparse except for some edge

information, which have been captured by the local wavelet functions. In fact, wavelets

act as ‘singularity detectors’ and it is because of the sparseness of the wavelet coefficients

that makes the DWT a more efficient transform than the DCT on edge data [194]. Also,

since this wavelet is biorthogonal rather than orthonormal, energy has not been conserved

and the LL subband contains more energy.
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Table 4.1: Coefficients of the spline variant 9/7-tap wavelet filter (after [7])

n 1 ±1 ±2 ±3 ±4

h1(n)
√

2 0.602 949 0.266 864 -0.078 223 -0.016 864 0.026 749

g1(n)
√

2 0.557 543 0.295 636 -0.028 772 -0.045 636 0

direction
Horizontal

direction
Vertical

direction
Diagonal

LL HL

LH HH

Figure 4.15: Image subbands and their respective directions (after [7])

Vector Quantisation of Wavelet Coefficients

Early subband and wavelet coders utilised scalar quantisation-based schemes. The first

application of vector quantisers for wavelet image coding was investigated by Antonini

et al. [6]. They noted that global vector quantisers, which were designed to quantise all

subbands, tended to smooth edge information which degraded the final reconstruction [6].

As shown in Figure 4.15, each of the high frequency wavelet subimages capture edges of

a certain direction. Therefore, they adopted a multiresolution codebook approach, where

individual codebooks were designed for each resolution and each directional subimage

using the LBG algorithm. This resulted in a better preservation of edge information. The

lowest LL subband was coded using scalar quantisers. A bit allocation formula, based

on Lagrangian optimisation and the high resolution rate-distortion performance of vector

quantisers, was derived to distribute bits to each of the subimage vector quantisers. A

PSNR of 31.5 dB was achieved on the image ‘lena’ (256 × 256) at 0.69 bits/pixel [6].

It was report in [7] that, when using a weighted MSE distance measure, the subjective

quality of the reconstructed image (‘lena’ of dimensions 512×512) from the wavelet coder

(PSNR=30.85 dB at 0.37 bits/pixel) was better than that of vector quantiser-based image
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Figure 4.16: Zerotrees used in the embedded zerotree wavelet coder (after [158])

coders which, in comparison, achieved a higher PSNR. The wavelet coded image also did

not suffer from the block artifacts of vector quantisation.

The Embedded Zerotree Wavelet Coder

Shapiro [158] introduced an advanced method of coding wavelet coefficients that utilised

correlation between subimages. While this algorithm was designed without the use of rate-

distortion optimising methods, Ortega and Ramchandran [119] showed that the embedded

zerotree wavelet (EZW) models the subbands more effectively than previous wavelet coding

techniques based on greedy bit-allocation algorithms, and hence achieves an operational

rate-distortion function that outperforms all previous methods. Shapiro stated that the

significance map coding rate achieved in EZW is even lower than the first-order entropy

[158, 159]. Indeed EZW and later on an extended version, SPIHT, still remain one of the

best performing image compression techniques in the literature [118].

Shapiro made a few observations of the wavelet transform of an image. Firstly he noted

that areas of insignificance9 or areas where the coefficient values are low, appear in the

same spatial location in other subbands of differing orientation at the same level as well

9In the context of EZW coding, a coefficient is considered significant if its magnitude is greater than a
threshold.
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as in finer levels [158]. In other words, when there is an ‘insignificant’ coefficient in one

subband, there is a very good chance that its descendants in finer levels are insignificant

as well [158]. Secondly, he noted that it is easier to predict insignificance across subbands

rather than significance [158]. In this scheme, a coefficient is termed the parent while the

set of four coefficients in the next finer level are the children (See Figure 4.16). Coefficients

at finer levels form the descendants of coefficients at coarser levels. When a parent is not a

descendant of any previously found zerotree root, is insignificant, and all of its descendants

are known to be insignificant with respect to a threshold, a zerotree is formed and the

insignificant parent is termed the zerotree root or ZTR. An insignificant coefficient whose

descendants are not all insignificant is called an isolated zero or IZ. Significant coefficients

are classified as either positive significant (POS ) or negative significant (NEG) [158].

A significance map shows the classification of each coefficient, whether it is significant

or insignificant. Zerotrees allow these significance maps to be represented efficiently by

utilising the correlation of insignificant coefficients in different subbands. For a certain

threshold, the wavelet coefficients are scanned and classified into the categories of POS,

NEG, ZTR, IZ to produce the significance map [158]. Like the end-of-block (EOB) symbol

in JPEG for representing a runlength of zeros, zerotrees allow the EZW coder to efficiently

code exponentially large regions of insignificant wavelet coefficients [158].

One distinct feature of the EZW coder is that it produces an embedded code [158].

That is, a low resolution version of the image is embedded at the start of the bitstream

and further bits progressively improve the reconstructed image. This allows EZW coding

to stop when the desired bitrate has been reached. Also, the receiver can stop receiving

more bits from the encoder and still be able to reconstruct a decent version of the image

from the data already received. Using successive approximation quantisation (SAQ), the

threshold, which determines whether a wavelet coefficient is significant, is initially set to

half the magnitude of the largest coefficient. The significance map is calculated based on

this threshold and transmitted in an efficient way. The threshold is then halved and the

process continues. Basically, as the threshold is successively decreased, more and more

wavelet coefficients are deemed significant. Also, the significance map is coded using a

scalar quantiser whose levels are successively refined by both the encoder and decoder

during each stage. For more details on SAQ and EZW coding in general, the reader is

referred to [158].
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EZW coding highlights an interesting contrast between the type of approximation

used in optimal wavelet transform coding and block-based transform coding. In block-

based transform coding, where the KLT is applied, we have shown previously that linear

approximation (truncating transform coefficients in ascending order) results in the least

MSE distortion and generally, reconstructed image quality. However, in optimal wavelet

transform coding, the best approximation is based on keeping those coefficients with the

largest magnitudes rather than based on their ordering. This is termed as non-linear

approximation and it can be shown that the incurred MSE distortion as a result of this is

lower than that of linear approximation in Fourier-based transform methods [194].

The Set Partitioning in Hierarchical Trees Coder

Amir and Said [150] extended the ideas of EZW to produce an embedded algorithm which

was more superior in terms of bitrate and complexity. EZW relies on using an adaptive

arithmetic coder for entropy encoding the zerotree and subordinate information [158]. The

set partitioning in hierarchical trees (SPIHT) algorithm surpasses the EZW coder when

using an adaptive arithmetic coder. But surprisingly, the algorithm without an entropy

coder, which is termed as binary-uncoded SPIHT [150], outperforms the more complex

EZW coder by about 0.5 dB for the same bitrate.

The SPIHT coder is based on the concept of subset partitioning to encode significance.

The algorithm also differs with EZW coding in that it does not explicitly transmit the

ordering information. The EZW coder transmits this ordering information via significance

maps which need to be coded using zerotree encoding in order to allow the decoder to

know where significant coefficients occur. SPIHT coding removes the need to transmit a

significance map by ensuring both the encoder and decoder use the same set partitioning

rules and that they both follow the same execution path determined via decisions sent by

the encoder [150]. That is, both the encoder and decoder synchronise their operations via

decisions.

In much the same way as defining zerotrees in EZW coding, SPIHT coding defines a tree

structure that spans the subbands of the wavelet transform called a spatial orientation tree

(SOT). SOTs are different to zerotrees in that they are not formed on the basis of whether

coefficients are insignificant or not. Each node of the tree is a pixel and is identified by its

co-ordinate. The pixels in the same SOT are defined as the descendants of the parent node
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Figure 4.17: Spatial orientation trees used in SPIHT coding (after [150])

The offspring are the direct descendants of the parent node. The nature of the tree is that

all nodes either have no offspring (hence they are leaves) or have exactly four offspring

which is represented by a 2×2 block. Tree roots are defined as those pixels in the coarsest

level (LL subband) and each have their own offspring except for the one in the top left

corner [150].

SOTs are used to partition pixels into different sets. Like zerotrees, they exploit

spatial self-similarity in the different levels of the wavelet transform. These different sets

are defined as follows [150]:

• O(i, j) is the set of co-ordinates of all offspring of node (i, j);

• D(i, j) is the set of co-ordinates of all descendants of the node (i, j);

• H is the set of co-ordinates of all spatial orientation tree roots or nodes in the finest

wavelet subband; and

• L(i, j) = D(i, j)−O(i, j) which is the set of co-ordinates of all descendants from the

node (i, j) but not including direct offspring from this node.

Each SOT can be partitioned into different partition sets. The procedures for doing this

partitioning, which are called the set partitioning rules, are [150]:

1. Initial partition is formed from the sets {(i, j)} and D(i, j) for all (i, j) ∈ H;
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2. if the set D(i, j) is significant, it is further partitioned into five sets: L(i, j) and four

single-element sets {(k, l)} where each (k, l) ∈ O(i, j);

3. if L(i, j) is significant then it is partitioned into the four sets D(k, l) with (k, l) ∈
O(i, j).

These rules are explained below:

• Rule 1 suggests forming the initial partition from all SOT roots (pixels in the LL

subband) and their descendants;

• Rule 2 suggests that if the descendant set of root (i, j) are significant, then this

partition is split into five different sets: a set consisting of the descendants of root

(i, j) but not including the offspring; and four sets that each contain the pixels of

the offspring; and

• Rule 3 suggests that if the set of descendants (not including offspring) from root

(i, j) are significant, then it should split into four different sets which are descendant

sets of each of the offspring of root (i, j).

The basic idea is that all the pixels of the wavelet transform are divided into partition-

ing subsets, Tm, through the use of spatial orientation trees. Then a decision is made of

whether a set is significant or not. The concept of bitplane encoding is also used in SPIHT

coding and is done via the use of thresholds that are determined by n and the intervals

are 2n ≤ |ci,j| < 2n+1 where n is decremented after each pass [150]. The significance S,

at the precision n, of a partition set T can be expressed as:

Sn(T ) =





1, max(i,j)∈Tm
{|ci,j|} ≥ 2n

0, otherwise
(4.28)

These decisions are sent to the decoder in order to allow it and the encoder to synchro-

nise their partition sets. When the encoder reports that a particular partition set Tm

is insignificant, the decoder knows that all wavelet coefficients belonging to that set are

insignificant. When instead the encoder reports that a particular partition set Tm is sig-

nificant, then the encoder will proceed to partition this into new subsets Tm,l based on

the set partitioning rules described in the previous section. Since these rules are known to

the decoder as well, it can also partition the set in the same way. Therefore, the execution
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path is synchronised between the encoder and decoder via these significance tests. The

set division process stops when all single co-ordinate significant subsets have been tested

[150]. For a more detailed description of SPIHT coding, the reader is referred to [150].

4.5 Non-Expansive Filtering for the Subband Decomposi-

tion of Images

In contrast to speech and audio coding, any expansion of image data as a result of the

linear convolution of a row or column with an FIR filter, is undesirable and should be

avoided. Also, both edges of a finite length signal need to be handled in a special way

as the impulse response of the analysis and synthesis filters need to overlap correctly for

perfect reconstruction [142]. The simplest method is to add redundancy to both ends of

the signal, via zero or constant value padding. The former presents a problem since there

will generally be a sharp discontinuity, if the edge value has a large magnitude. This

causes a large amount of energy to appear in the high frequency subband. Because the

high frequency subbands are generally coarsely quantised, ringing artifacts will appear on

the edges of the reconstructed image [142]. Also, both methods of padding will lead to an

expansion of data [142].

Smith and Eddins [164] gave two methods of adding redundancy without any expansion

of data: circular extension and symmetric extension. In the circular extension method,

the signal is wrapped around itself to form a periodic signal of period, N . In the symmetric

extension method, both edges are reflected to form a periodic signal of period, 2N . The

idea is that when we filter a periodic signal, where there are only N unique samples, the

output signal will also be periodic and have at least N unique samples as well, which

circumvents the expansion issue.

Kiya et al. [84] investigated a larger class of extension methods, which included sym-

metric and anti-symmetric filters with an even and odd number of taps. They noted

that the methods outlined by Smith and Eddins [164] assumed the filters to have an even

number of taps only. Martucci [106] gave a detailed treatment of filter causality and sig-

nal extension methods (both circular and symmetric) as well as their effects on perfect

reconstruction in subband image coding. A general procedure was also presented that

guarantees both non-expansive filtering and perfect reconstruction for all possible cases.
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Figure 4.18: Subband coding with non-causal filtering and signal extension (after [106])

This procedure, as given in [106], is presented below.

4.5.1 Non-Causal Filtering with Minimal Delay

A causal filter is one in which the output response is calculated based on the present and

past input samples only. That is, the impulse response of a causal filter, h(n), is zero for

n < 0. Generally, the processing of real-time signals requires the use of causal filters only

since we do not have access to future input values. Assuming we are applying a causal,

linear phase filter of length, M , on a signal of finite length N , the output signal will have

a length of N + M − 1 samples and a delay of M−1
2 . This is mostly due to the linear

convolution of a finite length signal.

Because images are finite and span space rather than time, the causality constraint

of the filters can be relaxed. Non-causal filters are known to add minimal delay to the

output, hence they are suitable for use in image subband coding [106]. A non-causal filter

is obtained by shifting the impulse response of the causal filter by M−1
2 samples. Shifting a

linear phase filter, with an odd number of taps, by this amount results in no delay (Figure

4.19(a)). For the case of a filter with an even number of taps and depending on the shift,

either a half sample delay or advance is possible (Figure 4.19(b)).

In subband coding, because the downsampler and upsampler are shift-invariant, then

extra care needs to be made with regards to the delays caused by the filtering, in order to

ensure perfect reconstruction [106]. Figure 4.18 shows the subband coder with non-causal

filters, which are formed by shifting their causal versions by appropriate values, denoted

as p, q, r, s. The signal extension blocks are ignored for now [106].
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Figure 4.19: Impulse responses of causal linear phase filters and their non-causal versions
with minimal delay (after [106]): (a) Causal filter, h(n), with an odd number of taps and
its non-causal version, h(n+ 2), which imparts no delay; (b) Causal filter, h(n), with an
even number of taps and its non-causal versions, h(n + 1), which imparts a half sample
delay and h(n+ 2), which imparts a half sample advance.
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In the Fourier domain, the output in Figure 4.18 can be expressed as [106]:

X̂(ejω) = T (ejω)X(ejω) +A(ejω)X(ej(ω−π)) (4.29)

where the transmission factor, T (ejω), is given by [106]:

T (ejω) =
1

2

[
H1(e

jω)G1(e
jω)ejω(p+r) +H2(e

jω)G2(e
jω)ejω(q+s)

]
(4.30)

and the aliasing factor, A(ejω), is given by [106]:

A(ejω) =
1

2

[
H1(e

j(ω−π))G1(e
jω)ejω(p+r)e−jπp +H2(e

j(ω−π))G2(e
jω)ejω(q+s)e−jωq

]

(4.31)

Two solutions exist for perfect reconstruction, where the aliasing factor, A(ejω) = 0, and

the transmission factor, T (ejω) = 1. With the first solution [106]:

G1(e
jω) = H2(e

j(ω−π)) (4.32)

G2(e
jω) = −H1(e

j(ω−π)) (4.33)

we have the following constraints on the filter shifts [106]:

p+ r = q + s (4.34)

|p− q| mod 2 = 0 (4.35)

Constraint (4.34) ensures the delays or advances in both bands are aligned, when the bands

are added to form the output, while constraint (4.35), where p and q must be both even

or both odd, ensures proper alignment prior to downsampling [106]. With this solution,

the output is given by [106]:

X̂(ejω) =
1

2

[
H1(e

jω)H2(e
j(ω−π)) −H2(e

jω)H1(e
j(ω−π))

]
ejω(p+r)X(ejω) (4.36)

Therefore, the output is delayed by (p+r) samples and hence can be controlled by picking

appropriate values for p and r. As well as affecting the delay, these filter shifts will need

to be further constrained, if the symmetric extension method is used. No constraints to p

and q are needed when using the circular extension method [106].
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Figure 4.20: The circular extension method (after [106]): (a) Original signal of N sam-
ples; (b) periodically extended signal using circular extension (dotted line shows axis of
symmetry).

With the second solution for perfect reconstruction, which applies to odd-tapped,

biorthogonal wavelet filters [106]:

G1(e
jω) = H2(e

j(ω−π)) (4.37)

G2(e
jω) = H1(e

j(ω−π)) (4.38)

we have the following constraints on the filter shifts [106]:

p+ r = q + s (4.39)

|p− q| mod 2 = 1 (4.40)

Here, either one of p and q is odd, with the other even.

4.5.2 Signal Extension Methods

As we mentioned before, any expansion of data as a result of filtering, is undesirable and

can be prevented by forming a periodically extended version of the signal. The convolution

of the impulse response of a filter with a periodic signal results in another periodic signal.

As noted by Martucci [106], an extension of M − 1 is enough to generate unique samples

after filtering10. Two types of extensions have been investigated [84, 106, 164] and these

are discussed in the following sections.
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Figure 4.21: The symmetric extension method (after [106]): (a) Original signal of N sam-
ples; (b) periodically extended signal using symmetric extension with half-sample symme-
try on both ends (dotted line shows axis of symmetry); (c) periodically extended signal
using symmetric extension with whole-sample symmetry on both ends (dotted line shows
axis of symmetry).

The Circular Extension Method

The circular extension method is the easiest of the two methods to implement since the

convolution becomes cyclic, which is equivalent to multiplying the discrete Fourier trans-

forms of the signal and filter. Both linear and non-linear phase filters can be used with

this method as well [142]. The disadvantage with the circular convolution method is the

discontinuity introduced by wrapping one end of the signal onto the other [142, 106]. Gen-

erally, there will be a difference in the pixel values on the edges, which results in a large

amount of energy being captured in the high frequency subimage. Coarse quantisation of

this subimages will cause ringing artifacts on the edge of the image.

The Symmetric Extension Method

The symmetric extension method produces better quality reconstructed images in subband

coding than the circular extension method because of the smooth transition of the edge

extension [142]. In fact, the periodic sequence formed from symmetric extension and the

subsequent convolution is equivalent to the DCT [84]. Therefore, the reasons for why

symmetric extension is better than circular extension are intimately related to the energy

compaction characteristics of the DCT (or, DFT of a signal with a period of 2N) as

compared with those of the DFT (of a signal with a period of N). However, symmetric

extension involves more constraints and is thus more difficult to implement than circular

extension, though both require the same amount of computations [106]. Note that the

input signal is assumed to have an even number of samples.

10If filters of different lengths, M1 and M2 are used, the larger of the two is used [106].
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Table 4.2: Symmetry properties of convolved signals (after [106]), where WS – whole-
sample, HS – half-sample, y(n) = x(n) ∗ h(n)

x(n) h(n) y(n)

WS symmetric WS symmetric WS symmetric
HS symmetric HS symmetric WS symmetric
HS symmetric WS symmetric HS symmetric

symmetric symmetric symmetric
anti-symmetric anti-symmetric symmetric

symmetric anti-symmetric anti-symmetric

Firstly, it is important to distinguish between two different types of symmetry that

are possible, as described in [106]. Figure 4.21(b) shows an example of what is termed,

half-sample symmetry. Here, the edge value is replicated and the axis of symmetry falls in

between these two samples. Figure 4.21(c) shows an example of whole-sample symmetry,

where the axis of symmetry coincides with the edge sample. Also, because linear phase

filters are always symmetric (or anti-symmetric), then it is apparent that a whole-sample

symmetric filter has an odd number of taps while a half-sample symmetric filter has an

even number of taps. Secondly, it is well known that the convolution of a symmetric signal

with a symmetric filter will result in a symmetric output signal. Because there are two

forms of symmetry possible, Martucci [106] tabulated all possible cases of the convolution

of two symmetric sequences, x(n) and h(n), and the output, y(n), which is reproduced in

Table 4.2.

Referring to the analysis stage of Figure 4.18, the input signal, x(n), is symmetrically

extended to produce, x̃(n). The type of symmetric extension to be used is dependent on the

filter we are using. We should always aim for the output of the filter, v(n), to have whole-

sample symmetry. Therefore, according to Table 4.2, if we are using an even-tapped filter

(half-sample symmetric), then the correct extension of the signal would be half-sample

symmetry. Likewise, if we are using an odd-tapped filter (whole-sample symmetric), then

the correct extension of the signal would be whole-sample symmetry.

Figures 4.23 and 4.24 show a series of graphs, which appear in [106], that depict

symmetric extension, filtering, and downsampling for even and odd-tapped filters, which

are shown in 4.22.
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Figure 4.22: Impulse response of an even and odd-tapped symmetric filter: (a) H1(z) =
1
4(−1 + 3z−1 + 3z−2 − z−3); (b) H1(z) = 1

8(−1 + 2z−1 + 6z−2 − 2z−3 − z−4) (after [106])

Using Filters with an Even Number of Taps

The filtering of the symmetrically extended input signal, x̃(n), will produce a periodic

output signal, v(n), that possesses whole-sample symmetry on both ends. If an even-

tapped filter (Figure 4.22(a)) is shifted to have a half sample advance, h1(n + 2), then

the output, v(n), will have N + 1 unique samples, as shown in Figure 4.23(c). If we are

downsampling by two in the subband coder, then there will be two different ways of doing

it since there is an odd number of samples (assuming N is even, N + 1 will be odd), with

one resulting in N
2 samples (top set of ticks in Figure 4.23(c)) and the other resulting in

N
2 +1 samples in y(n) (bottom set of ticks in Figure 4.23(c)) [106]. Because any expansion

of data should be avoided, the first method of downsampling, which results in N
2 , is the

preferred one.

At the synthesis stage, the signal, y(n), is symmetrically extended to form, ỹ(n). The

type of symmetric extension required at both ends is apparent in Figure 4.23(d), which

shows the upsampled version of ỹ(n). We note that based on the way we have performed

the downsampling, the synthesis stage has enough unique samples to extend and recreate

the periodic structure of v(n), albeit with half the number of the samples, via half-sample

symmetry on both ends. Also, if the filter is anti-symmetric, as is the case with high pass

QMFs with an even number of taps, then anti-symmetric extension will need to applied

instead.

Finally, in order to determine the shifts required in the synthesis filters, we refer to
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Figure 4.23: Symmetric extension for filters with an even number of taps (after [106]):
(a) Original signal, x(n); (b) symmetrically extended signal, x̃(n) (both ends with half-
sample symmetry); (c) filtered signal, v(n). The ticks above and below the graph show
two different ways of downsampling; (d) symmetrically extended, upsampled signal, w(n).
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Figure 4.24: Symmetric extension for filters with an odd number of taps (after [106]):
(a) Original signal, x(n); (b) symmetrically extended signal, x̃(n) (both ends with whole-
sample symmetry); (c) filtered signal, v(n). The ticks above the graph show the samples
that are retrained after downsampling; (d) symmetrically extended, upsampled signal,
w(n).
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constraint (4.34). With p = 2 and q = 2 which imparts a half-sample advance, then in

order for there to be no delay on the output, we choose r = 1 and s = 1 which impart a

half-sample delay [106].

Using Filters with an Odd Number of Taps

For an odd-tapped filter (Figure 4.22(b)), which has whole-sample symmetry, then ac-

cording to Table 4.2, we need to use whole-sample symmetry at both ends, as shown in

Figure 4.24(b). If the odd-tapped filter is shifted to impart no delay, h(n + 2), then the

output, v(n), will have N unique samples, as shown in Figure 4.24(c). Because there are

an even number of samples in this case, then there is only one way of downsampling by

two to produce N
2 samples in y(n).

At the synthesis stage, the signal, y(n), is symmetrically extended to form, ỹ(n). The

type of symmetric extension required at both ends is apparent in Figure 4.24(d). We note

that the synthesis stage has enough unique samples to recreate the periodic structure of

v(n) via whole-sample symmetry on the left and half-sample symmetry on the right. If

our filters are shifted to impart a one sample advance, then the reverse symmetry should

be used. That is, half-sample symmetry on the left and whole-sample symmetry on the

right [106].

4.5.3 An Example of Symmetric Extension for Subband Decomposition

of Finite Length Signals

In this section, we discuss the implementation, via a MATLAB demonstration, of the

analysis and synthesis stages of a subband coder using the symmetric extension method.

No quantisation will be performed, hence perfect reconstruction is to be sought, as mea-

sured by the signal-to-noise ratio (SNR) of the output. The QMFs used are the 32-tap

Johnston filters [79], whose coefficients are given in Table 4.3. In order to simplify the

implementation, causal filtering will be used along with appropriate truncation.

The input signal that we will be considering is shown is a ramp, as shown in Figure

4.25, where N = 100. Because our filters have an even number of taps, then it possesses

half-sample symmetry. We aim for whole-sample symmetry on the filter outputs, thus

according to Table 4.2, we extend our input signal by M − 1 = 15 samples on both ends
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Table 4.3: Coefficients of the 32-tap Johnston symmetric QMFs (after [79])

n h(n)

0 2.245139e-3
1 -3.971152e-3
2 -1.969672e-3
3 8.181941e-3
4 8.426833e-4
5 -1.422899e-2
6 2.069470e-3
7 2.270415e-2
8 -7.961731e-3
9 -3.496440e-2
10 1.947218e-2
11 5.481213e-2
12 -4.452423e-2
13 -9.933859e-2
14 1.329725e-1
15 4.636741e-1
16 4.636741e-1
17 1.329725e-1
18 -9.933859e-2
19 -4.452423e-2
20 5.481213e-2
21 1.947218e-2
22 -3.496440e-2
23 -7.961731e-3
24 2.270415e-2
25 2.069470e-3
26 -1.422899e-2
27 8.426833e-4
28 8.181941e-3
29 -1.969672e-3
30 -3.971152e-3
31 2.245139e-3
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Figure 4.25: Ramp signal, x(n) = n+ 1 where n = 0, 1, . . . , N
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Figure 4.26: Symmetrically extended ramp signal, x̃(n): (a) Plot of x̃(n); (b) zoomed-in
section of the left edge, showing half-sample symmetry; (c) zoomed-in section of the right
edge, showing half-sample symmetry

using half-sample symmetry. This extended signal is shown in Figure 4.26.

We apply the low-pass and high-pass analysis QMFs to the symmetrically extended

input to produce a low-pass signal, v1(n) and v2(n), which are shown in Figure 4.27.

We can see in Figures 4.27(b) and (d) that the symmetry of both signals has become

whole-sample symmetry and centred at n = 47. Also, because the high-pass QMF is

anti-symmetric, the high-pass filtered signal in Figure 4.27(d) possesses anti-symmetry as

well.

In order to obtain N
2 = 50 samples, the downsampling process should start by retaining

the sample at n = 48 and onwards. At the synthesis stage, the filtered signals are extended
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Figure 4.27: (a) Low-pass filtered signal, v1(n); (b) zoomed-in section of left edge of v1(n);
(c) high-pass filtered signal, v2(n); (d) zoomed-in section of the left edge of v2(n)

using half-sample symmetry (symmetric on low-pass, anti-symmetric on high-pass) on

both ends and then upsampled. These signals are shown in Figure 4.28, where the axis of

symmetry is n = 62.

Figure 4.29 shows the reconstructed signals, x̂1(n) and x̂2(n), formed by filtering the

extended and upsampled signals, w̃1(n) and w̃2(n). Both exhibit half-sample symmetry

around n = 77.5. The final reconstructed signal, x̂(n), is formed by summing x̂1(n) and

x̂2(n) and truncating the samples at n < 78. A gain of two needs to be applied to the

final signal for perfect reconstruction with an SNR of 84.82 dB.

4.5.4 An Example of Symmetric Extension for the Discrete Wavelet

Transform of Finite Length Signals

In this section, we discuss the implementation, via a MATLAB demonstration, of the

forward and inverse discrete wavelet transform using the symmetric extension method. No

quantisation will be performed, hence perfect reconstruction is to be sought, as measured
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Figure 4.28: (a) Zoomed-in section of left edge of w̃1(n); (b) zoomed-in section of the left
edge of w̃2(n)
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Figure 4.29: (a) Low-pass reconstructed signal, x̂1(n); (b) zoomed-in section of x̂1(n); (c)
High-pass reconstructed signal, x̂2(n); (d) zoomed-in section of x̂2(n).
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Figure 4.30: Symmetrically extended ramp signal, x̃(n): (a) Plot of x̃(n); (b) zoomed-in
section of the left edge, showing whole-sample symmetry; (c) zoomed-in section of the
right edge, showing whole-sample symmetry

by the signal-to-noise ratio (SNR) of the output. The wavelets used are the 9/7-tap

biorthogonal wavelets of Antonini et al. [7] whose coefficients are given in Table 4.1. In

order to simplify the implementation, causal filtering will be used along with appropriate

truncation.

The input signal that we will be considering is the ramp of the previous section (Figure

4.25), where N = 100. Because our filters have an odd number of taps, then they possess

whole-sample symmetry. We aim for whole-sample symmetry on the filter outputs, thus

according to Table 4.2, we extend our input signal by 8 samples11 on both ends using

whole-sample symmetry. This extended signal is shown in Figure 4.30.

We apply the low-pass and high-pass analysis wavelet filters to the symmetrically

extended input to produce a low-pass signal, v1(n) and v2(n), which are shown in Figure

4.31. We can see in Figures 4.31(b) and (d) that the symmetry of low and high-pass signals

have become whole-sample symmetry and centred at n = 13 and n = 12, respectively. The

difference in the symmetry centres are mostly due to the difference in lengths of the filters.

In order to obtain N
2 = 50 samples, the downsampling process should start by retaining

the sample at n = 13 and onwards. Note that by retaining sample 13 and onwards in the

high-pass signal, the symmetry of the subsequent upsampled version will become half-

sample. Hence, at the synthesis stage, the low-pass, downsampled signals are extended

using whole-sample symmetry on the left end and half-sample symmetry on the right end,

while for the high-pass signal, it is extended using half-sample symmetry on the left and

whole-sample on the right.

11We choose to use the length of the longest filter, minus one.
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Figure 4.31: (a) Low-pass filtered signal, v1(n); (b) zoomed-in section of left edge of v1(n);
(c) high-pass filtered signal, v2(n); (d) zoomed-in section of the left edge of v2(n)
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Figure 4.32: (a) Low-pass reconstructed signal, x̂1(n); (b) zoomed-in section of x̂1(n); (c)
High-pass reconstructed signal, x̂2(n); (d) zoomed-in section of x̂2(n).
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Figure 4.32 shows the reconstructed signals, x̂1(n) and x̂2(n), formed by filtering the

extended and upsampled signals, w̃1(n) and w̃2(n). Both exhibit whole-sample symmetry

around n = 20. The final reconstructed signal, x̂(n), is formed by summing x̂1(n) and

x̂2(n) and truncating the samples at n < 20. The final signal has an SNR of 275.18 dB.

It is particularly interesting to note that the 9/7-tap biorthogonal wavelet filters achieves

a significantly higher SNR than the 32-tap Johnston QMF.

4.6 Experimental Setup for Image Coding Simulations

The rest of this chapter is dedicated to evaluating and discussing the application of block

quantisation schemes in image coding. In particular, we present PSNR results and re-

constructed images for each quantisation scheme and do a comparison. Hence, we have

collected a training and testing set of images to be used for the evaluation of each scheme.

The training image set consists of 18 images and the testing image set consists of

6 images, which are not part of the training set. They are all 8-bit greyscale images,

hence the luminance values are within the range of 0 and 255. The image names and

their dimensions are shown in Table 4.4. The train and test image sets are also shown in

Figures 4.33 and 4.34.

For the block quantisation experiments, blocks of 8× 8 pixels are used. Therefore, the

training image set contains 73728 blocks or vectors. Peak signal-to-noise ratios (PSNR)

are used to objectively judge image quality. Gaussian optimised Lloyd-Max scalar quan-

tisation levels up to 256 levels (8 bits) were generated and used in the block quantisation

experiments.
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Figure 4.33: Training set of images
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Table 4.4: Training and testing image set for image coding experiments

Training Set Testing Set

Image Name Dimensions Image Name Dimensions

baboon 512 × 512 boat 512 × 512
barbara 512 × 512 kids 512 × 512
fruits 512 × 512 crowd 512 × 512
lena 512 × 512 couple 512 × 512

peppers 512 × 512 mill 512 × 512
sailboat 512 × 512 vegas 512 × 512

man 512 × 512
goldhill 512 × 512
bridge 512 × 512

jet 512 × 512
pyramid 512 × 512

aero 512 × 512
einstein 512 × 512

hat 512 × 512
london 512 × 512
tekboat 512 × 512
tekrose 512 × 512

loco 512 × 512

Figure 4.34: Testing set of images
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4.7 Application of the Block Quantiser

In this section, we evaluate the traditional block quantiser in an image coding scenario

using two different transforms. The KLT-based scheme is expected to perform the best

while the DCT should achieve slightly lower performance. With the block quantiser, the

image source is assumed to be Gaussian and the performance of the DCT-based scheme

will be highly dependent on how similar the image source is to a highly correlated Gauss-

Markov process. The aim of this experiment is to provide a baseline for comparison

with the GMM-based block quantiser and the improvements, in terms of quantisation

performance as measured by PSNR and subjective image quality, that result from accurate

PDF modelling and multiple transforms.

4.7.1 The KLT-Based Block Quantiser

Table 4.5 shows the PSNRs of different images (from both the training and testing set)

at different bitrates, when using the KLT-based block quantiser. We can see that as the

bitrate is increased, the PSNR improves for all images, even for those that were not part

of the training set.

Tables 4.6, 4.7, and 4.8 show the allocation of quantiser levels to each of the 64 trans-

form coefficients at different bitrates. Because the bit allocation is based on the variance

of the component, more bits are assigned to the first coefficient in the top-left. As the

bitrate is increased, more bits are gradually assigned to the higher transform components

which should lead to better visual quality. Note that at each bitrate, all image blocks are

quantised using the same bit allocation, which is based on the assumption that all blocks

possess the same statistics.

Figure 4.35 shows the original and reconstructed images at various bitrates of ‘goldhill’,

which was part of the training set. Looking at Figure 4.35(b), it can be seen that there is

a high degree of block artifacts and graininess, especially in the sky, at a bitrate of 0.25

bits/pixel. At 0.5 bits/pixel (Figure 4.35(c)), the granular noise and block artifacts have

been reduced, particularly in the sky and the walls of the white houses. At 1 bit/pixel

(Figure 4.35(d)), the block artifacts have been considerably reduced though there is a

slight amount of granular noise.
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Table 4.5: PSNR as a function of bitrate for the KLT-based block quantiser

Image Name
PSNR (in dB)

0.25 bits/pixel 0.5 bits/pixel 0.75 bits/pixel 1.0 bits/pixel

baboon 21.50 22.89 23.80 24.60
barbara 22.60 23.75 24.51 25.25
fruits 24.48 26.08 26.90 28.06
lena 25.46 27.31 28.18 29.66

peppers 25.31 27.18 28.05 29.48
sailboat 23.73 25.80 26.77 28.32

man 23.02 24.67 25.55 26.79
goldhill 26.17 28.08 29.18 30.54
bridge 22.88 24.69 25.78 26.97

jet 23.74 25.72 26.56 27.92
pyramid 25.17 27.33 28.23 29.53

aero 25.00 27.47 28.45 30.00
einstein 27.12 29.00 29.87 31.15

hat 25.30 27.07 27.77 29.21
london 25.92 27.94 28.84 30.18
tekboat 19.43 20.82 21.56 22.49
tekrose 17.59 18.90 19.56 20.52

loco 20.73 22.18 22.92 23.95

boat 24.24 26.02 26.94 28.26
kids 22.00 23.14 23.80 24.60

crowd 17.34 18.80 19.45 20.55
couple 27.68 29.04 29.61 30.60
mill 21.27 22.77 23.65 24.67
vegas 25.60 27.62 28.53 29.99

Table 4.6: Levels allocation table for KLT-based block quantiser at 0.25 bits/pixel

32 4 4 2 2 2 2 2
2 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
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Table 4.7: Levels allocation table for KLT-based block quantiser at 0.5 bits/pixel

32 8 8 4 4 4 4 2
2 2 2 2 2 2 2 2
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Table 4.8: Levels allocation table for KLT-based block quantiser at 1.0 bits/pixel

64 16 16 8 8 8 4 4
4 4 4 4 4 4 4 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Figure 4.36 shows the original and reconstructed images at various bitrates of ‘boat’,

which was not part of the training set. Like ‘goldhill’, there is a large amount of block

artifacts and granular distortion throughout the entire image at 0.25 bits/pixel and these

gradually reduce as the bitrate is increased. At 1 bit/pixel (Figure 4.36(d)), the block

artifacts are less noticeable but the smooth regions like the sky have a slight amount of

granular distortion.

The graininess is due to the coarse quantisation of the high frequency KLT coefficients

since the quantisation noise in each coefficient will be spatially spread to all pixels within

the block. As the bitrate is increased, more bits are allocated to these transform coef-

ficients, reducing the quantisation noise as well as the subsequent granular noise in the

spatial domain.

4.7.2 The DCT-Based Block Quantiser

Table 4.9 shows the PSNRs of different images (from both the training and testing set)

at different bitrates, when using the DCT-based block quantiser. We can see that as the

bitrate is increased, the PSNR improves for all images, even for those that were not part
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(b)

(d)

(a)

(c)

Figure 4.35: Results of the ‘goldhill’ image at various bitrates (part of training set) using
the KLT-based block quantiser: (a) original 8-bit image; (b) 0.25 bits/pixel (PSNR=26.17
dB); (c) 0.5 bits/pixel (PSNR=28.08 dB); (d) 1.0 bits/pixel (PSNR=30.54 dB)
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(b)

(d)

(a)

(c)

Figure 4.36: Results of the ‘boat’ image at various bitrates (not part of training set) using
the KLT-based block quantiser: (a) original 8-bit image; (b) 0.25 bits/pixel (PSNR=24.24
dB); (c) 0.5 bits/pixel (PSNR=26.02 dB); (d) 1.0 bits/pixel (PSNR=28.26 dB)
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Table 4.9: PSNR as a function of bitrate for the DCT-based block quantiser

Image Name
PSNR (in dB)

0.25 bits/pixel 0.5 bits/pixel 0.75 bits/pixel 1.0 bits/pixel

baboon 21.41 22.75 23.57 24.41
barbara 22.46 23.55 24.19 24.97
fruits 24.36 25.93 26.64 27.88
lena 25.25 27.04 27.75 29.34

peppers 25.04 26.80 27.48 28.99
sailboat 23.54 25.54 26.39 27.99

man 22.87 24.47 25.27 26.53
goldhill 25.91 27.78 28.73 30.21
bridge 22.70 24.46 25.46 26.66

jet 23.50 25.38 26.08 27.51
pyramid 24.94 26.99 27.65 29.12

aero 24.79 27.13 27.97 29.59
einstein 26.90 28.77 29.44 30.92

hat 25.17 26.91 27.50 29.03
london 25.59 27.54 28.26 29.74
tekboat 19.26 20.57 21.21 22.14
tekrose 17.51 18.79 19.42 20.37

loco 20.55 21.92 22.58 23.61

boat 24.06 25.76 26.55 27.88
kids 21.87 22.99 23.60 24.43

crowd 17.24 18.64 19.24 20.32
couple 27.31 28.73 29.09 30.36
mill 21.08 22.50 23.25 24.28
vegas 25.35 27.35 28.11 29.68
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Table 4.10: Levels allocation table for DCT-based block quantiser at 0.25 bits/pixel

32 4 2 2 1 1 1 1
4 2 2 1 1 1 1 1
2 2 1 1 1 1 1 1
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Table 4.11: Levels allocation table for DCT-based block quantiser at 0.5 bits/pixel

32 8 4 2 2 1 1 1
8 4 2 2 2 1 1 1
4 2 2 2 1 1 1 1
4 2 2 1 1 1 1 1
2 2 1 1 1 1 1 1
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

of the training set. Comparing with the PSNRs of the KLT-based block quantiser in Table

4.5, we can see that the DCT-based block quantiser is performs slightly worse, which is to

be expected. However, it can be concluded that the coding efficiency of the DCT is quite

close to that of the KLT for image data, which suggests that image sources are highly

correlated and are similar to Gauss-Markov processes. This confirms past studies such as

[116] that the DCT is a good alternative to the KLT in image coding.

Tables 4.10, 4.11, and 4.12 show the allocation of quantiser levels to each of the 64

transform coefficients at different bitrates. Because the bit allocation is based on the vari-

ance of the component, more bits are assigned to the first coefficient in the top-left, which

represents the DC frequency. As the bitrate is increased, more bits are gradually assigned

to the higher frequency components which should lead to better visual quality. Comparing

the bit allocation to those in Tables 4.6, 4.7, and 4.8, we notice that the larger variance

coefficients are linearly ordered row-wise (starting from the top) for the KLT-based block

quantiser while in the DCT-based block quantiser, they are linearly ordered row-wise and

column-wise. This is because the KLT essentially operates on one dimensional vectors

while the DCT is two-dimensional, transforming both rows and columns.

Figure 4.37 shows the original and reconstructed images at various bitrates of ‘goldhill’,
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Table 4.12: Levels allocation table for DCT-based block quantiser at 1.0 bits/pixel

64 16 8 4 4 2 2 1
16 8 4 4 2 2 2 1
8 4 4 2 2 2 2 1
4 4 2 2 2 2 1 1
4 2 2 2 2 1 1 1
2 2 2 1 1 1 1 1
2 2 1 1 1 1 1 1
2 1 1 1 1 1 1 1

which was part of the training set. Like the KLT-based block quantiser, the reconstructed

images exhibit a high degree of block artifacts and graininess at the low bitrates and

these gradually reduce as the bitrate is increased. Though the PSNRs of the DCT-based

block quantiser are slightly lower than those of the KLT-based block quantiser, subjective

comparison of the reconstructed images shows minimal visual differences.

Looking at Figure 4.37(b), it can be seen that there is a high degree of block artifacts

and graininess, especially in the sky, at a bitrate of 0.25 bits/pixel. At 0.5 bits/pixel

(Figure 4.35(c)), the granular noise and block artifacts have been reduced, particularly

in the sky and the walls of the white houses. At 1 bit/pixel (Figure 4.35(d)), the block

artifacts have been considerably reduced though there is a slight amount of granular noise.

As mentioned previously, this granular noise that spatially occurs within the block is due

to the noise introduced by coarse coefficient quantisation in the transform domain. As

the bitrate is increased, and more and more bits are allocated to these high frequency

coefficients, the noise in the spatial domain is reduced.

4.7.3 The K-Means-Based Multiple Transform Block Quantiser

This is the quantisation scheme described in Section 2.4.3, where the vector space is

partitioned into m disjoint regions using the K-means clustering algorithm and multiple

block quantisers are designed for the vectors belonging to each region. This scheme is

expected to perform better than the single transform block quantiser of the previous

section because it does not assume correlation to be uniform throughout the vector space.

The clustering process is unsupervised and is done via the K-means algorithm, which

minimises the MSE between the vectors and the closest centroid.

Table 4.13 shows the PSNRs of all images as a function of the number of clusters
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Figure 4.37: Results of the ‘goldhill’ image at various bitrates (part of training set) using
the DCT-based block quantiser: (a) original 8-bit image; (b) 0.25 bits/pixel (PSNR=25.91
dB); (c) 0.5 bits/pixel (PSNR=27.78 dB); (d) 1.0 bits/pixel (PSNR=30.21 dB)
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(d)

(a)
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Figure 4.38: Results of the ‘boat’ image at various bitrates (not part of training set) using
the DCT-based block quantiser: (a) original 8-bit image; (b) 0.25 bits/pixel (PSNR=24.06
dB); (c) 0.5 bits/pixel (PSNR=25.76 dB); (d) 1.0 bits/pixel (PSNR=27.88 dB)
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Table 4.13: PSNR as a function of number of clusters for the K-means-based multiple
transform block quantiser at 0.5 bits/pixel

Image Name
PSNR (in dB)

2 clusters 4 clusters 8 clusters 16 clusters

baboon 23.05 23.10 23.13 23.45
barbara 24.15 24.18 24.25 24.55
fruits 27.39 27.43 27.43 28.52
lena 29.01 28.83 28.72 29.34

peppers 28.75 28.51 28.49 29.14
sailboat 26.83 27.09 27.19 27.79

man 25.17 25.18 25.23 25.66
goldhill 29.07 28.96 28.94 29.18
bridge 25.04 25.06 25.04 25.42

jet 27.06 27.28 27.54 28.65
pyramid 28.95 28.76 28.70 29.14

aero 28.53 28.77 28.82 29.12
einstein 30.82 30.30 30.04 30.62

hat 28.38 28.39 28.41 29.24
london 29.85 29.71 29.91 30.00
tekboat 21.19 21.28 21.27 22.10
tekrose 19.14 19.28 19.29 20.06

loco 22.69 22.75 22.77 23.69

boat 27.00 26.95 26.88 27.40
kids 23.77 23.76 23.76 24.12

crowd 19.11 19.32 19.33 20.35
couple 31.34 30.78 30.72 31.11
mill 23.10 23.19 23.22 23.77

vegas 29.34 29.36 29.52 29.96
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Table 4.14: Levels allocation table for cluster 1 of 4 cluster K-means-based multiple trans-
form block quantiser at 0.5 bits/pixel

15 7 7 4 4 4 3 3
2 2 2 2 2 2 2 2
2 2 2 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

at 0.5 bits/pixel. Comparing with the 0.5 bits/pixel column of Table 4.5, we can say

that using multiple transforms has resulted in an improvement in PSNR. However, there

is no consistent trend as the number of clusters are increased. For most of the images,

the PSNR increases as we use more clusters. However, for some images (such as ‘lena’,

‘peppers’, ‘goldhill’, etc.), the PSNR decreases slightly as we use more clusters and then

increases again. Thus we can infer that there are some regions produced by the K-means

algorithm that are not quantised optimally by the local KLT-based block quantisers. An

important factor that affects the performance of the KLT-based block quantiser is the

PDF of the input vectors. As we have previously mentioned, the KLT always produces

independent coefficients when the input vectors are produced by a correlated Gaussian

source. These independent coefficients will also be Gaussian and hence the Lloyd-Max

scalar quantisers will code them efficiently. Because the K-means algorithm classifies

vector space based on Euclidean distance only, then there will be no guarantee that the

vectors within each Voronoi region are Gaussian. This explains why for a certain number

of clusters, the performance of the block quantisers decreases, because the new Voronoi

regions are not well suited to be quantised. Hence, there arises the need for the joint design

of the transform and quantiser in the adaptive transform coding [13, 40, 43]. However, as

we have mentioned before, the advantage of the K-means-based multiple transform block

quantiser is bitrate scalability, thus it is favourable to use predefined quantisers such as

Lloyd-Max that are known by both the encoder and decoder.

Figures 4.39 and 4.40 show the original and compressed versions of the images ‘goldhill’

and ‘boat’, respectively. In both Figures, there is a noticeable improvement in visual

quality as we use more clusters. That is, the images become cleaner and have less granular

noise in the smooth regions. Tables 4.14, 4.15, 4.16 and 4.17 show the level allocations
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(a)
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Figure 4.39: Results of the ‘goldhill’ image (part of training set) using the K-means-based
multiple transform block quantiser with varying number of clusters at 0.5 bits/pixel: (a)
original 8-bit image; (b) 1 cluster (PSNR=28.08 dB); (c) 4 clusters (PSNR=28.96 dB);
(d) 16 clusters (PSNR=29.18 dB)

Table 4.15: Levels allocation table for cluster 2 of 4 cluster K-means-based multiple trans-
form block quantiser at 0.5 bits/pixel

11 10 9 5 4 4 3 3
3 3 3 2 2 2 2 2
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
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(d)
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Figure 4.40: Results of the ‘boat’ image at various bitrates (not part of training set) using
the K-means-based multiple transform block quantiser at 0.5 bits/pixel: (a) original 8-bit
image; (b) 1 cluster (PSNR=26.02 dB); (c) 4 clusters (PSNR=26.95 dB); (d) 16 clusters
(PSNR=27.40 dB)

Table 4.16: Levels allocation table for cluster 3 of 4 cluster K-means-based multiple trans-
form block quantiser at 0.5 bits/pixel

10 10 9 5 4 4 3 3
3 3 2 2 2 2 2 2
2 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1



Chapter 4 Lossy Image Coding 167

Table 4.17: Levels allocation table for cluster 4 of 4 cluster K-means-based multiple trans-
form block quantiser at 0.5 bits/pixel

12 6 6 5 5 4 3 3
3 3 2 2 2 2 2 2
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

for the block quantiser of each cluster. Because the allocation is performed on the basis

of variance, we can see that the vectors belonging to each cluster have slightly different

statistics. Notice, however, that there is not that much variation in the quantiser level

allocations. That is, the low and high frequency transform coefficients for each cluster are

allocated a similar proportion of the bit budget.

4.8 Application of the GMM-Based Block Quantiser

In this section, we evaluate the GMM-based block quantiser in an image coding scenario

using two different transforms. The KLT-based scheme is expected to perform the best

while the DCT-based one should achieve slightly worse performance, though the benefits of

source modelling using a GMM should be present. The GMM-DCT-based block quantiser

has a lower computational complexity and this will be informally compared via computa-

tion times. The GMM-based block quantiser will be compared with the traditional block

quantiser and the K-means-based multiple transform block quantiser. Compared with the

former, the differences are the use of a GMM for representing the source PDF in addition

to multiple KLTs. Compared with the latter, the differences are the a priori assump-

tion of Gaussian cluster PDFs and the use of the EM algorithm after the initial K-means

clustering process.

4.8.1 The GMM-Based Block Quantiser

Table 4.18 shows the PSNRs as a function of the number of clusters for the GMM-based

block quantiser at 0.5 bits/pixel. Compared to the performance of the traditional block
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Table 4.18: PSNR as a function of number of clusters for the GMM-based block quantiser
at 0.5 bits/pixel

Image Name
PSNR (in dB)

2 clusters 4 clusters 8 clusters 16 clusters

baboon 23.31 23.45 23.64 23.97
barbara 24.39 24.68 25.24 26.06
fruits 28.73 29.22 29.66 30.17
lena 30.35 30.90 31.27 31.86

peppers 30.19 30.58 31.19 31.89
sailboat 27.89 28.11 28.30 28.70

man 25.81 26.00 26.33 26.66
goldhill 29.66 29.96 30.15 30.53
bridge 25.34 25.39 25.59 25.82

jet 28.50 28.78 29.14 29.92
pyramid 30.28 30.61 30.89 31.32

aero 29.48 29.78 29.99 30.32
einstein 32.92 33.58 33.87 34.21

hat 29.67 30.25 30.66 31.26
london 30.64 31.11 31.47 31.95
tekboat 21.99 22.28 22.56 22.99
tekrose 20.03 20.32 20.55 20.75

loco 23.68 24.05 24.44 24.86

boat 27.81 28.11 28.54 29.03
kids 24.28 24.45 24.72 24.98

crowd 20.19 20.50 20.82 21.15
couple 34.55 36.52 36.89 37.47
mill 23.64 23.85 24.23 24.64
vegas 30.19 30.70 30.96 31.34
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Figure 4.41: Plot of PSNR as a function of bitrate of GMM-based block quantisation of
‘boat’ with varying number of clusters

quantiser in Table 4.5, which uses a single KLT and assumes the source PDF to be Gaus-

sian, we can see that the GMM-based block quantiser achieves higher PSNRs—by as much

as 4 dB on the ‘vegas’ image12. Furthermore, as we increase the number of clusters, the

PSNR always improves, unlike the inconsistent K-means-based multiple transform block

quantiser of the previous section. That is, going from 2 clusters to 16 clusters results in

a PSNR increase of 0.6 dB to as much as 2 dB. This may be attributed to the better

estimation of the source PDF by a GMM that has more clusters. Figure 4.41 shows the

PSNR as a function of bitrate and number of clusters for the image ‘boat’. As we can see,

increasing the number of clusters improves the PSNR for all bitrates.

Comparing these results with those of the K-means multiple transform block quantiser

in Table 4.13, the GMM-based block quantiser always achieves higher PSNRs. This is

quite an interesting observation because both quantisation schemes are essentially simi-

lar, apart from the a priori assumption of Gaussian distributed clusters, which leads to

the application of the EM algorithm, as well as the resultant GMM clusters with soft

12Note that the ‘couple’ image has shown a much larger 8 dB improvement in PSNR. It would appear
that this is an outlier since the other PSNR improvements are not of the same magnitude.
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(b)

(d)

(a)

(c)

Figure 4.42: Results of the ‘goldhill’ image (part of training set) using the GMM-based
block quantiser with varying number of clusters at 0.5 bits/pixel: (a) original 8-bit im-
age; (b) 1 cluster (PSNR=28.08 dB); (c) 4 clusters (PSNR=29.96 dB); (d) 16 clusters
(PSNR=30.53 dB)

boundaries, based on minimum quantiser distortion. It would appear that the individual

cluster block quantisers inside the GMM framework are operating more efficiently, in a

rate-distortion sense, than those in the K-means framework. As we have discussed previ-

ously, in the GMM framework (with hidden data), each vector is assumed to be generated

by one of the Gaussian processes, governed by the mixture probabilities. Based on this

view, each cluster block quantiser is operating on vectors that are generated by a specific

Gaussian source, which satisfies the MSE optimality condition of the KLT. On the other

hand, the block quantisers in the K-means framework operate on vectors that are under

no assumption of having been generated by a Gaussian source but instead, are classified

together based on the minimum unweighted Euclidean distance.
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Figure 4.43: Results of the ‘boat’ image at various bitrates (not part of training set) using
the GMM-based block quantiser at 0.5 bits/pixel: (a) original 8-bit image; (b) 1 cluster
(PSNR=26.02 dB); (c) 4 clusters (PSNR=28.11 dB); (d) 16 clusters (PSNR=29.03 dB)
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Figures 4.42 and 4.43 show the original and compressed versions of ‘goldhill’ and ‘boat’

using the GMM-based block quantiser at 0.5 bits/pixel, respectively. The 1 cluster GMM-

based block quantiser is essentially the same as the traditional block quantiser. Comparing

Figures 4.42(c) and (d) with (b), we can see a noticeable improvement in visual quality

over the traditional block quantiser. There is considerably reduced graininess and less

block artifacts. Comparing the 4 cluster and 16 cluster GMM-based block quantiser in

Figures 4.42(c) and (d), respectively, there is some noticeable granular noise on the edge

between the white walled house in the centre of the picture and the grey walled house to

its left, which does not appear in the 16 cluster version.

Looking at Figure 4.43, the granular noise observed with traditional block quantisation

is considerably reduced in the GMM-based block quantised versions, especially in the sky.

In the 4 cluster scheme (Figure 4.43(c)), there are some block artifacts on the diagonal

masts of the boat which are reduced in the 16 cluster scheme. These improvements can

be explained by looking at the quantiser level allocation tables (Tables 4.19, 4.20, 4.21

and 4.22) of the 4 cluster GMM-based block quantiser. In cluster 4, the first component

has been given 256 levels or 8 bits while the other clusters have been allocated much

less. Assuming each component to be related to frequency, we can say that cluster 4 has

allocated more of the bit budget to low frequencies (smooth regions) while in clusters 1,

2, and 3, the bit budget is spread to higher frequency components. Because edges cause

energy to be spread throughout the transform domain, then images with a large amount of

edges are expected to require more bits in the high frequencies. In order to see this effect,

Table 4.23 shows the number of vectors per cluster block quantiser, for three images. The

‘fruits’ image contains a lot of smooth regions while the images, ‘barbara’ and ‘baboon’

tend to contain more edges. We can see that more blocks were quantised using cluster

4 for the ‘fruits’ image than the other clusters while in the other two images, a higher

proportion of blocks were quantised by clusters 1, 2 and 3. Therefore, we can say that

the GMM-based block quantiser has effectively classified the image blocks based on image

activity and designed appropriate KLTs and bit allocations for each class.

We mentioned previously that the cluster allocations for the K-means-based scheme

showed little variation or adaptivity among the clusters. For example, the levels allocated

to the first transform coefficient of each cluster were very similar (15, 11, 10, 12). For

the GMM-based scheme, there is quite a lot of variation and adaptivity in the cluster
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Table 4.19: Levels allocation table for cluster 1 of 4 cluster GMM-based block quantiser
at 0.5 bits/pixel

81 12 11 5 4 4 3 3
2 2 2 2 2 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Table 4.20: Levels allocation table for cluster 2 of 4 cluster GMM-based block quantiser
at 0.5 bits/pixel

17 7 7 4 4 4 3 3
3 3 3 2 2 2 2 2
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

allocations (81, 17, 21, 256). If we view the clustering process as a classification of image

blocks, then it would appear that the K-means-based scheme produces classes which are

‘close’ to each other and have similar statistics, whereas the GMM-based scheme produces

classes that are ‘far’ apart and have different statistics. Because images are non-stationary,

it is desirable for an adaptive transform coding scheme to capture most of the variability.

If we compare Figures 4.42 and 4.43 with 4.39 and 4.40, respectively, we can see that

the quality of the 16 cluster GMM-based block quantised images is better than the 16

cluster K-means multiple transform block quantiser. There is less granular noise in the

GMM-based scheme because there are clusters which have more quantiser levels assigned

in the high frequency components compared with those of the K-means-based multiple

transform block quantiser, which have less variation in their quantiser level allocations.
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Table 4.21: Levels allocation table for cluster 3 of 4 cluster GMM-based block quantiser
at 0.5 bits/pixel

21 7 6 4 4 4 3 3
3 2 2 2 2 2 2 2
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Table 4.22: Levels allocation table for cluster 4 of 4 cluster GMM-based block quantiser
at 0.5 bits/pixel

256 8 7 3 2 2 2 2
2 2 2 2 2 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Table 4.23: Cluster densities for the 4 cluster GMM-based block quantiser at 0.5 bits/pixel

Cluster number
Number of vectors per cluster
‘fruits’ ‘barbara’ ‘baboon’

1 1499 1487 1393
2 327 857 1195
3 256 618 1215
4 2014 1134 193

Table 4.24: PSNR performance of the fixed-rate (2 bits/pixel), 4 cluster GMM-based block
quantiser using integer and fractional bit-based cluster block quantisers (underallocation)
on images that were part of the training set

Image Name
PSNR (dB)

Integer Fractional

lena 38.32 38.38
Einstein 41.06 41.12
jet 36.37 36.50
goldhill 37.25 37.32
hat 37.38 37.44
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Table 4.25: PSNR performance of the fixed-rate (2 bits/pixel), 4 cluster GMM-based block
quantiser using integer and fractional bit-based cluster block quantisers (underallocation)
on images that were not part of the training set

Image Name
PSNR (dB)

Integer Fractional

boat 34.76 34.81
kids 29.55 29.57
crowd 26.96 27.02
mill 30.48 30.52
vegas 38.49 38.58

Table 4.26: PSNR performance of the fixed-rate (0.15 bits/pixel), 4 cluster GMM-based
block quantiser using integer and fractional bit-based cluster block quantisers (overalloca-
tion) on images that were part of the training set

Image Name
PSNR (dB)

Integer Fractional

lena 24.81 25.50
Einstein 26.33 27.39
jet 22.60 23.67
goldhill 24.83 25.46
hat 24.08 24.60

Table 4.27: PSNR performance of the fixed-rate (0.15 bits/pixel), 4 cluster GMM-based
block quantiser using integer and fractional bit-based cluster block quantisers (overalloca-
tion) on images that were not part of the training set

Image Name
PSNR (dB)

Integer Fractional

boat 23.32 23.95
kids 21.52 21.92
crowd 17.09 17.16
mill 20.61 20.71
vegas 24.06 24.35
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Table 4.28: Effective bitrates for each cluster at 2 bits/pixel

Cluster
Target Integer Fractional

Bitrate Total Bits Bitrate Total Bits Bit Rate Total Bits

1 1.943308 124.371726 1.9375 124 1.943224 124.366336
2 1.966590 125.861752 1.953125 125 1.966462 125.853568
3 1.991375 127.44803 1.984375 127 1.991121 127.431744
4 1.895964 121.341682 1.890625 121 1.895655 121.32192

4.8.2 Comparison Between Integer and Fractional Bit-Based Cluster

Block Quantisers in the GMM-Based Block Quantiser

In this section, we investigate the performance of the GMM-based block quantiser which

uses integer and fractional bit-based cluster block quantisers. In the integer bit-based

scheme, the number of bits allocated to each cluster is truncated and then further allocated

to each of the transform coefficients, where further truncation is performed. If the bitrate

is high, then the bit allocation formula will tend to underallocate, due to the truncation.

If the bitrate is low, then the bit allocation formula will tend to overallocate, due to the

zeroing of negative values.

Tables 4.24 and 4.26 show the PSNR results for training images of both cases of

underallocation and overallocation, respectively. It can be seen that a small increase in

PSNR has been achieved through better utilisation of the bit budget when using fractional

bits rather than with integer bits. The benefits of using fractional bits are more evident at

low bitrates. At 0.15 bits/pixel, the results for the images ‘Einstein’ and ‘jet’ show a 1 dB

improvement in PSNR while other images gain about 0.6 dB which is more significant than

those observed at 2 bits/pixel. Tables 4.25 and 4.27 show the PSNR results for images

that were not part of the training set. As before, better utilisation of the bit budget has

led to a slightly higher PSNR.

These performance improvements may be explained by Table 4.29 which shows the

effective bitrate compared with the target bitrate of each cluster block quantiser. In Table

4.29, the total fractional bits for cluster 1 is roughly 5.97 bits. For the integer bit-based

cluster block quantiser, this total is truncated to 5 bits (32 levels), hence 0.97 bits are not

utilised. While for the fractional bit-based cluster block quantiser, the total equivalent

bits is approximately 5.9 bits (60 levels). The increase in the performance may also be due
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Table 4.29: Effective bitrates for each cluster at 0.15 bits/pixel

Cluster
Target Integer Fractional

Bitrate Total Bits Bit Rate Total Bits Bitrate Total Bits

1 0.093308 5.971726 0.078125 5 0.092295 5.90688
2 0.116590 7.461752 0.109375 7 0.116554 7.459456
3 0.141375 9.048003 0.140625 9 0.141375 9
4 0.045964 2.941682 0.03125 2 0.043865 2.80736

to the fact that the optimality of the constrained minimisation formula of (2.66) is better

preserved in fractional bit encoding. For the integer bit case, fractional parts calculated

from the formula are discarded and a heuristic algorithm is then used to compensate the

truncated bits. The heuristic algorithm is itself dependent on various assumptions and

approximations and may only produce a suboptimal solution. On the other hand, most

of the fractions from (2.66) are preserved when converting from bits to the levels since

the truncation occurs after the conversion. For example, consider a bitrate of 5.9 bits

calculated from (2.66). In the integer bit case, this bitrate would truncated to 5 bits

or 32 levels. In the fractional bit case, converting to levels gives 25.9 = 59.714 and after

truncation results in 59 levels. By changing the point at which truncation is performed, an

extra 27 quantiser levels are preserved. Therefore, it is expected that fractional bit-based

coding allows us to get closer to the values specified by the Lagrangian-minimised formula

and have less dependence on the use of heuristics and high resolution approximations.

4.8.3 The GMM-DCT-Based Block Quantiser

In this section, we present the results of our modified scheme which uses a GMM to model

the distribution of DCT coefficients. The advantage of this method is speed, due to less

transform operations, while maintaining similar quantiser distortion performance as the

KLT-based scheme.

Table 4.30 shows the PSNRs as a function of the number of clusters for the GMM-DCT-

based block quantiser at 0.5 bits/pixel. Compared to the performance of the traditional

block quantiser using the KLT and DCT in Tables 4.5 and 4.9, respectively, we can see

that the GMM-DCT-based block quantiser achieves higher PSNRs. Furthermore, as we

increase the number of clusters, the PSNR always improves, which is consistent with the

notion that more accurate modelling of the PDF using a GMM leads to better quantisation
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Table 4.30: PSNR as a function of number of clusters for the GMM-DCT-based block
quantiser at 0.5 bits/pixel

Image Name
PSNR (in dB)

2 clusters 4 clusters 8 clusters 16 clusters

baboon 23.18 23.25 23.60 23.84
barbara 24.29 24.36 24.80 25.46
fruits 28.61 28.98 29.50 29.92
lena 30.11 30.38 31.03 31.43

peppers 29.83 29.96 31.01 31.60
sailboat 27.68 27.73 28.17 28.46

man 25.67 25.77 26.26 26.48
goldhill 29.47 29.68 30.02 30.40
bridge 25.17 25.18 25.53 25.71

jet 28.15 28.28 29.07 29.53
pyramid 29.99 30.15 30.72 31.06

aero 29.25 29.44 29.74 29.98
einstein 32.77 33.21 33.57 33.93

hat 29.59 29.94 30.42 30.85
london 30.41 30.65 31.44 31.79
tekboat 21.75 21.93 22.50 22.88
tekrose 19.91 20.19 20.44 20.67

loco 23.48 23.75 24.33 24.77

boat 27.57 27.70 28.39 28.73
kids 24.20 24.32 24.67 24.90

crowd 20.00 20.29 20.73 21.04
couple 34.33 35.78 36.27 36.84
mill 23.41 23.53 24.17 24.52
vegas 30.07 30.39 30.68 31.00
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Figure 4.44: Plot of PSNR as a function of bitrate of GMM-DCT-based block quantisation
of ‘boat’ with varying number of clusters

performance. As expected, the GMM-DCT-based block quantiser performs slightly worse

though the difference in PSNR is often less than 0.5 dB. Given the fact that using the

same fixed transform for each cluster results in such minor degradation in PSNR, we may

conclude that, for image coding, the gains in quantisation performance, achieved through

GMM-based block quantisation, are mostly due to the source modelling aspect, rather than

using locally adaptive decorrelating transforms. This is further demonstrated in Figure

4.44, where we have plotted the PSNR as a function of bitrate and varying number of

clusters. We can observe that the PSNR increases as we use more clusters. It is apparent

that these gains are mostly due to the accurate PDF modelling, rather than the transform

which is fixed.

The improvements to image quality resulting from more accurate modelling of the PDF

can be seen in Figure 4.45 where the image ‘goldhill’ was compressed using traditional DCT

block quantisation (single Gaussian) as well as using the improved GMM-DCT-based block

quantiser at a bitrate of 0.5 bits/pixel. In Figure 4.45(b), it can be seen that the sky as

well as the ground looks very grainy. Also, there is a large degree of blocked distortion
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(b)

(d)

(a)

(c)

Figure 4.45: Results of the ‘goldhill’ image (part of training set) using the GMM-DCT-
based block quantiser with varying number of clusters at 0.5 bits/pixel: (a) original 8-bit
image; (b) 1 cluster (PSNR=27.78 dB); (c) 4 clusters (PSNR=29.68 dB); (d) 16 clusters
(PSNR=30.40 dB)



Chapter 4 Lossy Image Coding 181

(b)

(d)

(a)

(c)

Figure 4.46: Results of the ‘boat’ image at various bitrates (not part of training set) using
the GMM-based block quantiser at 0.5 bits/pixel: (a) original 8-bit image; (b) 1 cluster
(PSNR=25.76 dB); (c) 4 clusters (PSNR=27.70 dB); (d) 16 clusters (PSNR=28.73 dB)
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Table 4.31: Levels allocation table for cluster 1 of 4 cluster GMM-DCT-based block quan-
tiser at 0.5 bits/pixel

86 11 4 2 1 1 1 1
11 4 2 1 1 1 1 1
5 3 2 1 1 1 1 1
3 2 1 1 1 1 1 1
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Table 4.32: Levels allocation table for cluster 2 of 4 cluster GMM-DCT-based block quan-
tiser at 0.5 bits/pixel

17 7 4 3 2 1 1 1
7 4 3 2 1 1 1 1
4 3 2 1 1 1 1 1
3 2 2 1 1 1 1 1
3 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

observable in region of the houses, especially on the edges of the white house in the centre

of the picture. By using a 4 cluster GMM to model the PDF, one can see in Figure

4.45(c) that the sky and ground area appear much smoother. There is some granular

distortion near the edge of the white house in the centre of the picture and the grey house

to its left. In Figure 4.45(d), where a 16 cluster GMM is used, the sky and ground are

considerably smoother and less noisy and distortions in the fields has been considerably

reduced. Similarly, Figure 4.46 shows the image ‘boat’ which is not part of the training set.

In Figure 4.46(b), where a traditional DCT-based block quantiser was used, the smooth

areas such as the sky and the black bottom of the boat are very grainy. There is also block

distortion on the white sides of the boat. It can be observed that in Figures 4.46(c) and

(d), as more clusters are used, the graininess of the smooth regions has been reduced as

well as the block distortions. Also, the block artifacts on the diagonal masts of the boat

are reduced as we increase the number of clusters.

Tables 4.31, 4.32, 4.33 and 4.34 show the quantiser level allocations of a 4 cluster

GMM-DCT-based block quantiser. We can see that the DC coefficient of cluster 4 has been

allocated 256 levels (8 bits), thus it is adapted for smooth, slow changing regions, while
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Table 4.33: Levels allocation table for cluster 3 of 4 cluster GMM-DCT-based block quan-
tiser at 0.5 bits/pixel

21 6 4 2 2 1 1 1
7 4 3 2 2 1 1 1
4 3 2 2 1 1 1 1
3 2 2 1 1 1 1 1
2 2 1 1 1 1 1 1
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Table 4.34: Levels allocation table for cluster 4 of 4 cluster GMM-DCT-based block quan-
tiser at 0.5 bits/pixel

256 7 2 2 1 1 1 1
7 2 2 1 1 1 1 1
3 2 2 1 1 1 1 1
2 2 1 1 1 1 1 1
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

the other clusters (particularly, cluster 2 and 3) have more quantiser levels allocated to the

higher frequency coefficients, which capture most of the energy of fast changing regions

such as edges and textures. To see the distributions of these clusters, Table 4.35 shows the

cluster densities of the 4 cluster GMM-DCT-based block quantiser at 0.5 bits/pixel. For

the image ‘fruits’, where there are comparatively more smooth regions, a large proportion

of image blocks have been quantised by cluster 1 and 4, which have more levels allocated

to the DC coefficient. For the other images, especially ‘baboon’, which contains a large

amount of edge activity, a large proportion of image blocks have been quantised using

clusters 1, 2, and 3 with cluster 4 accounting for less than 5% of the total image blocks.

At the expense of slightly degraded performance, using the DCT results in less compu-

tations. Table 4.36 shows the average time, in seconds, it takes to quantise 19 test images

at a bitrate of 1 bit per pixel. In total, 77824 image blocks were quantised on an Intel

Pentium 4 system running at 2.4 GHz. The number of clusters was increased (2, 4, 8, 16)

and the performance times are averaged. It can be seen that the DCT version of the coder

is considerably faster than the KLT-based one. It is expected that the differences in time

would be even more if better optimised DCT algorithms were used.
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Table 4.35: Cluster densities for the 4 cluster GMM-DCT-based block quantiser at 0.5
bits/pixel

Cluster number
Number of vectors per cluster
‘fruits’ ‘barbara’ ‘baboon’

1 1534 1529 1376
2 343 1054 1285
3 257 441 1256
4 1962 1081 179

Table 4.36: Comparison of average processing times between the GMM-KLT and GMM-
DCT-based block quantiser (in seconds)

No. of clusters GMM-DCT GMM-KLT

2 6.5 14.8
4 8.6 30.6
8 13.2 59.5
16 21.5 120

4.9 Reducing Block Artifacts in the GMM-Based Block

Quantiser Using Wavelet Pre-Processing

One of the disadvantages of block-based coding schemes, such as transform coders and

vector quantisers, is the presence of block artifacts in the reconstructed image. Popular

methods for reducing block artifacts include using block overlapping, post-filtering [145],

and the lapped orthogonal transform (LOT) [110]. Subband and wavelet transform-based

image coders do not suffer from this problem since the transformation operates on the

entire image rather than on individual blocks [20]. In this section, we investigate the ap-

plication of the GMM-based block quantiser on image wavelet coefficients, as an alternative

method for reducing the block artifacts in the reconstructed image. In this framework, the

discrete wavelet transform may be viewed as a pre-processing step before quantisation.

The first issue is extracting the vectors or blocks from the wavelet transform of an

image. Most subband decomposition and wavelet transform-based coding schemes employ

different quantisers for each subimage. For example, in the wavelet coder of Antonini et al.

[7], the lowest subimage is quantised using a scalar quantiser, while the higher subbands are

vector quantised at varying bitrates with different resolution codebooks. In this respect, we
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Figure 4.47: Wavelet tree structure for extracting vectors from the same spatial location
(after [158]). The wavelet coefficients shown above are concatenated to form one block or
vector for quantisation.

can quantise the lowest subimage using the GMM-based block quantiser, since it contains

a large amount of correlation while the other higher subimages can be quantised using

scalar quantisers that are PDF optimised for a Laplacian distribution [142]. However, the

bit budget needs to be allocated (often arbitrarily) to each of the individual quantisation

schemes which can complicate the design. Also, artifacts in the lowest (LL) subimage tend

to have a much larger impact on the reconstructed image because it contains the most

variance or energy, which explains why high bitrate scalar quantisation schemes are often

used, such as the one in [7], since block-based quantisers introduce block artifacts.

Therefore, we have chosen to adopt the hierarchical tree structure, first introduced by

Lewis and Knowles [98] and used by Shapiro [158] for representing zerotrees, where each

coefficient in the low resolution subimages have descendants in the same spatial location

in the upper (higher resolution) subimages. For simplicity, we concatenate the wavelet

trees in all three directions into a single vector. Figure 4.47 shows the coefficients of three

wavelet trees branching from a common node in the lowest subimage. Vectors are formed

in the following way: [LL3 LH3 HL3 HH3 LH2 HL2 HH2 LH1 HL1 HH1]. We first make

a few observations of the vectors derived from these wavelet trees.

Firstly, the discrete wavelet transform has an energy compaction property that is simi-
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lar to the KLT. That is, most of the image energy is concentrated into a few coefficients in

the lowest subimage while the higher subimages contain sparse coefficients. The wavelet

tree vectors have their energy compacted into the first coefficient. Secondly, the quanti-

sation distortion in the lowest subimage is limited to individual scalars while the block

size is dyadically increased as we go to higher and higher subimages. This prevents block

artifacts from appearing in the lowest subimage which may have a large impact on the final

reconstructed image. Lastly, it has been proposed by Shapiro [158], that the coefficients

within these wavelet trees, are correlated to a degree. That is, if a coefficient is ‘insignifi-

cant’ (less than a predetermined threshold), then there is a likelihood that its descendants

will be insignificant as well. Because these wavelet trees tend to group together wavelet

coefficients exhibiting self-similarity in the higher subimages, then they appear to be good

candidates for block quantisation as the decorrelation allows the removal of redundancy.

It is therefore expected that block artifacts, as a result of the block quantisation, are

reduced in this modified scheme since the most sensitive subimage (the lowest subimage)

is effectively scalar quantised while the block size is gradually increased as we go up to

finer resolutions. Also, the estimation of the PDF of coefficients in the lowest subimage

by the GMM will increase the efficiency of scalar quantisation. Furthermore, the bit

allocation to the components can be performed easily using closed-form expressions rather

than arbitrarily or heuristically. The disadvantage of this scheme is that correlation within

the lowest subimage is not exploited by the GMM-based block quantiser. It is expected

that the predictive GMM-based block quantiser will do better, in this regard. Also, the

higher subimages typically have Laplacian PDFs, which may not be well suited for GMM

estimation. Finally, the wavelet transform (and its inverse) incurs further computational

complexity on the GMM-based block quantiser. Therefore, it is not expected that this

scheme will be competitive with state-of-the-art wavelet coders such as EZW and SPIHT.

What it will highlight, however, is that a pre-processing of the image data using the

discrete wavelet transform followed by a unique block extraction, that takes into account

spatial locality [98] and interband correlation, leads to the reduction of block artifacts,

which are typical of transform coding schemes. It is expected that the block artifacts will

be more or less replaced by some edge ringing and smoothing of fine detail, which are

typical of wavelet image coders.
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Table 4.37: PSNR of the 16 cluster GMM-based block quantiser at 0.5 bits/pixel with and
without the wavelet transform pre-processing

Image Name
PSNR (in dB) at 0.5 bits/pixel

With wavelet transform Without wavelet transform

baboon 24.07 23.97
barbara 26.75 26.06
fruits 30.62 30.17
lena 32.62 31.86

peppers 32.54 31.89
sailboat 29.27 28.70

man 27.09 26.66
goldhill 31.06 30.53
bridge 26.13 25.82

jet 30.22 29.92
pyramid 31.78 31.32

aero 31.22 30.32
einstein 34.78 34.21

hat 32.67 31.26
london 32.38 31.95
tekboat 23.33 22.99
tekrose 21.00 20.75

loco 25.11 24.86

boat 29.59 29.03
kids 25.14 24.98

crowd 21.57 21.15
couple 39.11 37.47
mill 24.83 24.64

vegas 32.34 31.34

4.9.1 Experimental Setup

In our experiments, we perform a three level discrete wavelet transform using the 9/7-tap

biorthogonal wavelets from [7]. Symmetric extension is used when filtering the boundaries

of the image. The vectors formed from the wavelet trees have a dimension of 64, as shown

in Figure 4.47. Therefore, the effective number of vectors or blocks is the same as the

GMM-based block quantiser using 8 × 8 spatial blocks. We have used 20 iterations of the

EM algorithm to estimate a 16 cluster GMM.
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4.9.2 Results and Discussion

Table 4.37 shows the PSNRs of all images in the training and testing set at a bitrate of 0.5

bits/pixel for the GMM-based block quantiser with and without the wavelet transform.

Note that the PSNRs of the latter case are the same as those in the last column of Table

4.18. We observe that there is a finite PSNR improvement of up to 1 dB13, when we apply

the wavelet transform pre-processing step.

In order to see the visual quality, Figures 4.48, 4.49, and 4.50 show a comparison be-

tween the reconstructed images from the GMM-based block quantiser with and without

the wavelet transform. We can see that, particularly in the zoomed up regions, the mod-

ified scheme has reduced the block artifacts. However there is some degree of smoothing

of detail and ringing, particularly in the image ‘boat’ on the diagonal masts of the boat.

These are typical artifacts observed in subband and wavelet coders [142].

In order to see the effect of quantisation, Figure 4.51 shows the original wavelet trans-

forms of three images, ‘man’, ‘vegas’, and ‘barbara’, as well as the quantised versions at

0.5 bits/pixel. In these images, we can see that our modified scheme preserves important

detail that occurs in the same relative spatial location of the high frequency subimages.

Also, it appears that details in the highest frequency subimages have been discarded by

the scheme, which is similar to what is normally done in other wavelet coders such as [7].

In summary, using the wavelet transform as a pre-processing step has reduced block

artifacts in the GMM-based block quantisation of images. Furthermore, at the same

bitrate and vector dimensionality, the addition of wavelet transform pre-processing has

allowed the GMM-based block quantiser to achieve higher PSNRs.

4.10 Chapter Summary

In this chapter, we have presented a comprehensive literature review of image coding tech-

niques, which includes vector quantisation, transform coding, and subband and wavelet-

based coding. Fundamental to image subband coding and image processing in general, is

the non-expansive filtering of data with a finite length. Similar to the procedure given in

[106], the symmetric extension method was examined in depth with examples provided for

13The image ‘couple’ has shown a much larger increase in PSNR than the other images.
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Figure 4.48: Quality comparison of the ‘lena’ image using the GMM-based block quan-
tiser with and without the wavelet transform pre-processing at 0.5 bits/pixel: (a) With-
out wavelet transform pre-processing (PSNR=31.86 dB); (b) with wavelet transform pre-
processing (PSNR=32.62 dB); (c) zoomed up region of image in (a), showing block arti-
facts; (d) zoomed up region of image in (b)
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(a)

(b)

(c)

(d)

Figure 4.49: Quality comparison of the ‘boat’ image using the GMM-based block quan-
tiser with and without the wavelet transform pre-processing at 0.5 bits/pixel: (a) With-
out wavelet transform (PSNR=29.03 dB); (b) with wavelet transform pre-processing
(PSNR=29.59 dB); (c) zoomed up region of image in (a), showing block artifacts; (d)
zoomed up region of image in (b)
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(d)

Figure 4.50: Quality comparison of the ‘barbara’ image using the GMM-based block
quantiser with and without the wavelet transform pre-processing at 0.5 bits/pixel: (a)
Without wavelet transform pre-processing (PSNR=26.06 dB); (b) with wavelet transform
pre-processing (PSNR=26.75 dB); (c) zoomed up region of image in (a), showing block
artifacts; (d) zoomed up region of image in (b)
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Figure 4.51: Comparing the wavelet transform with the quantised version at 0.5 bits/pixel,
showing the preservation of important spatially-localised detail: (a) Wavelet transform of
the image ‘man’; (b) quantised wavelet transform of the image ‘man’; (c) wavelet transform
of the image ‘vegas’; (b) quantised wavelet transform of the image ‘vegas’; (d) wavelet
transform of the image ‘barbara’; (e) quantised wavelet transform of the image ‘barbara’.
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even and odd tapped filters as well as filters with unequal lengths. The remainder of the

chapter was dedicated to the results and discussion of various quantisation schemes, such

as the block quantiser based on the KLT and DCT and the GMM-based block quantiser.

It was shown that the GMM-based block quantiser achieved higher PSNRs and better sub-

jective quality than the traditional fixed-rate block quantiser/transform coder at a given

bitrate, which demonstrates the advantages of accurate source PDF estimation and the

use of multiple decorrelating transforms. Because images are mostly highly correlated and

have Gauss-Markov properties, replacing the KLT with the data dependent DCT should

result in comparable performance. Through PSNRs and visual inspection, we showed

that the GMM-DCT-based block quantiser is comparable in quantisation performance,

with only a fraction of the complexity. Next, a novel and low complexity method of en-

coding fractional bits in a fixed-rate framework and heuristic algorithms for compensating

quantiser levels in bit allocation were evaluated and shown to improve the PSNR slightly.

Finally, we presented a method of pre-processing an image using the wavelet transform

before block quantisation that reduces block artifacts and improves the image quality.

Table 4.38 presents a summary of the PSNR results for all the block quantisation schemes

that were considered in this chapter.
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Table 4.38: Summary of PSNRs for all quantisation schemes considered at 0.5 bits/pixel.
These include: KLT-based block quantiser (KLT); DCT-based block quantiser (DCT); K-
means multiple transform block quantiser (K-means); GMM-KLT-based block quantiser
(GMM-KLT); GMM-KLT-based block quantiser with wavelet pre-processing (GMM-KLT-
WT); GMM-DCT-based block quantiser (GMM-DCT). The number of clusters used is 16
for the K-means and GMM-based block quantisers.

Image Name
PSNR (in dB) at 0.5 bits/pixel

KLT DCT K-means GMM-KLT GMM-KLT-WT GMM-DCT

baboon 22.89 22.75 23.45 23.97 24.07 23.84
barbara 23.75 23.55 24.55 26.06 26.75 25.46
fruits 26.08 25.93 28.52 30.17 30.62 29.92
lena 27.31 27.04 29.34 31.86 32.62 31.43

peppers 27.18 26.80 29.14 31.89 32.54 31.60
sailboat 25.80 25.54 27.79 28.70 29.27 28.46

man 24.67 24.47 25.66 26.66 27.09 26.48
goldhill 24.69 27.78 29.18 30.53 31.06 30.40
bridge 28.08 24.46 25.42 25.82 26.13 25.71

jet 24.69 25.38 28.65 29.92 30.22 29.53
pyramid 27.33 26.99 29.14 31.32 31.78 31.06

aero 27.47 27.13 29.12 30.32 31.22 29.98
einstein 29.00 28.77 30.62 34.21 34.78 33.93

hat 27.07 26.91 29.24 31.26 32.67 30.85
london 27.94 27.54 30.00 31.95 32.38 31.79
tekboat 20.82 20.57 22.10 22.99 23.33 22.88
tekrose 18.90 18.79 20.06 20.75 21.00 20.67

loco 22.18 21.92 23.69 24.86 25.11 24.77
boat 26.02 25.76 27.40 29.03 29.59 28.73
kids 23.14 22.99 24.12 24.98 25.14 24.90

crowd 18.80 18.64 20.35 21.15 21.57 21.04
couple 29.04 28.73 31.11 37.47 39.11 36.84
mill 22.77 22.50 23.77 24.64 24.83 24.52
vegas 27.62 27.35 29.96 31.34 32.34 31.00



Chapter 5

LPC Parameter Quantisation in

Narrowband Speech Coding

5.1 Abstract

In this chapter, we report on the contributions to LPC parameter quantisation in the area

of narrowband speech coding. We first provide a brief review of speech coding, such as

speech production, autoregressive and linear prediction modelling, and LPC speech coders

that have been standardised and adopted by industry. These include the LPC vocoder,

RPE-LTP and the CELP speech coders, which form the basis of numerous low bitrate

speech coding standards. The preservation of filter stability and accurate quantisation

of LPC coefficients in these speech coders is quite important, so various LPC parameter

representations, such as LARs and LSF, that are robust to quantisation errors, will be

reviewed. Finally, the rest of the chapter is dedicated to providing experimental results

of the multi-frame GMM-based block quantiser and switched split vector quantiser on

line spectral frequency (LSF) quantisation as well as discussing how they compare with

other quantisation schemes in terms of spectral distortion, computational complexity, and

memory requirements.

Publications resulting from this research: [130, 166, 169]
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5.2 Preliminaries of Speech Coding

5.2.1 Narrowband versus Wideband Speech

Speech needs to be converted to digital form before being transmitted over band-limited

communication channels. The channels of traditional telephone speech are band-limited

from 300 Hz to 3400 Hz. Hence speech that is recorded from a microphone is initially fil-

tered using an anti-aliasing filter with a cut-off frequency of 3.4 kHz, before being sampled

at 8 kHz at a resolution of 16 bits. The bitrate required to transmit this speech, with no

coding applied, is therefore 128 kbps. This is termed as telephone or narrowband speech

(300–3400 Hz) [124].

With the introduction of high-speed data services in wireless communication systems,

speech of wider bandwidth can be accommodated [19]. Wideband speech (50–7000 Hz) is

sampled at 16 kHz and, compared with narrowband speech, has improved naturalness and

intelligibility due to the added bandwidth. For more information about wideband speech

coding, the reader should refer to Chapter 6.

5.2.2 Speech Production

Speech sounds can be broadly classified as either voiced or unvoiced. Voiced sounds, which

include vowels such as /iy/ (as in see) and nasal sounds, such as /m/, are periodic and

possess a harmonic structure that is not present in unvoiced sounds, such as /s/, which

are aperiodic and noise-like. These are best visualised in Figure 5.1, which shows the

waveform and spectrogram of the sentence, she had your dark suit in greasy wash-water

all year, and highlights the voiced and unvoiced sections in the first word, she. Notice that

the spectrum for /sh/ is flat, similar to that of noise, while the spectrum of /iy/ shows a

harmonic structure, as characterised by the alternating bands.

Figure 5.2 shows the anatomy of the human vocal tract. Voiced sounds are produced

when air from the lungs is excited by the vibrating vocal folds in the larynx. A glottal

wave, with a fundamental frequency of f0 and harmonics at multiples of the fundamental

frequency, is generated and this wave passes through the vocal tract, which can be viewed

as an acoustic tube that starts at the larynx and terminates at the lips. This tube changes

shape by altering various cross-sectional areas to create resonances and anti-resonances
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Figure 5.1: Waveform and spectrogram of narrowband speech. The sentence that is spoken
is ‘she had your dark suit in greasy wash-water all year’, and with the unvoiced /s/ and
voiced /iy/ sounds in she, highlighted.

Figure 5.2: Anatomy of the human vocal tract (after [139])
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that emphasise and de-emphasise certain parts of the spectrum, respectively. Formants

occur where the spectrum has been emphasised by the resonances of the vocal tract. Along

with changes in the articulators (the lips, tongue, jaws, and teeth), different quasi-periodic

sounds can be produced [73, 151]. The vocal folds do not vibrate for unvoiced sounds but

instead, the vocal tract is constricted by the articulators and air passes through rapidly

to produce a noise-like sound [151].

5.2.3 Autoregressive Modelling and Linear Prediction Analysis of the

Speech Signal

Speech production can be modelled as consisting of a source and filter component. The

source component represents the glottal excitation (which is aperiodic noise for unvoiced

sounds and periodic at the fundamental frequency for voiced sounds) while the filter

component models the vocal tract and its resonances and anti-resonances, by emphasising

and de-emphasising certain parts of the spectrum using poles and zeros, respectively.

Because the zeros of the vocal tract for unvoiced and nasal (voiced) sounds have been

observed to lie within the unit circle, they can be approximated by a large number of

poles1, hence an all-pole or autoregressive (AR) model can be used [14]:

H(z) =
Gp

A(z)
(5.1)

A(z) = 1 +
p∑

k=1

ap,kz
−k (5.2)

where p is the filter order, ap,k are the p filter coefficients or AR model parameters, and Gp

is the gain to conserve the total energy between the speech and impulse response of H(z)

[195]. H(z) and A(z) are called the synthesis and analysis filters, respectively. Figure 5.3

shows the source-filter model of speech, where speech, x(n), is synthesised by the filter,

H(z), which is driven by an excitation signal, u(n). The AR model is equally valid when

the excitation signal is white random noise or an impulse, because the autocorrelations

(and hence the PSDs) of both signals are identical [107]. This fits into the voiced/unvoiced

speech production model perfectly.

Finding the AR model parameters and gain for a particular segment of speech involves

1The zero, 1 − az−1, can be approximated by 1/(1 + az−1 + a2z−2 + . . . ) if |a| < 1 [14].



Chapter 5 LPC Parameter Quantisation in Narrowband Speech Coding 199

H(z)

source filter speech
(excitation) (vocal tract)

u(n) x(n)

Figure 5.3: Source-filter synthesis model of speech

solving the Yule-Walker equations [65, 107]:

p∑

k=1

ap,kR(j − k) = −R(j) (5.3)

G2
p = R(0) +

p∑

k=1

ap,kR(k) (5.4)

where j = 1, 2, . . . , p. When (5.3) is expressed in matrix notation:




R(0) R(1) . . . R(p− 1)

R(1) R(0) . . . R(p− 2)
...

...
. . .

...

R(p− 1) R(p− 2) . . . R(0)







ap,1

ap,2

...

ap,p




=




−R(1)

−R(2)
...

−R(p)




(5.5)

then it can be seen that the autocorrelation matrix has a special Toeplitz structure, which

guarantees that the resulting filter is minimum phase (and hence, is stable) [107] and

also allows the use of computationally efficient algorithms such as the Levinson-Durbin or

Schur recursion algorithms to solve (5.5) [125]. The Levinson-Durbin algorithm is given

below:

For m = 1, 2, . . . , p:

am,m = −R(m) +
∑m−1

i=1 am−1,iR(m− i)

Pm−1
(5.6)

am,i = am−1,i + am,mam−1,m−i, where i = 1, 2, . . . ,m− 1 (5.7)

Pm = Pm−1(1 − a2
m,m) (5.8)

where the filter gain, Gp, is equal to Pp. To initialise the Levinson-Durbin algorithm,

P0 = R(0). The am,m’s are also known as the reflection coefficients (RCs) or partial

correlation (PARCOR) coefficients [77] which will be discussed in a later section on LPC
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parameter representations.

Another approach that arrives at the same set of equations is linear prediction analysis,

where the speech signal is modelled as consisting of the summation of a predicted part

and a residual part2, where the former is a weighted average of past (or future) samples:

x̂(n) = −
p∑

k=1

ap,kx(n− k) (5.9)

where x(n) is the signal to be modelled, x̂(n) is the predicted signal, and p is the order

of the prediction. The aim of linear prediction analysis is to determine the weights (or

linear prediction coefficients), ap,k, that minimise the average prediction error, P , over a

certain range of time, and depending on that range, various methods can be obtained.

The average prediction error is given by:

P = E[(x(n) − x̂(n))2] (5.10)

= E



(
x(n) +

p∑

k=1

ap,kx(n− k)

)2

 (5.11)

where E[•] is the expectation operator.

The autocorrelation method [108] tries to minimise the average prediction error over

the time range of −∞ < n < ∞ and assumes the signal to exist for all time. If a finite

segment of the signal is available (which is always the case, in practice), then it is assumed

to be a windowed version of the original signal. Also, the signal is assumed to be wide-sense

stationary (WSS), where E[x(n+ i)x(n+ j)] ≡ E[x(n)x(n+ |i− j|)]. After minimising the

average prediction error via setting the partial derivative to zero, the following equations

are obtained for the autocorrelation method [107]:

p∑

k=1

ap,kR(|k − l|) = −R(l) (5.12)

Pmin = R(0) +
p∑

k=1

ap,kR(k) (5.13)

2This type of decomposition is known as the Wold decomposition.
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where l = 1, 2, . . . , p. The autocorrelation coefficients3, R(k), are given by:

R(k) =
1

N

N−1−k∑

n=0

x(n)x(n+ k) (5.14)

It can be seen that these equations are the same as the Yule-Walker equations. Also, the

WSS assumption results in the Toeplitz structure of the autocorrelation matrix, and hence

guarantees the stability of the synthesis filter.

The covariance method [17] minimises the prediction error over the finite range, 0 ≤
n ≤ N − 1, where N is the length of the available speech segment to be analysed [107],

hence it makes no assumptions of the signal outside the range (ie. no windowing). Also

no stationarity assumptions are made about the signal. After minimising the average

prediction error via setting the partial derivative to zero, the following equations are

obtained for the covariance method [17]:

p∑

k=1

ap,kφk,l = −φ0,l (5.15)

Pmin = φ0,0 +
p∑

k=1

ap,kφ0,k (5.16)

where the covariance coefficients, φi,j , are given by:

φi,j =
1

N − p

N−1∑

n=p

x(n− i)x(n− j) (5.17)

The covariance matrix of φ’s is symmetric, but unlike the autocorrelation matrix in the

previous method, it is not of Toeplitz form. Therefore, the computationally efficient

Levinson-Durbin algorithm cannot be used. Also, it is possible for some of the resulting

poles to fall outside the unit circle, which renders the filter unstable4 [15]. The likelihood

of instability decreases as more data is available, since as N → ∞, the covariance method

converges to the autocorrelation method [107]. Methods for stabilising the covariance

method include adding a very small number to the diagonal elements of the covariance

matrix [107].

The power spectral density (PSD) of the linear prediction filter, H(z), which is given

3This is a biased autocorrelation since the data size is finite and for higher lags, the number of data
points used in the calculation will be less than N .

4The stability of the filter is only an issue for applications that require synthesis. For these applications,
the autocorrelation method is preferred.
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Figure 5.4: Estimation of the spectral envelope and excitation/residual signal of voiced
speech, /i/ as in ‘year’, using a 12th order linear prediction filter: (a) Periodogram (thin
line) and spectral envelope estimate (thick line) using the autocorrelation method; (b) the
residual or excitation signal.
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Figure 5.5: Estimation of the spectral envelope and excitation/residual signal of unvoiced
speech, /s/ as in ‘suit’, using a 12th order linear prediction filter: (a) Periodogram (thin
line) and spectral envelope estimate (thick line) using the autocorrelation method; (b) the
residual or excitation signal.
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Figure 5.6: Cubed autocorrelation (unbiased) of the residual signal for: (a) voiced speech,
/i/ as in ‘year’; (b) unvoiced speech, /s/ as in ‘suit’.

by:

|H(ejω)|2 =
G2

p

|1 +
∑p

k=1 ap,ke−jωk| (5.18)

estimates the spectral envelope of the power spectral density of the speech to be modelled.

This is shown in Figure 5.4(a), which shows the spectral envelope estimate from a 12th

order linear prediction filter overlaid on top of the periodogram of the voiced speech

segment to be analysed. The length of the speech was 20 ms and the autocorrelation

method was used for the linear prediction analysis. Most of the formants, which represent

the resonances of the vocal tract, are captured by the linear prediction filter. The spectral

envelope, as represented by the linear prediction coefficients, is also known as short-term

correlation information because the analysis is based on relatively low autocorrelation lags,

(p+ 1).

The excitation or residual signal is shown in Figure 5.4(b), where we can see the

presence of periodic peaks. In order to measure the periodicity of the residual, we can

calculate its autocorrelation function, which is shown in Figure 5.6(a). We have used

the unbiased autocorrelation5 to avoid the suppression at higher lags. Furthermore, the

autocorrelation has been cubed to enhance the peaks. The first distinct peak is situated

at 4.4 ms, which corresponds to a fundamental frequency (pitch) of about 227 Hz. This is

5Runbiased(k) = 1

N−k

∑N−1−k

k=0
x(n)x(n + k)
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to be expected as the speech is voiced, where the vocal folds vibrate to produce a quasi-

periodic glottal excitation. The spectrum of the residual signal, which highlights the fine

structure of speech, is also known as long-term correlation information since the strongest

correlations or similarities in speech (in particular, voiced speech) appear at lags that

correspond to, and are multiples of, the pitch period (as shown in Figure 5.6(b)). These

lags are much longer than those used in the spectral envelope estimate.

Figures 5.5(a) and (b) show the PSD estimate and excitation/residual signal from a

12th order linear prediction filter of unvoiced speech. We can observe the relative flatness

of the spectrum, which is the noise-like characteristic of unvoiced speech. The residual

signal appears aperiodic and can be verified in Figure 5.6(b), which shows the cubed

autocorrelation function of the residual for unvoiced speech. There are no distinct peaks

observable, hence the residual lacks periodicity and correlation.

From these observations, it is apparent that linear prediction can be used to separate

the spectral envelope from the fine structure of speech, though as noted in [17], this should

be distinguished from the separation of the spectrum of the vocal tract from that of the

source. In fact, it is known for linear predictors of low order, that some spectral envelope

information remains in the residual signal [74]. This can be seen in Figure 5.4, where the

spectral envelope estimate resolves one initial peak, when in fact, there appears to be two

peaks shown by the periodogram.

From a linear prediction perspective, we can see that the predictor is good at estimating

the signal within each pitch period for voiced speech. If we plot the normalised residual

error [107]:

Vp =
Pmin

R(0)
(5.19)

for each linear prediction order for voiced and unvoiced speech, as shown in Figure 5.7,

we can also see that the prediction error for unvoiced speech is higher than that for voiced

speech. Low residual errors are associated with large dynamic ranges of the spectrum [107]

and it has been suggested that Vp is a useful parameter for classifying speech as either

voiced or unvoiced [108].
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Figure 5.7: Plot of normalised residual error versus order of linear prediction for voiced
and unvoiced speech

5.3 Linear Prediction-Based Speech Coding

The exploitation of redundancy is important in improving the bitrate-versus-distortion

efficiency of quantisation. That is, if a part of the signal can be reproduced or synthesised

at the decoder side via a smaller set of parameters, then significant gains in coding can

be achieved. As we have seen in the previous sections, speech contains both short-term

correlations (spectral envelope) and long-term correlations (residual), that can be exploited

by using linear prediction-based coding.

There are two types of prediction that are considered and these are shown in Figure 5.8.

In forward prediction (Figure 5.8(a)), the prediction coefficients are calculated based on

previous input samples. Because the decoder does not have access to the input samples, it

needs to receive the prediction coefficients from the encoder explicitly as side information.

Also, a delay is required in order to obtain enough samples for the prediction analysis.

In backward prediction (Figure 5.8(b)), the prediction coefficients are calculated based on

previously reconstructed samples [124]. Consequently, the decoder has enough information

to derive the prediction coefficients, thus no side information is required. Also, the back-

ward prediction coder does not impart any delay. Apart from the advantage of having no
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Figure 5.8: Different types of prediction used in speech coding (after [91]): (a) forward
prediction, where the prediction coefficients are calculated based on input speech; (b)
backward prediction, where the prediction coefficients are calculated based on output or
reconstructed speech.
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Figure 5.9: Block diagram of generalised speech synthesis (after [153])

delay, backward prediction is known to have lower prediction gain than forward prediction.

Furthermore, the efficiency of the backward predictor is dependent on the quality of the

reconstructed speech, thus this approach becomes less effective at low bitrates [91, 124].

For this reason, low bitrate speech coders normally employ forward prediction.

The generalised speech synthesis model is shown in Figure 5.9. The long-term predictor

and short-term predictor generate the pitch periodicity (for voiced speech) and spectral

envelope, respectively [153]. The excitation (also known as the innovation), is usually

taken as white random noise. This speech synthesis model is used in speech coders that

are based on the analysis-by-synthesis principle, which will be discussed in Section 5.3.4.
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Figure 5.10: Block diagram of the LPC vocoder (after [16]). The excitation for voiced
speech is a train of impulses, separated by the pitch period, while for unvoiced speech, it
is white random noise.

In the following sections, we examine some speech coding approaches that have been

investigated in the literature or are being used in mobile communications standards such

as GSM.

5.3.1 The LPC Vocoder

Compared with waveform coders, which attempt to reconstruct the original speech as

faithfully as possible in a perceptually efficient manner [124], voice coders or vocoders 6

synthesise speech based on a parametric model, thus they belong to the class of parametric

coders. Their only advantage is the ability to operate at relatively low bitrates (less than

4 kbps), though this is at the expense of generally lower speech quality and intelligibility

[16].

Figure 5.10 shows the block diagram of a simple LPC vocoder, where we observe its

similarity to the source-filter model of speech production. Speech is assumed to be either

voiced or unvoiced speech and based on this decision, a different excitation signal is fed

into the LPC filter to produce the synthesised speech. The parameters that need to be

quantised and transmitted, in order to allow the decoder to synthesise the speech, are:

• the LPC parameters;

• signal power;

• pitch period (for voiced speech); and

6The LPC vocoder is related to the channel vocoder, that was developed by Dudley [41].
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• voiced/unvoiced decision.

Speech is broken into frames at 50 Hz and an LPC analysis is performed to obtain the LPC

parameters. These parameters are usually not the LPC coefficients themselves, as they

are their sensitivity to quantisation errors often leads to filter instability. The signal power

of the frame is also calculated. Following this, a pitch estimation algorithm is applied on

the low-pass residual signal or weighted speech signal to determine whether the framed

speech is voiced or unvoiced [124]. During this process, the pitch period is also obtained

and transmitted for voiced frames.

An example of an LPC vocoder is the US Department of Defense LPC-10 vocoder (FS-

1015), which operates at 2.4 kbps and is intended for secure voice terminals [31]. In the

LPC-10 vocoder, reflection coefficients are used as the LPC parameter representation and

pitch estimation is performed by finding the minimum in the average magnitude difference

function (AMDF) of the low-pass inverse filtered speech [49].

It is noted, however, that the naturalness and intelligibility of the LPC vocoder is rather

poor and this is mainly due to the binary decision between voiced and unvoiced speech

[124]. It is a well known fact that in some segments of speech, the binary classification

is often difficult and there may be more than two modes of vocal tract excitations (ie.

mixed excitations). Also, the assumption of a single impulse excitation within each pitch

period is inadequate and it has been shown that multiple impulses are necessary [16].

Atal and Remde [16] introduced an improved quality LPC vocoder based on a multi-pulse

excitation model. The excitation model relied on an analysis-by-synthesis procedure with

a perceptually weighted error measure to determine appropriate impulse locations and

amplitudes. Also, this new vocoder did not require a voiced/unvoiced classification as the

same excitation model is used for both voiced and unvoiced speech.

5.3.2 The RPE-LTP Speech Coder

The regular pulse excitation, long term prediction (RPE-LTP) coder is used in the full-rate

(13 kbps) GSM narrowband speech coder. This coder, as shown in Figure 5.11, exploits

the long-term and short-term correlations in speech, which are represented in the form

of LTP gain and lag as well as log-area-ratios (LARs), respectively. After the removal of

these two types of redundancy, the residual excitation is then coded.
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Figure 5.11: Block diagram of the RPE-LTP speech coder used in GSM 06.10 (after [113])

Speech is first windowed into 20 ms frames of 160 samples and then pre-emphasised. A

short-term LPC analysis is performed using the Schur recursion to produce eight reflection

coefficients, which are then converted to LARs and quantised using 36 bits. The short-

term residual signal is then obtained by filtering the speech with the LPC filter (derived

from the quantised LARs). For the long-term prediction (LTP) stage, each frame is split

into 4 sub-frames of 40 samples each, where an LTP lag and gain are calculated for each

sub-frame. These LTP parameters are obtained from the cross-correlation between the

current residual sub-frame and the previous reconstructed residual sub-frames7 [113]. The

aim of the LTP analysis is to search for a past reconstructed residual sub-frame that is the

most similar to (ie. most correlated with) the current residual sub-frame [36]. Using the

two LTP parameters and past reconstructed residual sub-frames, an LTP filter generates a

predicted short-term residual sub-frame, which is subtracted from the current short-term

residual sub-frame to give the regular pulse excitation (RPE) sub-frame. The 40 samples

in the RPE sub-frame are then decimated and interleaved to 13 values which are then

coded using adaptive PCM [113]. The reconstructed RPE sub-frame is then added with

the predicted short-term residual to give the past residual sub-frame which is used for

subsequent LTP analyses.

5.3.3 Differential Pulse Coded Modulation with Perceptual Weighting

Though this type of speech coder, first introduced by Atal and Schroeder [15], may not

be as sophisticated as the modern speech coders, it provided the foundation for powerful

analysis-by-synthesis coders such as CELP, which will be discussed in the next section.

7The LTP gain is the maximum correlation normalised by the energy of the sub-frame [36].
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Figure 5.12: Block diagram of the DPCM coder: (a) without noise shaping; (b) with noise
shaping filter, F (z) (after [15])

The main novelty of the DPCM speech coder is the use of filtering to spectrally shape the

quantisation noise in order to exploit perceptual masking. Traditionally, DPCM coders

attempt to minimise the MSE between the reconstructed and original speech, which is

equivalent to the error introduced by the scalar quantiser [15]. Assuming an efficient

predictor is used, then the quantisation error will be similar to uncorrelated noise, which

has a flat power spectral density. In the presence of the speech signal which has a non-

uniform PSD, the human auditory response to the quantisation noise will also be non-

uniform, hence minimising the MSE is clearly inadequate, from a perceptual point of

view.

The theory of auditory masking says that strong tones tend to mask other tones and

noise within the spectral vicinity, hence it was suggested in [15] that a large part of

the perceived noise from speech coding comes from quantisation noise that is situated in

regions where the speech spectrum is low. In order words, the perceptual quality can

be improved by spectrally shifting some quantisation noise from the low power frequency

regions to the stronger formant regions.

In order to see how Atal and Schroeder [15] spectrally shaped the quantisation noise

in DPCM, they considered the traditional DPCM coder, as shown in Figure 5.12(a). The
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reconstructed speech signal, xq(n), can be expressed as:

xq(n) = x̂(n) + eq(n)

= x̂(n) + e(n) + δ(n) (5.20)

= x(n) + δ(n) (5.21)

where δ(n) = e(n) − eq(n) is the error introduced by the quantiser. Therefore, the error

between the reconstructed and original speech is equal to the error introduced by the

quantiser only. The predictor, P (z), attempts to generate a predicted speech sample,

based on the past p reconstructed samples:

X̂(z) = P (z)Xq(z) (5.22)

where P (z) = −
p∑

k=1

akz
−k (5.23)

hence x̂(n) = −
p∑

k=1

akxq(n− k) (5.24)

Therefore, the residual signal, e(n), can be expressed as:

e(n) = x(n) − x̂(n)

= x(n) +
p∑

k=1

akxq(n− k) (5.25)

Substituting (5.21) into (5.25), we get:

e(n) = x(n) +
p∑

k=1

ak[x(n− k) + δ(n− k)]

= x(n) +
p∑

k=1

akx(n− k)

︸ ︷︷ ︸
prediction error

+
p∑

k=1

akδ(n− k)

︸ ︷︷ ︸
filtered quantisation error

(5.26)

E(z) = [1 + P (z)]X(z) + P (z)∆(z) (5.27)

Therefore, the residual, e(n), can be expressed as the summation of the prediction error

and filtered quantisation error [15]. In (5.27), we can apply a different filter, F (z) =

−∑p
k=1 bkz

−k, in order to shape the quantisation noise, ∆(z):

E(z) = [1 + P (z)]X(z) + F (z)∆(z) (5.28)
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Figure 5.13: Block diagram of the generalised DPCM speech coder (after [15])

This new DPCM with quantisation noise shaping is shown in Figure 5.12(b). Given that

the reconstructed speech is given by:

Xq(z) =
Eq(z)

1 + P (z)
(5.29)

and Eq(z) = E(z) + ∆(z), (5.29) can be rearranged to give [15]:

Xq(z) −X(z) = ∆(z)
1 + F (z)

1 + P (z)
(5.30)

Equation (5.30) basically says the error between the reconstructed speech and the original

speech is equal to the filtered quantisation noise. For example, when F (z) = P (z), equa-

tion (5.30) reduces to Xq(z)−X(z) = ∆(z), which is the traditional DPCM with no noise

shaping [15]. In other words, the error spectrum is equal to that of scalar quantisation

which is flat, assuming the prediction error to be white. Therefore, by changing F (z), the

frequency spectrum of the quantisation noise can be adjusted.

Atal and Schroeder [15] showed that the average logarithm of the squared magnitude of

1+F (ejω)
1+P (ejω)

is equal to zero. This suggests that the average power of the reconstructed error

remains unaltered and adjusting the filter, F (z), redistributes the noise power from one

frequency to another [15]. In the case of speech coding, it is desirable to shift quantisation

noise from frequencies where the speech PSD is low to the formant regions, where the

speech power is stronger and therefore, is able to perceptually mask the noise.

Figure 5.13 shows the generalised DPCM speech coder, which includes a long-term
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Figure 5.14: The analysis-by-synthesis speech coder (after [91])

predictor, Pd(z):

Pd(z) = −(β1z
−D+1 + β2z

−D + β3z
−D−1) (5.31)

where D is the predictor delay, which is usually set to be equal to (or, a multiple of) the

pitch period. The long-term predictor is used for removing the periodic redundancy in the

spectral fine structure, along with the short-term predictor, Ps(z):

Ps(z) = −
p∑

k=1

akz
−k (5.32)

which is used to remove (or ‘whiten’) the spectral envelope. The noise shaping filter, F (z),

is set to be equal to the bandwidth-widened Ps(z) [15]:

F (z) = Ps(z/α) (5.33)

where α is between 0 and 1. This tends to move the zeros of 1+Ps(z) closer to the origin,

which widens the resonant bandwidths [15].

5.3.4 Code Excited Linear Predictive Speech Coders

The Code Excited Linear Predictive (CELP) speech coder was first introduced by Schroeder

and Atal [153] and is the basis for modern speech coders, which achieve high speech qual-

ity at low bitrates. Examples of speech coding standards based on CELP include the US

Federal Standard 4.8 kbps speech coder (FS-1016) [27], the Adaptive Multi-Rate (AMR)

speech coder [2], the GSM Enhanced Full Rate (EFR) speech coder [113], etc.

The CELP coder is based on the analysis-by-synthesis principle, shown in Figure 5.14,

where the coder parameters are evaluated by synthesising the speech and comparing it
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Table 5.1: Comparing the characteristics of the DPCM with perceptual weighting and
CELP speech coders. The 4 indicates that the coding scheme has the specified charac-
teristic. (*) means that this is ambiguous.

Characteristics DPCM CELP

Analysis-by-synthesis coder (*) 4
Fixed codebook 4 (scalar) 4 (vector)
Adaptive codebook 4 (scalar) 4 (vector)
Perceptual weighting 4 4

with the the input speech. The coder parameters which minimise the distortion are then

chosen. The speech synthesis is based on the generalised model (Figure 5.14), where

short-term and long-term predictors, representing the spectral envelope and fine structure,

respectively, are driven by an excitation or innovation signal. Unlike the LPC vocoder,

where the excitation is parametrically modelled as either an impulse train with a pitch

period or white random noise with a certain variance, the CELP coder quantises the

excitation, U(z), using a vector quantiser (hence the name, code excited linear prediction).

That is, the random innovation is generated by selecting from a fixed codebook of white

Gaussian random vectors, called the stochastic codebook [153], and the periodic excitation

is generated by either an adaptive codebook or pitch predictor [91]. The distortion criteria

for selecting the best code-vector from each codebook is the difference or residual, E(z),

between the synthesised speech and original speech that is perceptually weighted by the

filter, W (z). Figure 5.15 shows a block diagram of the CELP coder.

When comparing the CELP speech coder with the DPCM speech coder from the

previous section, we notice a few similarities. Table 5.1 lists the similarities between

the two coding schemes. Firstly, both schemes are analysis-by-synthesis coders, though

the DPCM case can be somewhat ambiguous [124]. In the DPCM scheme, the short-

term and long-term correlations are removed from the original speech signal, giving a

residual/excitation that is compared with (or, quantised by) a scalar codebook. Because

the quantiser error is perceptually weighted and fed back, the scalar codebook search is

done on the basis of minimising the perceptual error. Also, because the long-term predictor

uses quantised residual samples, its operation is adaptive and is dependent on the scalar

codebook search.

Whereas in the case of CELP, short-term and long-term correlations are added to the
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Figure 5.16: Relationship between frames, subframes, and analysis windows (after [2] and
[91]): (a) with lookahead and symmetric windows; (b) with asymmetric windows and
without lookahead. The hatched blocks indicate the region of emphasis by the window.

code excitation, which is then compared with the original speech. The error is perceptually

weighted and the fixed and adaptive codebook search is also performed on the basis of

minimising the perceptual error. The codebook which represents the long-term correlation

is also adaptive. The major difference between DPCM and CELP is the use of scalar and

vector codebooks, respectively. It is well known in coding theory that processing vectors is

more efficient that processing scalars, hence CELP coders generally achieve similar speech

quality to that of DPCM, but at lower bitrates.

Frames, Subframes and Analysis Windows

The LPC analysis is performed on frames of speech which are normally 20 ms (160 samples

for 8 kHz speech) in length, while the excitation is determined over smaller blocks (5 ms
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or 40 samples), called subframes. A tapered window, such as a Hamming window, is used

to reduce the effects of spectral leakage. The analysis window often overlaps into the next

frame, which is called lookahead, and is shown in Figure 5.16(a). This is done to assist

in LPC parameter interpolation, and prevents transitional problems that occur from the

abrupt change between frames [91]. However, frame lookahead introduces delay, so some

CELP coders, such as the AMR coder, use asymmetric Hamming windows that overlap

with the previous frame, as is shown in Figure 5.16(b). In this case, an asymmetric analysis

window is used that is specifically shaped to emphasise a certain region of the frame. In

the case of the AMR speech coder, the window emphasises the fourth subframe8 [2]. The

LPC parameters for the first, second, and third subframe are then interpolated.

LPC Analysis and Filtering

For each frame of speech, a 10th order LPC analysis is performed to obtain the LPC co-

efficients, {ak}10
k=1, and these are often pre-processed using techniques such as bandwidth

expansion [125] and high frequency compensation [15], which we will describe in Section

5.3.5. The autocorrelation method is normally used due to the availability of computation-

ally efficient algorithms such as the Levinson-Durbin recursion, as well as the guaranteed

stability of the synthesis filter. The LPC coefficients are then transformed to another

LPC parameter representation (for more details, see Section 5.4) and quantised (for more

details, see Section 5.5).

For the synthesis stage, the quantised LPC parameters are converted back to LPC

coefficients, {âk}10
k=1. The LPC synthesis filter, H(z), is given by:

H(z) =
1

1 +
∑10

k=1 âkz−k
(5.34)

Perceptual Weighting Filter

The purpose of the perceptual weighting filter is to appropriately bias the error spectrum

such that less emphasis is placed in minimising the quantisation noise in the formant

regions. In effect, perceptual weighting tends to shift quantisation noise from frequency

regions where the speech power is low (spectral valleys) to regions where the power is high

8In the highest bitrate (12.2 kbps) mode, the AMR coder performs the LPC analysis twice, using a
second Hamming window that emphasises the second subframe [2].
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Figure 5.17: Frequency response of a perceptual weighting filter for a frame of speech:
(a) power spectral density of the speech frame; (b) frequency response (in dB) of the
corresponding perceptual weighting filter, W (z), with γ1 = 0.9 and γ2 = 0.6.

(formants). This exploits auditory masking, where strong tones mask noise and other

tones within the spectral vicinity [15].

The perceptual weighting filter, W (z), is given by [91]:

W (z) =
A
(

z
γ1

)

A
(

z
γ2

) (5.35)

where 0 < γ2 < γ1 ≤ 1, A(z) is the LPC analysis filter, and A
(

z
γ

)
can be expressed as

[91]:

A

(
z

γ

)
= 1 +

10∑

k=1

akγ
kz−k (5.36)

Because the value of γ is less than one, the poles of H(z) move closer to the origin,

increasing the bandwidth of the spectral resonances [91].

Typical values include γ1 = 0.9 (or, γ1 = 0.94 for lower bitrate modes) and γ2 = 0.6

for the AMR speech coder [2]. The frequency response of the corresponding perceptual

weighting filter is shown in Figure 5.17(b), where we observe a widening of the bandwidths

of each spectral resonance. The filter attenuates the error the most (−10 dB) in the region
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of the first formant while it amplifies the error by 5 dB within the region between 1000 and

1500 Hz. Another set of commonly used values are γ1 = 1.0 and γ2 = 0.8, which allows

a simplification of the algorithm since the numerator of W (z) cancels out denominator of

the short-term LPC filter, H(z). The modified coder is shown in Figure 5.18(b).

Stochastic Codebook

The stochastic codebook forms part of a shape-gain vector quantiser, which is a product

code vector quantiser [55]. The codebook is fixed and contains code excitation vectors,

each consisting of a subframe (eg. 40 samples) of white random Gaussian numbers, since

it has been observed previously that the prediction error samples have a Gaussian PDF

[153]. The code excitation vector is multiplied by an appropriate gain and passed through

the pitch predictor and LPC synthesis filters, to introduce speech periodicity and the

spectral envelope, respectively [153]. Through the analysis-by-synthesis procedure, the

best code excitation vector and gain are chosen such that the perceptually weighted error

is minimised, and the relevant indices are sent to the decoder. This is in contrast to

typical vector quantisation, where the codevector is directly compared to the vector to be

quantised.

Pitch Predictor/Adaptive Codebook

The purpose of this stage is to introduce long-term correlations (that is, periodicity) to

the excitation vector. However, unlike the LPC vocoder, which assumes strict period-

icity (in the form of impulses), the pitch predictor or adaptive codebook can construct

a quasi-periodic excitation by repeating previously constructed excitations. There are

two approaches that have been proposed in the literature [124]: the pitch predictor and

adaptive codebook.

The pitch prediction method is the earliest approach [124] and uses the following

synthesis filter, which is a third-order predictor [15, 91]:

1

1 + Pd(z)
=

1

1 + β1z−D+1 + β2z−D + β3z−D−1
(5.37)

where β1, β2 and β3 are the predictor coefficients and D is the predictor delay, which is

usually set to be equal to (or, a multiple of) the pitch period. Therefore, the pitch period
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needs to be found either through closed-loop (analysis-by-synthesis) or open-loop analysis.

As noted in [27], the pitch prediction method has problems with high pitched speakers,

since the pitch period (and therefore the predictor delay, D) can become smaller than the

subframe length of 5 ms. At these small delays, the effect of the stochastic excitation must

be taken into account [91].

The adaptive codebook approach resolves the problems that inhibit the pitch predictor,

by using a codebook of repeated and overlapping past reconstructed excitations. The pth

vector in the adaptive codebook, c
(a)
p , can be expressed as [124]:

c(a)
p = [e(−d(p)), . . . , e(M − 1 − d(p))]T (5.38)

where M is the length of the subframe, e(n) is the past reconstructed excitation signal,

and d(p) is the delay of the pth entry in the adaptive codebook. Like the stochastic

codebook, the adaptive codebook has a corresponding gain factor that is multiplied with

the code-vector.

Therefore, in this approach, the excitation that drives the short-term LPC filter can

be said to consist of a contribution from a fixed (stochastic) codebook and an adaptive

codebook. Selecting the corresponding gain factors and code excitations from each of the

codebooks needs to be done in a sequential manner [124]:



Chapter 5 LPC Parameter Quantisation in Narrowband Speech Coding 221

1. The code-vector and gain from the adaptive codebook are determined;

2. the excitation generated from the adaptive codebook is passed through the LPC

filter to generate synthesised speech;

3. the synthesised speech is subtracted from original speech to give a modified speech

signal; and

4. using this modified speech signal, the code-vector and gain from the fixed stochastic

codebook are determined.

5.3.5 Pre-Processing of LPC Coefficients: Bandwidth Expansion and

High Frequency Compensation

Bandwidth expansion overcomes the problem with inaccurate LPC analysis for high-

pitched speech (such as that from female speakers). Because of the high pitch frequency,

the spectral harmonics become more widely separated, which leads to inaccurate spectral

envelope estimation by the LPC analysis, such as the underestimation of formant band-

widths. The resulting synthesised speech may become unnatural and metallic sounding

[125]. Bandwidth expansion is achieved by multiplying each LPC coefficient, ak, by the

factor, γk, which results in the following the LPC synthesis filter:

H(γ−1z) =
1

1 +
∑p

k=1 akγkz−k
(5.39)

This has the effect of moving the poles closer toward the origin, and hence increases the

bandwidth of each spectral resonance. The amount of bandwidth expansion (in Hz) is

controlled by the value of γ:

∆B = −Fs

π
ln(γ) (5.40)

where Fs is the sampling frequency. A typical value of γ is 0.994127 for an expansion of 15

Hz in the FS-1016 4.8 kbps CELP coder [27]. Figure 5.20 shows the effect of bandwidth

expansion on the spectral envelope estimate.

Another problem that is encountered in LPC analysis is the effect of the anti-aliasing

filter that is applied before the speech is sampled. For 8 kHz speech, an anti-aliasing

filter with a cutoff at 3.4 kHz is used. The roll-off of the anti-aliasing filter near cutoff

attenuates the high frequency parts of the speech spectrum, which causes the eigenvalues
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Figure 5.20: Illustrating the effect of bandwidth expansion on the spectral envelope esti-
mate

of this region to be almost zero, leading to an ill-conditioned covariance matrix. This ill-

conditioning of the covariance matrix can result in non-unique solutions for the predictor

coefficients. This can be undesirable for two reasons. Firstly, multiple sets of predictor

coefficients describing the same power spectral envelope leads to increased entropy, which

degrades the coding performance. Secondly, some of these solutions can result in excessive

power gains in the feedback loop of the LPC filter, which can also degrade the coding

performance9 [15].

High frequency compensation is a technique, first introduced by Atal and Schroeder

[15], that corrects the effects of the anti-aliasing filter roll-off and avoids the ill-conditioning

of the covariance matrix. Though this method was originally developed for the covariance

method of LPC analysis, the procedure can be applied to the autocorrelation method as

well. In high frequency compensation, the scaled covariance matrix of high-pass filtered

white noise is added to the covariance matrix of the speech before analysis [15]:

φ̂(i, j) = φ(i, j) + λεminµi−j, (for the covariance method) (5.41)

R̂(i) = R(i) + λεminµi, (for the autocorrelation method) (5.42)

9The ill-conditioning of the covariance matrix is also the cause of stability problems encountered with
the covariance method of LPC analysis. Thus high frequency compensation is often used along with the
covariance method, which is often termed the stabilised covariance method.
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Figure 5.21: Illustrating the effect of high frequency compensation on the spectral envelope
estimate

where φ̂(i, j) and φ(i, j) are the compensated and original (i, j)th covariance coefficient,

R̂(i) and R(i) are the compensated and original ith autocorrelation coefficient, εmin is

the minimum prediction error, and µ =
[

3
8 ,−1

4 ,
1
16 , 0, 0, . . .

]
are the autocorrelations of the

high-pass filter,
[

1
2(1 − z−1)

]2
. The value of λ is usually set to 0.1. The procedure for

applying high frequency compensation can be summarised as follows:

1. Perform an LPC analysis (covariance or autocorrelation method) on the speech

frame, obtaining the minimum residual error, εmin = Pmin;

2. Correct the covariance (or, autocorrelation) matrix using (5.41) and (5.42) with

λ = 0.1, µ1 = 0.375, µ2 = −0.25, µ3 = 0.0625;

3. Repeat the LPC analysis using the corrected covariance (or, autocorrelation) matrix.

Figure 5.21 shows the effect of high frequency compensation on the spectral envelope

estimate. It can be seen that spectral envelope between 3400 and 4000 Hz has been ‘lifted

up’, which coincides with the roll-off region of an anti-aliasing filter with cutoff at 3400

Hz.
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5.4 LPC Parameter Representations

In the forward linear prediction-based speech coders considered thus far, the parameters

representing the LPC synthesis filter for each frame need to be quantised and transmitted

to the decoder. These LPC parameters must be quantised accurately in order to ensure

that the reconstructed speech has good quality and intelligibility.

One important property that must be considered is the stability of the LPC synthesis

filter. It has been found that direct quantisation of the LPC coefficients is not desirable

as small quantisation errors lead to large spectral errors and can also compromise the

stability of the resulting filter [125]. Another desirable property is the natural ordering of

the coefficients, where the interchanging of any two coefficients results in a different and

unique filter. Inherent ordering in the coefficients allows for more efficient coding [195].

Therefore, alternative transformations or representations of the LPC coefficients, that are

both robust to quantisation as well as possessing inherent ordering and simple checks for

stability, have been investigated in the literature [195, 75, 77, 23].

In the following sections, we describe some of the LPC parameter representations

that have been considered for LPC speech coding. Each of the representations contain

equivalent information as the LPC coefficients and are reversible.

5.4.1 Reflection Coefficients, Log Area Ratios and Arcsine Reflection

Coefficients

The reflection coefficients (RCs), ki, which are also known as partial correlation (PAR-

COR) coefficients, are related to the reflection properties of the vocal tract, which is

modelled as having p equal length cylindrical sections of different cross-sectional areas

[107]. This is shown in Figure 5.22. The reflection coefficients relate to the different

cross-sectional areas, Ai, in the following way [195]:

Ai = Ai+1
1 + ki

1 − ki
, for i = 1, 2, . . . , p (5.43)

where Ap+1 = 1. The Ai

Ai+1
’s are known as area ratios.

The reflection coefficients can be obtained as a by-product of the Levinson-Durbin

recursion algorithm (ki = ai,i) or obtained directly from the LPC coefficients via the fol-
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Figure 5.22: The acoustic tube model of the vocal tract

lowing backward recursion [107, 195]:

For i = p, p− 1, . . . , 1:

ki = ai,i (5.44)

ai−1,j =
ai,j − ai,iai,i−j

1 − k2
i

, where 1 ≤ j ≤ i− 1. (5.45)

They can also be calculated from the autocorrelation coefficients using the Schur recursion

[97]. Given below is the MATLAB code for performing the Schur recursion10:

% Inputs: p = order of LPC analysis, rxx = p+1 autocorrelation coeffs

% Output: rc = p reflection coeffs

function rc=schurRecur(rxx,p)

i=1:p;

rc=zeros(1,p);

g=rxx(i+1)/rxx(1);

d=g;

rch=g(1);

rc(1)=rch; % first RC

err=1-rch*rch;

for i=2:p

for j=1:p-i+1

g(j)=g(j+1)-rch*d(j);

d(j)=d(j)-rch*g(j+1);

end

10This was derived from the C source code of the FS-1016 4.8 kbps CELP coder, PC version 3.2
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rch=g(1)/err;

rc(i)=rch;

err=err*(1-rch*rch);

end

rc=-rc;

The reflection coefficients are naturally ordered and the filter stability is ensured if the

following conditions are met:

|ki| < 1, for i = 1, 2, . . . , p (5.46)

When using uniform (linear) quantisation, Viswanathan and Makhoul [195] showed that,

via sensitivity analyses, the reflection coefficients were not the best representation. Small

variations in the reflection coefficients, whose magnitude are close to one, resulted in

considerably larger spectral errors than those with a magnitude closer to zero. Therefore,

finer quantisation needs to be applied for reflection coefficients close to one while coarser

quantisation can be used for magnitudes close to zero.

The log area ratios (LARs) are formed by applying a non-linear transformation to the

area ratios, which by comparison with the RCs, have sensitivity curves that are more flat:

gi = ln

(
1 + ki

1 − ki

)
(5.47)

The filter stability is ensured if the LARs are not unbounded, hence they can have a

large range, depending on the type of signal. Often in practice, the range of the LARs is

artificially limited [195].

Another representation that resolves the sensitivity problems is formed by applying a

non-linear transformation to the reflection coefficients, which results in the arcsine reflec-

tion coefficients (ASRC), which are defined as [125]:

ji = sin−1(ki) (5.48)

Both LARs and ASRCs have similar performance and in the presence of scalar quantisa-

tion, outperform the RCs by 2 bits/frame [125].
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5.4.2 Line Spectral Frequencies

The line spectral frequencies (LSFs), also known as line spectral pairs (LSPs), were intro-

duced by Itakura [75] as an alternative LPC parameter representation. They comprise the

resonant frequencies of the acoustic tube model in two extremal states, that are formed

through applying artificial boundary conditions at the glottal end. These are shown in

Figure 5.23.

The Closed Glottis (kp+1 = 1)

By setting the (p+1)th reflection coefficient, kp+1 = 1, the glottal end becomes completely

closed (Figure 5.23(a)), making the acoustic tube of the lossless type [185] and possessing

the following transfer function:

P (z) = A(z) − z−(p+1)A(z−1) (5.49)

= 1 + (a1 − ap)z
−1 + (a2 − ap−1)z

−2 + . . .+ (ap − a1)z
−p − z−(p+1) (5.50)

where A(z) is the analysis filter of the vocal tract. We can see that P (z) is a symmetric

polynomial [175].

The Open Glottis (kp+1 = −1)

Conversely, by setting the (p + 1)th reflection coefficient, kp+1 = −1, the glottal end

becomes completely open (Figure 5.23(b)), making the acoustic tube of the lossless type

[185] and possessing the following transfer function:

Q(z) = A(z) + z−(p+1)A(z−1) (5.51)

= 1 + (a1 + ap)z
−1 + (a2 + ap−1)z

−2 + . . . + (ap + a1)z
−p + z−(p+1) (5.52)

We can see that Q(z) is an anti-asymmetric polynomial and together with P (z) [185]:

A(z) =
1

2
[P (z) +Q(z)] (5.53)

Both P (z) and Q(z) can be factorised in the following way, depending on the value of
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the LPC analysis order, p [185]. For an even p:

P (z) = (1 − z−1)

p/2∏

k=1

(1 − 2 cosω
(p)
k z−1 + z−2) (5.54)

Q(z) = (1 + z−1)

p/2∏

k=1

(1 − 2 cosω
(q)
k z−1 + z−2) (5.55)

For an odd p:

P (z) = (1 − z−1)

(p−1)/2∏

k=1

(1 − 2 cosω
(p)
k z−1 + z−2) (5.56)

Q(z) = (1 + z−1)

(p−1)/2∏

k=1

(1 − 2 cosω
(q)
k z−1 + z−2) (5.57)

The coefficients of P (z) and Q(z) are real, hence their zeros occur in complex conjugate

pairs [185].

These pairs of zeros, which constitute the line spectral frequencies, have the following

important properties [175]:

1. All zeros of P (z) and Q(z) lie on the unit circle (spectral line property);

2. the zeros of P (z) and Q(z) are interlaced with each other (ascending order property);

and

3. the ascending ordering of the zeros ensures that the filter is stable (minimum phase

property)

Because all the zeros of P (z) and Q(z) lie on the unit circle (property 1) and occur

in complex conjugate pairs, they can be expressed as p/2 unique individual frequencies.

That is, the zeros of P (ejω) and Q(ejω) can be represented by the frequencies (in radians),

{ω(p)
i }p/2

i=1 and {ω(q)
i }p/2

i=1, respectively. Therefore, p LPC coefficients, [a1, a2, . . . , ap], can

be converted to p line spectral frequencies, [ω
(p)
1 , ω

(q)
1 , ω

(p)
2 , ω

(q)
2 , . . . , ω

(p)
p/2, ω

(q)
p/2] [185]. It

can also be observed that LSFs are constrained within the finite range of [0 . . . π], unlike

log area ratios which have an infinite range.

The stability of the LPC filter is guaranteed iff.:

0 < ω
(p)
1 < ω

(q)
1 < ω

(p)
2 < ω

(q)
2 < . . . < ω

(p)
p/2 < ω

(q)
p/2 < π (5.58)
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Figure 5.23: The acoustic tube with two artificial boundary conditions for the line spectral
frequency representation: (a) kp+1 = 1, where the glottis is completely closed; (b) kp+1 =
−1, where the glottis is completely open

Therefore, it is relatively easy to check the stability by ensuring that the LSFs are in

ascending order.

Figures 5.24(a) and (b) show the zeros of P (z) and Q(z), respectively. It can be

observed that they occur in conjugate pairs and all lie on the unit circle. Figure 5.25

shows the locations of the line spectral frequencies with respect to the spectral envelope.

As noted by Sugamura and Itakura [185], the density of the LSFs are an indication of the

presence of resonant formants. That is, in the vicinity of the strong formants, two or three

LSFs cluster together, while in the spectral valleys, they are spread apart at almost equal

intervals.

The superior quantisation performance of LSFs has been reported numerous times in

the literature. Sugamura and Itakura [185] compared the scalar quantisation of LSFs with

reflection coefficients. They reported that for a spectral distortion of 1 dB to be achieved,

RCs required 50 bits/frame while LSFs required only 35 bits/frame, when using uniform

bit allocation. With non-uniform bit allocation, RCs and LSFs required approximately

40 bits/frame and 35 bits/frame, respectively. They noted that RCs suffered from non-

uniform spectral sensitivies, earlier reported by Viswanathan and Makhoul [195]. Similar

scalar quantisation results were also reported in [176] and [125]. Paliwal and Atal [123]
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Figure 5.24: Pole-zero plot of P (z) and Q(z) of 12th order LPC analysis
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Figure 5.25: Spectral envelope estimate from a 12th order LPC analysis and line spectral
frequency locations
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investigated the product code vector quantisation of various LPC parameter representa-

tions, where they reported LSFs to achieve lower spectral distortion and outliers than

LARs and ASRCs at 24 bits/frame.

LSFs possess quantisation properties that are favourable for speech coding. Not only do

they have uniform spectral sensitivity [185], but also for each parameter, the quantisation

error corresponds to spectral errors that localised in the vicinity of the LSF [123]. The

FS-1016 4.8 kbps CELP coder [27] and AMR narrowband speech coder [2] use LSFs for

representing the short-term information.

5.4.3 Immittance Spectral Pairs

The immittance spectral pairs (ISP) representation was introduced by Bistritz and Peller

[23]. It consists of the poles and zeros of the following immittance11 function at the glottis

[23]:

Ip(z) =
A(z) − z−pA(z−1)

A(z) + z−pA(z−1)
(5.59)

as well as a reflection coefficient. The immittance function, Ip(z), can be factorised as

follows [23]. For an even p:

Ip(z) =
K(1 − z−2)

∏p/2−1
k=1 (1 − 2 cosω

(i)
2k z

−1 + z−2)
∏p/2

k=1(1 − 2 cosω
(i)
2k−1z

−1 + z−2)
(5.60)

For an odd p:

Ip(z) =
K(1 − z−1)

∏(p−1)/2
k=1 (1 − 2 cosω

(i)
2k z

−1 + z−2)

(1 + z−1)
∏(p−1)/2

k=1 (1 − 2 cosω
(i)
2k−1z

−1 + z−2)
(5.61)

Because the coefficients of the immittance functions are real, the roots of both the nu-

merator and denominator will occur in complex conjugate pairs. Therefore, there are a

total of p− 1 poles and zeros (excluding the zeros and/or poles at −1 and 1), which lie on

the unit circle, and along with a ‘constant’ gain, which is expressed as the pth reflection

coefficient:

kp =
K − 1

K + 1
(5.62)

11This is formed from the two words, impedance and admittance [23].
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constitute the p parameter ISP representation, [cosω
(i)
1 , cosω

(i)
2 , . . . , cosω

(i)
p−1, kp]. Alterna-

tively, the poles and zeros can be transformed to frequencies, [ω
(i)
1 , ω

(i)
2 , . . . , ω

(i)
p−1,

1
2 cos−1 kp],

which are sometimes known as immittance spectral frequencies (ISFs) [3].

The ISP representation possesses similar properties to the LSFs, namely that the roots

are interlaced and lie on the unit circle. The stability of the LPC filter is guaranteed via the

ascending order of the ISPs along with the further condition that the reflection coefficient,

|kp| < 1 [23].

Comparing the immittance function, defined in (5.59), with the polynomials P (z) and

Q(z) of the LSF representation, defined in (5.55) and (5.55), it can be seen that the ratio

of the LSF polynomials is equivalent to the immittance function of order (p+ 1), Ip+1(z),

that is obtained by extending the LPC polynomial, A(z), with a zero at the origin [23].

The literature on the quantisation performance of ISPs is less than that of LSFs, though

Bistritz and Peller [23] report a 1 bit saving, when using ISPs compared with LSFs, in

differential scalar quantisation experiments. ISPs are used for representing short-term

information in the AMR wideband speech coder [19].

The use of block and vector quantisation of ISPs may need to be handled in a special

way as the ISP representation consists of a concatenation of two different variables: p− 1

frequencies and a reflection coefficient. Each will have their own unique quantisation

characteristics and sensitivity. This is in contrast to the LSFs, which are all of the same

type (frequency). Therefore, it is customary to quantise ISFs, where an arc-cosine is

applied to the reflection coefficient which tends to flatten its sensitivity curve. In our

wideband LPC parameter quantisation experiments in Chapter 6, we find that LSFs are

superior to ISFs in block and vector quantisation schemes. In light of this observation, we

will investigate the quantisation of LSFs for narrowband speech coding.

5.5 Quantisation of LPC Parameters

As we have mentioned previously, all forward linear predictive speech coders require accu-

rate quantisation of the LPC parameters. Assuming a tenth order linear prediction analysis

at a rate of 50 frames/second, a linear predictive speech coder requires the transmission

of 500 floating point values every second in order to convey the short-term correlation
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information to the decoder. Scalar quantising the LPC parameters at 20 to 40 bits results

in a bitrate of 1 to 2 kbps for encoding the spectral envelope alone, hence it is a major

contributor to the overall bitrate of low-rate speech coders [125]. In fact, for bitrates less

than 3 kbps, it is common for about half the total number of bits to be allocated to LPC

parameter quantisation [163]. Therefore, the efficient coding of LPC parameters has been

a problem of interest in low bitrate speech coding research.

In this section, we examine the various strategies that have been investigated in the

speech coding literature for efficiently quantising LPC parameters. We also present some

results on the performance of each scheme on LSF vectors from the TIMIT database. We

have chosen the LSF representation because, as mentioned in the previous section, our

wideband LPC parameter quantisation experiments (in Chapter 6) suggest that LSFs are

superior to ISFs, in joint vector quantisation schemes. For more details on the experimen-

tal setup which will be used in results throughout the rest of the chapter, the reader should

refer to Section 5.5.2. Firstly, it is important to review the methods used to evaluate the

performance of different quantisation schemes as well as defining an appropriate distance

measure for quantiser design.

5.5.1 LPC Parameter Distortion Measures

Spectral Distortion and Transparent Coding

A popular method for objectively evaluating the quantisation performance of LPC pa-

rameters is the use of the average spectral distortion of all frames. The full-band spectral

distortion of each frame is defined as the root mean squared error between the power

spectral density estimate of the original and reconstructed LPC parameter vector [127]:

Dsd(i) =

√
1

Fs

∫ Fs

0

[
10 log10 Pi(f) − 10 log10 P̂i(f)

]2
df (5.63)

where Fs is the sampling frequency and Pi(f) and P̂i(f) are the LPC power spectra of the

reconstructed and original ith frame, respectively.

Another form of spectral distortion is termed the partial-band spectral distortion, which
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was defined by Atal et al. [17]:

Dpsd(i) =

√
1

F2 − F1

∫ F2

F1

[
10 log10 Pi(f) − 10 log10 P̂i(f)

]2
df (5.64)

where F1 and F2 is equal to 0 and 3 kHz for narrowband speech, respectively. The partial-

band spectral distortion is normally used for evaluating quantisation schemes that use a

weighted distance measure.

Transparent coding means that the coded speech is indistinguishable from the original

speech through listening tests. The following conditions for transparent coding from LPC

parameter quantisation have been used in the literature [127]:

1. The average spectral distortion (SD) is approximately 1 dB;

2. there is no outlier frame having more than 4 dB of spectral distortion; and

3. less than 2% of outlier frames are within the range of 2–4 dB.

It should be noted that these conditions for transparent coding were determined using

waveform-matching coders such as multi-pulse and CELP speech coders. For parametric

speech coders (eg. LPC and sinusoidal vocoders), which generally have lower reconstructed

speech quality, other conditions for transparent coding may be required.

Weighted Euclidean Distance Measure

The following weighted distance measure was introduced by Paliwal and Atal [123] to

replace the mean squared error (MSE) in vector quantiser design and operation. The

weighting consists of:

1. fixed or static weights, {ci}, which place emphasis on the lower LSFs in order to

account for the difference in sensitivity of the human ear to low and high frequencies;

and

2. varying or dynamic weights, {wi}, which emphasise the LSFs where the power spec-

tral density is higher (ie. formant regions).
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The weighted distance measure, dw(f , f̂), between the original vector, f , and the

approximated vector, f̂ , is defined as [123]:

dw(f , f̂) =
10∑

i=1

[
ciwi(fi − f̂i)

]2
(5.65)

where fi and f̂i are the ith LSF in the original and approximated vector respectively. The

dynamic weights, {wi} are given by [123]:

wi = [P (fi)]
r (5.66)

where P (f) is the LPC power spectral density and r is a constant (typical value used is

0.15). The static weights, {ci}, are given by [123]:

ci =





1.0, for 1 ≤ i ≤ 8

0.8, for i = 9

0.4, for i = 10

(5.67)

In order to see the benefit of the dynamic weights, Figure 5.26 shows the original

and reconstructed spectral envelope estimates from shifting two different LSFs. In Figure

5.26(a), the 9th LSF, which falls on top of a formant, has been shifted and we can see

that the distortion in the spectrum is localised. In fact, the position of the formant has

followed the shift. When we shift an LSF that is not in the near vicinity of a formant,

as shown in Figure 5.26(b), we can see that the effects are not as dramatic as in the first

case. The spectral distortion of the second case is also much less. Therefore, the dynamic

weights emphasise the LSFs that are situated near the peaks in the power spectral density,

so that they are more finely quantised.

5.5.2 Experimental Setup for LSF Quantisation Experiments

The speech database used for evaluating the various LSF quantisation experiments is the

DARPA TIMIT speech database [63]. The database consists of 6300 sentences in total,

with 10 sentences spoken by 630 speakers that represent the eight major dialects of Amer-

ican English. The speech from the TIMIT database was sampled at 16 kHz so we have

downsampled the speech down to 8 kHz using a 3.4 kHz anti-aliasing filter. A 20 ms
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Figure 5.26: Original and reconstructed spectral envelope for a 10th order LPC analysis:
(a) shifting the 9th LSF (SD=1.3944 dB); (b) shifting the 4th LSF (SD=0.4827 dB). The
solid and dashed vertical lines show the original and shifted LSFs, respectively.
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Hamming window is used and a tenth order linear predictive analysis is performed on

each frame using the autocorrelation method [125]. There is no overlap between succes-

sive speech frames and silent frames were included. High frequency compensation and a

bandwidth expansion of 15 Hz12 was used to correct the effects of the anti-aliasing filter

[15] as well as formant underestimation, respectively [91]. The training data consists of

333789 of the 707438 vectors from the TIMIT training set. The evaluation set, which

contains speech that is exclusive of the training, contains all 85353 vectors.

5.5.3 PDF-Optimised Scalar Quantisers with Non-Uniform Bit Alloca-

tion

The simplest strategy is to quantise each LPC parameter using a scalar quantiser. Suga-

mura and Itakura [185] reported the scalar quantisation of LSFs and RCs using uniform

and non-uniform bit allocation. The change from uniform to non-uniform bit allocation

had the most dramatic effect on the performance of the RCs, while LSFs saw only moder-

ate improvement. To achieve a spectral distortion of 1 dB, LSF quantisation required 33

and 35 bits/frame while RCs required 40 and 50 bits/frame for uniform and non-uniform

bit allocation, respectively.

Soong and Juang [175] quantised LSF and LAR differences using differential pulse

coded modulation (DPCM). The LSF representation achieved a lower likelihood ratio

distortion than the LARs at a lower bitrate (30 bits cf. 43 bits). In a later paper [176],

they designed globally optimal scalar quantisers with non-uniform levels and bit allocation

for differential LSF quantisation. The difference between LSF frames are quantised using

scalar quantisers, whose levels are designed using a Lloyd-like algorithm which minimises

a non-trivial, data dependent spectral distortion [176]. A greedy bit allocation was used,

where bits are allocated one at a time to each differential LSF that resulted in the largest

marginal improvement in distortion. They reported a spectral distortion of 1 dB at 32

bits/frame.

Bistritz and Peller [23] evaluated uniform scalar quantisation of difference LSFs and

ISPs, where a spectral distortion of 1 dB was achieved at 35 bits/frame and 34 bits/frame,

respectively.

12This is the same high frequency compensation and bandwidth expansion contained in the source code
of the US Federal Standard 1016 4.8 kbps CELP coder described in [27].
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Table 5.2: Partial-band spectral distortion (SD) performance of uniform scalar quantisers
operating at 34 bits/frame from the FS-1016 4.8 kbps CELP coder on the TIMIT database

Bits/frame
Avg. SD Outliers (in %)
(in dB) 2–4 dB > 4 dB

34 1.44 10.24 0.02

Paliwal and Atal [123] reported results for non-uniform scalar quantisation of LSFs,

ASRCs, LARs, and difference LSFs at various bitrates. Each of the scalar quantisers were

designed using the LBG algorithm [100] and bit allocation was performed using the greedy

algorithm of [176]. A spectral distortion of 1 dB was achieved by all representations at

34 bits/frame, with the LSF differences achieving the lowest distortion, at the expense of

a higher percentage of outlier frames. Also, the LSF scalar quantiser suffered from less

outliers than the other representations.

In the US Federal Standard 4.8 kbps CELP coder (FS-1016), LPC coefficients are

converted to the LSF representation, before being quantised using 34 bits/frame using 10

independent, non-uniform scalar quantisers [27]. The bit allocation to the scalar quantisers

is fixed at (3, 4, 4, 4, 4, 3, 3, 3, 3, 3) [27]. We have evaluated the LSF quantiser of this speech

coder on the TIMIT database, which is shown in Table 5.2.

Table 5.3 shows the results of a non-uniform scalar quantisation scheme on LSFs from

the TIMIT database. Each scalar quantiser was designed using the generalised Lloyd

algorithm and bit allocation performed using an exhaustive greedy algorithm, similar to

the one in [176]. We can see that 1 dB spectral distortion is achieved at 33 bits/frame.

Comparing Tables 5.3 and 5.2, we can see that using non-uniform scalar quantisers with

dynamic bit allocation achieves considerably lower distortion and percentage of outliers

at lower bitrates.

It is important to ensure that the LSFs are in the correct ascending order, which

becomes an issue when using coarse quantisers that operate independently. A simple

check of whether the quantised LSF is larger than the previous quantised LSF can be

applied.
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Table 5.3: Partial-band spectral distortion (SD) performance of non-uniform scalar quan-
tisers for different bitrates on LSF vectors from the TIMIT database

Bits/frame
Avg. SD Outliers (in %)
(in dB) 2–4 dB > 4 dB

34 0.925 0.89 0.01
33 1.001 1.30 0.01
32 1.002 1.32 0.01
31 1.153 3.68 0.01

5.5.4 Product Code Vector Quantisation

It has been shown in various studies that vector quantisers perform better than scalar

quantisers, in terms of the number of bits needed for the transparent coding of LPC pa-

rameters. For example, in the FS-1016 4.8 kbps CELP coder [27], a total of 34 bits are

required for independent non-uniform scalar quantisers to code the LSFs of each frame

[27, 123]. Whereas, extrapolating from the operating curve of unconstrained vector quan-

tisation suggests that we need only 20 bits/frame to achieve transparent coding of these

parameters [125], while high rate analysis predicts a lower bound of 23 bits/frame13 [66].

However, it is not possible to design codebooks at these rates and in addition, the com-

putational cost of the resulting full search, unconstrained vector quantiser is very high.

Less complex but suboptimal product code vector quantisers such as multistage and

split vector quantisers (MSVQ and SVQ) have been investigated in the speech coding

literature.

Split Vector Quantisers

Paliwal and Atal [122, 123] investigated the split vector quantiser (SVQ) for the coding of

LPC parameters (LSFs, LARs, and ASRCs). The 10 dimensional LPC parameter vectors

are split into (4, 6) and (3, 3, 4) for the two-part and three-part SVQ, respectively. The

bits are allocated uniformly to each part, where-ever possible. The LSFs were shown to

be the better representation for SVQ, in terms of achieving lower spectral distortion at a

fixed bitrate. A weighted Euclidean distance measure, given by (5.65), was introduced to

the vector quantiser design and operation and it was shown that this reduced the bitrate

13This is the lower bound for full-band spectral distortion (0–4 kHz) while for partial-band (0–3 kHz),
the bound is 22 bits/frame [66].
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Table 5.4: Partial-band spectral distortion (SD), computational complexity, and memory
requirements (ROM) of the two-part split vector quantiser as a function of bitrate on LSF
vectors from the TIMIT database

Bits/frame Avg. SD Outliers (in %) kflops/ ROM
(b1 + b2) (in dB) 2–4 dB > 4 dB frame (floats)

24 (12+12) 0.943 0.54 0.00 163.8 40960
23 (12+11) 1.023 1.09 0.00 114.7 28672
22 (11+11) 1.080 1.44 0.00 81.9 20480

Table 5.5: Partial-band spectral distortion (SD), computational complexity, and memory
requirements (ROM) of the three-part split vector quantiser as a function of bitrate on
LSF vectors from the TIMIT database

Bits/frame Avg. SD Outliers (in %) kflops/ ROM
(b1 + b2 + b3) (in dB) 2–4 dB > 4 dB frame (floats)

26 (9+9+8) 0.892 0.55 0.00 16.4 4096
25 (9+8+8) 1.001 1.38 0.00 13.3 3328
24 (8+8+8) 1.061 1.68 0.01 10.2 2560

for transparent coding from 26 bits/frame to 24 bits/frame for the two-part SVQ on LSF

vectors. At 24 bits/frame, the two-part SVQ with weighted distance measure achieved a

spectral distortion of 1.03 dB. For the three-part SVQ, which has a considerably smaller

computational complexity, 25 bits/frame were need to achieve transparent coding (with a

spectral distortion of 1.05 dB) [123].

Table 5.4 shows the spectral distortion performance, computational complexity, and

memory requirements of the two-part split vector quantiser with weighted distance mea-

sure, on LSF vectors from the TIMIT database. We can see that transparent coding is

achieved at 23 bits/frame. However, the computational complexity and memory require-

ments are quite high. Table 5.5 shows the spectral distortion performance of the three-part

split vector quantiser, where transparent coding is achieved at 25 bits/frame. The loss

of performance is mostly due to the extra vector split, resulting in a loss of the vector

quantiser advantages. However, the computational complexity of the three-part SVQ is

considerably less than the two-part SVQ.

Sinervo et al. [163] investigated two-part and three-part split vector quantisation of

LSFs with different bit allocations and splitting schemes. The splitting was performed

on the basis of intraframe correlation. That is, LSFs that are weakly correlated should
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Table 5.6: Partial-band spectral distortion (SD), computational complexity, and memory
requirements (ROM) of the two-stage multistage vector quantiser as a function of bitrate
on LSF vectors from the TIMIT database

Bits/frame
Avg. SD Outliers (in %) kflops/ ROM Unstable
(in dB) 2–4 dB > 4 dB frame (floats) frames

24 0.908 0.68 0.00 327.7 81920 12
23 0.967 1.06 0.00 245.8 61440 7
22 1.038 1.58 0.00 163.8 40960 8

be split into different subvectors. They noted that the best bit allocation was dependent

on the type of splitting used [163]. However, from a computational and memory point of

view, non-uniform bit allocation is not a preferred solution since the size of the codebook

increases exponentially as more bits are given. The (4, 6) split was found to perform quite

well with uniform bit allocation [163].

Multistage Vector Quantisers

Paliwal and Atal [123] investigated the use of multistage vector quantisation (MSVQ) on

various LPC parameters. A two-stage MSVQ was found to also benefit from the weighted

Euclidean distance measure and achieved a spectral distortion of 0.99 dB at 25 bits/frame,

which was 1 bit/frame more than the SVQ.

Table 5.6 shows the spectral distortion and complexity of the two-stage multistage vec-

tor quantiser on LSF vectors from the TIMIT database. The weighted Euclidean distance

measure was used in this experiment. We can see that transparent coding is achieved at

22 bits/frame. However, the computational complexity and memory requirements of the

two-stage MSVQ are considerably higher than the two-part SVQ, as the codebooks are of

the same dimension of 10.

LeBlanc et al. [21, 93] introduced a multistage vector quantisation scheme that was

more efficient in terms of better distortion performance. Codebook searching in normal

MSVQ is performed in an independent fashion which leads to suboptimal quantisation

performance. Using an M-L searched MSVQ, where the multistage codebooks are searched

along M paths and the one which gives the least distortion is chosen, they showed that the

M-L search achieved a performance that was close to an optimal search for a relatively small

M [93]. A spectral distortion of 1 dB can be achieved at bitrates as low as 22 bits/frame
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using two-stage MSVQ (4096-2)14 with M = 2, though the complexity of the scheme

is quite high (246 kflops/frame, 40960 floats). By using a four-stage MSVQ (64-4), the

complexity can be considerably reduced with transparent coding reported to be achieved

at 24 bits/frame using M = 2, with a computational complexity of 18 kflops/frame and

2560 floats [183].

Filter Stability Checking in Product Code Vector Quantisers

Unconstrained vector quantisers that operate on entire vectors are able to preserve the or-

dering property of the LSFs. Ordered LSFs can be visualised as points in a 10-dimensional

vector space that are constrained above a hyperplane. This is shown in Figure 5.27, which

shows the first and second LSFs in a two-dimensional space. We can see that, because

of the ordering property, the LSFs only occur above the hyperplane where both LSFs

are equal. Due to the space-filling and shape advantages, vector quantisers can repre-

sent this space accurately. However, this is not true for product code vector quantisers

since they consist of independent quantisers, which in theory, operate outside the influ-

ence of the other quantisers. For example, consider the two-part SVQ operating on the

two-dimensional LSFs of Figure 5.27. Each dimension would be quantised by a scalar

quantiser, which due to the lower dimensionality, is not aware of the ordering constraint

and will place quantiser levels in the region below the hyperplane. Thus at low bitrates,

where the scalar quantisers become coarse, it is possible for codepoints below the hy-

perplane to be selected, thus producing quantised LSFs that violate the ascending order

property.

For two-part SVQ, a stability check can be included during the search of the second

subvector codebook, ensuring that the first quantised LSF is larger than the last quantised

LSF from the code-vector selected in the first subvector codebook. In three-part SVQ, it

is preferable to quantise using the second subvector codebook first. Then the first and

third subvector codebook are searched and checked with the second to ensure the correct

LSF ordering.

For multistage vector quantisers, where each stage is independent of the previous stage,

the ordering of the LSFs cannot be easily checked. This is because subsequent stages are

quantising residual vectors, which do not necessarily exhibit consistent ordering. However,

14(codebook size, number of stages)
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Figure 5.27: Scatter diagram of the first and second line spectral frequencies. The line is
the hyperplane where both LSFs are equal.

the ordering of the quantised LSF vector can be checked when using the M-L searched

MSVQ, since after the searching, M candidates are available for selection. In addition

to the minimum distortion criteria, an extra criteria can be added to check whether the

candidate vector is correctly ordered.
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Figure 5.28: Histograms of 10 line spectral frequencies for narrowband speech

5.5.5 GMM-Based Block Quantisation

Memoryless GMM-Based Block Quantisers

Subramaniam and Rao [183] applied the GMM-based block quantiser to quantise speech

LSFs. The distortion measure used for the minimum distortion block quantisation was

spectral distortion. Figure 5.28 shows the histograms of the line spectral frequencies from

the test set of the TIMIT database. We can see that higher frequency LSFs tend to be

unimodal, while the lower frequency LSFs have a multimodal distribution. Therefore,

the GMM-based block quantiser15 is expected to perform better than the single Gaussian

block quantiser, because of the former’s ability to estimate and quantise the multimodal

PDFs of the lower frequency LSFs, which are perceptually more important.

Subramaniam and Rao reported a spectral distortion of 1.0295 dB at a fixed-rate of 24

bits/frame [183]. However, the percentage of outlier frames having a spectral distortion

between 2 and 4 dB was 3.05%, which is higher than the 2% required for transparent

coding.

Table 5.7 shows the spectral distortion performance of the fixed-rate GMM-based block

quantiser on LSF vectors from the TIMIT database. The GMM consists of 16 clusters

and during the training process, we have used 20 iterations of the EM algorithm. We can

15Note that we have not evaluated the GMM-DCT-based block quantiser for LPC parameter quantisation
because LSF and ISF data are only lightly correlated and do not possess Gauss-Markov properties, unlike
image data. We have found the DCT to be much less effective than the KLT on LSF and ISF data.
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Table 5.7: Average spectral distortion (SD) performance of the 16 cluster, memoryless,
fixed-rate GMM-based block quantiser using spectral distortion criterion at different bi-
trates on LSF vectors from the TIMIT database

Bits/frame
Avg. SD Outliers (in %)
(in dB) 2–4 dB > 4 dB

25 0.981 0.76 0.00
24 1.042 1.12 0.00
23 1.107 1.66 0.00

Table 5.8: Bitrate independent computational complexity (in kflops/frame) and memory
requirements (ROM) of the GMM-based block quantiser using spectral distortion-based
quantiser selection as a function of the number of clusters

m kflops/frame ROM (floats)

4 63.5 776
8 126.9 1296
16 253.9 2336
32 507.7 4416

observe that transparent coding is achieved at 25 bits/frame on the TIMIT database.

By comparing Tables 5.7 and 5.3, we can see that the 25 bits/frame GMM-based block

quantiser is comparable to the 33 bits/frame PDF-optimised scalar quantisers. Both

quantisation schemes utilise scalar codebooks that are optimised for the PDF of each

LSF. Therefore, it is apparent that the saving of up to 8 bits/frame is mostly due the

decorrelating aspect of the multiple Karhunen-Loève transforms in the GMM-based block

quantiser.

Table 5.8 shows the computational complexity and memory requirements of the GMM-

based block quantiser, when using the spectral distortion to select the appropriate block

quantiser. These were calculated using Table 2.1 with ndist = 15.265 kflops/frame for

spectral distortion16 and Equation (2.70). We can see that the computational complexity

of the GMM-based block quantiser, while it is independent of the bitrate, is quite high

16The spectral distortion involves calculating the root-mean-squared-error between the log periodograms
of both the original and quantised LPC coefficients. Therefore, two 256-point split-radix FFTs are used,
each expending 6664 flops, according to Table 6.2 of [136]. The reciprocal of the squared magnitude is
calculated for each FFT, requiring an additional 516 flops, which followed by the decibel calculation, brings
the total computations to 14.876 kflops. The RMS calculation adds an extra 389 flops. The number of flops
required for the square root and logarithm calculation are not known and are assumed to be 1 flop, which
brings the total computational complexity of the spectral distortion calculation to approximately 15.27
kflops. Note that in our work, each multiplication, addition, and comparison is considered one floating
point operation (flop).
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Table 5.9: Average spectral distortion of the 16 cluster predictive GMM-based block
quantiser (trained case) using SD criterion as a function of bitrate on LSF vectors from
the TIMIT database

Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

25 0.877 1.97 0.26
24 0.939 2.56 0.34
23 1.003 3.25 0.38
22 1.077 4.26 0.48
21 1.154 5.55 0.60

Table 5.10: Prediction coefficients for the predictive GMM-based block quantiser (calcu-
lated using the covariance method)

i ai

1 0.969321
2 0.983092
3 0.988771
4 0.994216
5 0.996263
6 0.997416
7 0.998717
8 0.999198
9 0.999600

10 0.999832

due to the frequent use of the spectral distortion calculation17.

Predictive GMM-Based Block Quantisers

Subramaniam and Rao [183] also reported results for their predictive GMM-based block

quantiser (for more details on this scheme, see Section 2.7.2), which exploits correlation

between consecutive frames using a first-order predictor. They reported a spectral distor-

tion of 0.9943 dB at 22 bits/frame with 2.75% of outlier frames having a spectral distortion

between 2 and 4 dB.

We have used the trained case of the predictive GMM-based block quantiser to quantise

LSF vectors from the TIMIT database and the spectral distortion performance is shown

17It should be noted that this is the full spectral distortion calculation and there exist simpler approxi-
mations, such as the one proposed in [52].



Chapter 5 LPC Parameter Quantisation in Narrowband Speech Coding 247

in Table 5.9. The prediction coefficients were calculated using the covariance method and

are shown in Table 5.10. We can see that a spectral distortion of 1 dB is achieved at 23

bits/frame, as opposed to 25 bits/frame for the memoryless case (Table 5.7). Note that

this quantisation scheme suffers from a higher percentage of outlier frames in both our

results and those of [183]. This is mostly because of the poor performance of the predictor,

due to the low correlation between rapidly changing LSF frames. Better performance may

be expected by using a higher order predictor or a safety-net scheme [45], where each frame

is quantised using the memoryless and predictive quantiser, and the one which incurs the

least distortion is then chosen. Both these methods will add further complexity and delay.

Filter Stability Checking in GMM-Based Block Quantisers

Because the GMM-based block quantiser and its derivatives comprise of a set of inde-

pendent scalar quantisers, which is a special case of split vector quantisation, then it is

possible for unstable LSF frames to be produced. Therefore, it is necessary to add a sta-

bility check in the minimum distortion block quantisation stage to ensure that not only is

the distortion minimised, but also that the reconstructed frame is stable as well. However,

this does not correct the case where all cluster block quantisers produce unstable frames,

though from our experience, this situation is quite rare.

5.6 LSF Quantisation Experiments

In this section, we present and discuss the results of LSF quantisation experiments using

the two new quantisation schemes that have been introduced and discussed in this disser-

tation, namely the multi-frame GMM-based block quantiser and the switched split vector

quantiser. Also included is the traditional block quantiser, which can be viewed as a single

cluster, GMM-based block quantiser. This will provide a useful baseline for comparison

with the other quantisation schemes.

5.6.1 The KLT-Based Block Quantiser

Table 5.11 shows the spectral distortion performance of the traditional block quantiser

which uses a single KLT as the transform. In this scheme, the PDF of the LSFs is
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Table 5.11: Average spectral distortion of the KLT-based block quantiser as a function of
bitrate on LSF vectors from the TIMIT database

Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

31 0.911 1.23 0.03
30 0.971 1.68 0.03
29 1.026 2.12 0.06
28 1.093 2.76 0.08
27 1.167 3.80 0.11
24 1.409 9.66 0.26

assumed to Gaussian. We can see that a spectral distortion of approximately 1 dB is

achieved at 29 bits/frame.

Comparing the performance with that of the scalar quantiser from the FS-1016 4.8

kbps CELP coder in Table 5.2, we can see that the block quantiser at 24 bits/frame is

comparable to the 34 bits/frame scalar quantiser. Also, if we compare the block quantiser

with the scalar quantiser with dynamic non-uniform bit allocation (Table 5.3), we can see

that the block quantiser at 29-30 bits/frame is comparable to a 32-33 bits/frame scalar

quantiser. This highlights the advantage of using a decorrelating transform before scalar

quantisation. That is, there is a degree of intraframe correlation that can be exploited.

If we compare Table 5.11 with Table 5.7, we can see that the 24 bits/frame GMM-based

block quantiser is roughly equivalent to a 29 bits/frame block quantiser. The saving of 5

bits/frame is mostly due to the more accurate modelling of the PDF of the LSF vectors

(particularly of the lower order LSFs, as seen in Figure 5.28), in addition to the use of

multiple transforms which are designed to decorrelate local vector spaces.

5.6.2 The Multi-Frame GMM-Based Block Quantiser

Using MSE Criterion for Block Quantiser Selection

Table 5.12 shows the spectral distortion performance of the 16 cluster, multi-frame GMM-

based block quantiser for varying bitrates and number of concatenated frames, p. The

cluster selection criterion used in the minimum distortion block quantisation stage is mean-

squared-error (MSE), which is more computationally efficient than spectral distortion18. A

18Referring to Table 2.1, for MSE, ndist = 3n flops/frame.
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Table 5.12: Average spectral distortion of the 16 cluster multi-frame GMM-based block
quantiser using MSE criterion as a function of bitrate and number of concatenated frames,
p

p Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

1 22 1.199 3.39 0.01
23 1.129 2.34 0.00
24 1.069 1.66 0.00
25 1.008 1.16 0.00

2 21 1.112 2.67 0.01
22 1.047 1.84 0.00
23 0.987 1.25 0.00
24 0.929 0.86 0.00
25 0.875 0.62 0.00

3 21 1.063 2.14 0.01
22 1.001 1.42 0.00
23 0.941 0.98 0.00
24 0.887 0.66 0.00
25 0.836 0.48 0.00

4 21 1.042 1.88 0.01
22 0.982 1.33 0.00
23 0.926 0.94 0.00
24 0.871 0.57 0.00
25 0.821 0.42 0.00
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Table 5.13: Bitrate independent computational complexity (in kflops/frame) and memory
requirements (ROM) of the multi-frame GMM-based block quantiser using MSE criterion
as a function of number of concatenated vectors, p, and number of clusters, m

m p kflops/frame ROM (floats)

16 1 10.09 2336
2 16.49 7616
3 22.89 16096
4 29.28 27776

32 1 20.19 4416
2 32.98 14976
3 45.77 31936
4 58.57 55296

spectral distortion of 1 dB is achieved at 22 bits/frame with p = 3. For any given bitrate,

the spectral distortion decreases as more frames are concatenated together. This may be

attributed to the decorrelation of LSFs within and across frames by the KLT. Because

the dimension of the vectors is larger, the block quantiser can operate at a higher bitrate

and therefore, the performance is expected to improve. As well as spectral distortion, the

percentage of outlier frames has also decreased with an increase in p.

Comparing Table 5.12 and Table 5.7, which shows the results for the memoryless

(p = 1) GMM-based block quantiser using 16 clusters and spectral distortion criterion,

we can see that the multi-frame GMM-based block quantiser is more efficient in terms of

bitrate and distortion. Comparing with Table 5.12, it can be observed that by coding two

frames jointly, a spectral distortion of approximately 1 dB is achieved using 23 bits/frame

while the memoryless quantiser requires 25 bits/frame. By quantising more frames (p = 3

and 4) jointly, 22 bits/frame are needed to achieve the same level of spectral distortion. In

comparison, the 21 bits/frame multi-frame GMM-based block quantiser (p = 4, m = 16)

is equivalent to the 24 bits/frame memoryless GMM-based block quantiser, in terms of

spectral distortion. Therefore, the exploitation of memory across 4 successive frames by

the KLT enables a saving of 3 bits/frame.

The memoryless scheme uses spectral distortion (SD) to select the appropriate block

quantiser which incurs a high computational complexity, as shown in Table 5.8. Comparing

this with Table 5.13, we can see that the use of MSE in the multi-frame scheme leads to

a more computationally efficient scheme, along with better quantisation performance.

For example, the p = 3 multi-frame GMM-based block quantiser has a computational
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Table 5.14: Average spectral distortion of the 32 cluster multi-frame GMM-based block
quantiser using MSE criterion as a function of bitrate and number of concatenated frames,
p

p Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

1 22 1.163 2.79 0.00
23 1.099 1.95 0.00
24 1.036 1.34 0.00
25 0.977 0.80 0.00

2 21 1.069 1.97 0.00
22 1.008 1.39 0.00
23 0.950 0.94 0.00
24 0.895 0.61 0.00
25 0.842 0.39 0.00

3 20 1.084 2.49 0.01
21 1.022 1.69 0.00
22 0.963 1.11 0.00
23 0.908 0.74 0.00
24 0.855 0.51 0.00
25 0.804 0.34 0.00

4 20 1.066 2.12 0.01
21 1.006 1.40 0.00
22 0.949 0.94 0.00
23 0.894 0.64 0.00
24 0.841 0.43 0.00
25 0.792 0.25 0.00

complexity that is less than 10% of the complexity of a single-frame GMM-based block

quantiser, with the former achieving transparent coding at 22 bits/frame compared with

25 bits/frame for the latter. These advantages come at the expense of higher memory

requirements though.

Table 5.14 shows that when using 32 clusters, only 21 bits/frame are required for a

spectral distortion of 1 dB. It can also be seen that the percentage of outliers has decreased

as a result of using more clusters. This is to be expected as there are more cluster quantisers

to choose from. However, the computational complexity and memory requirements of the

32 cluster scheme (Table 5.13) are much higher than those of the 16 cluster one. Hence

from an implementation standpoint, a saving of 1 bit/frame may not justify the increase

in complexity that accompanies the use of more clusters.
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Table 5.15: Average spectral distortion of the 16 cluster multi-frame GMM-based block
quantiser using SD criterion as a function of bitrate and number of concatenated frames,
p

p Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

2 21 1.091 2.13 0.00
22 1.027 1.41 0.00
23 0.967 0.92 0.00
24 0.911 0.63 0.00
25 0.858 0.42 0.00

3 21 1.046 1.84 0.01
22 0.985 1.18 0.00
23 0.925 0.79 0.00
24 0.872 0.50 0.00
25 0.823 0.36 0.00

4 21 1.027 1.63 0.00
22 0.968 1.10 0.00
23 0.912 0.72 0.00
24 0.858 0.44 0.00
25 0.810 0.32 0.00

Using Spectral Distortion Criterion for Block Quantiser Selection

Table 5.15 shows the spectral distortion performance of the multi-frame GMM-based block

quantiser that uses spectral distortion19 for determining the best cluster quantiser, as is

done in the original memoryless GMM-based block quantiser of [183]. For each concate-

nated frame, the spectral distortion is calculated for each subframe and these are added

together to give the final distortion. Because spectral distortion is used as the final ob-

jective measure, matching the distortion criteria is expected to be more optimal than a

mismatched scheme (in our case, MSE with SD). This is shown when comparing the spec-

tral distortions of Tables 5.12 and 5.15. The matched case yields spectral distortions which

are roughly 0.02 dB lower than the MSE-based scheme. Results for a 32 cluster SD-based

scheme, given in Table 5.16, show the SD-based scheme to be superior to the MSE-based

one by approximately 0.02 dB. It would appear that the improvement in quantisation

performance, as a result of using an SD-based scheme rather than an MSE-based one, is

less than 1 bit/frame.

The advantage of using MSE over SD is the computational simplicity of the former

19We used the ‘exact’ full-band spectral distortion calculation.
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Table 5.16: Average spectral distortion of the 32 cluster multi-frame GMM-based block
quantiser using SD criterion as a function of bitrate and number of concatenated frames,
p

p Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

2 21 1.045 1.52 0.00
22 0.985 1.05 0.00
23 0.928 0.66 0.00
24 0.874 0.43 0.00
25 0.822 0.26 0.00

3 21 1.003 1.37 0.01
22 0.945 0.90 0.00
23 0.891 0.56 0.00
24 0.838 0.37 0.00
25 0.788 0.25 0.00

4 20 1.048 1.82 0.00
21 0.989 1.15 0.00
22 0.932 0.73 0.00
23 0.879 0.47 0.00
24 0.826 0.31 0.00
25 0.779 0.18 0.00

Table 5.17: Bitrate independent computational complexity (in kflops/frame) and memory
requirements (ROM) of the multi-frame GMM-based block quantiser using SD criterion
as a function of number of concatenated vectors, p, and number of clusters, m

m p kflops/frame ROM (floats)

16 1 253.9 2336
2 276.3 7616
3 311.5 16096
4 359.5 27776

32 1 507.7 4416
2 552.5 14976
3 622.9 31936
4 718.9 55296
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Table 5.18: Partial-band spectral distortion (SD) and computational performance of the
two-part switched split vector quantiser at 24 bits/frame as a function of the number of
switch directions using different bit allocations

m
Total bits/frame Avg. SD Outliers (in %) kflops/
(bm + b1 + b2) (in dB) 2–4 dB > 4 dB frame

1 24 (0+12+12) 0.943 0.54 0.00 163.9

2 24 (1+12+11) 0.943 0.62 0.00 114.8
24 (1+11+12) 0.920 0.45 0.00 131.1

4 24 (2+11+11) 0.924 0.56 0.00 82.1
24 (2+10+12) 0.917 0.50 0.00 114.8

8 24 (3+11+10) 0.926 0.68 0.00 57.7
24 (3+10+11) 0.903 0.43 0.00 65.9

16 24 (4+10+10) 0.912 0.57 0.00 41.6
24 (4+9+11) 0.903 0.46 0.00 58.0

over the latter, as can be seen by comparing Tables 5.13 and 5.17. For example, the 16

cluster multi-frame GMM-based block quantiser with p = 3, at 24 bits/frame requires

only 22.89 kflops/frame for the MSE criterion, compared with 311.5 kflops/frame for the

SD criterion, though the difference in average spectral distortion between the two schemes

is only 0.015 dB. Therefore, the significant reduction in computational complexity, as a

result of using the MSE criterion, more than outweighs the minor gains in quantisation

performance from using the spectral distortion criterion, though one may substitute the

spectral distortion calculation with a simpler high-rate approximation from [52].
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Table 5.19: Partial-band spectral distortion (SD) and computational performance of the
three-part switched split vector quantiser at 24 bits/frame as a function of the number of
switch directions using different bit allocations

m
Total bits/frame Avg. SD Outliers (in %) kflops/

(bm + b1 + b2 + b3) (in dB) 2–4 dB > 4 dB frame

1 24 (0+8+8+8) 1.061 1.68 0.01 10.3

2 24 (1+8+8+7) 0.982 0.97 0.01 8.27
24 (1+8+7+8) 1.057 1.97 0.01 8.78
24 (1+7+8+8) 1.019 1.15 0.01 8.78

4 24 (2+8+7+7) 1.006 1.39 0.00 6.81
24 (2+7+8+7) 1.084 1.95 0.00 6.81
24 (2+7+7+8) 1.031 1.55 0.00 7.32
24 (2+8+8+6) 0.968 0.97 0.00 7.32

8 24 (3+8+7+6) 0.954 0.95 0.00 5.95
24 (3+8+8+5) 0.950 1.01 0.00 6.97

16 24 (4+7+7+6) 0.925 0.75 0.00 4.73
24 (4+8+8+4) 0.979 1.75 0.00 7.04
24 (4+8+7+5) 0.948 1.02 0.00 5.76

32 24 (5+7+7+5) 0.921 0.86 0.00 4.86
24 (5+7+6+6) 0.936 0.85 0.00 4.60
24 (5+8+6+5) 0.959 1.20 0.00 5.63

5.6.3 The Switched Split Vector Quantiser

Performance as a Function of the Number of Switch Directions

Table 5.18 shows the spectral distortion and computational performance of the two-part

SSVQ at 24 bits/frame with varying number of switching directions and different bit

allocations. For each number of switching directions, m, the least spectral distortion is

highlighted in bold. We can see that non-uniform bit allocation generally results in lower

spectral distortion, particularly for cases where the number of bits is divisible by two.

Therefore, the bit allocation scheme we have adopted, where bits are uniformly allocated

where-ever possible, is not optimal in the distortion sense. However, we also observe that

non-uniform bit allocation leads to an increase in the number of computations required,

thus there is a distortion/computational complexity trade-off.

Table 5.19 shows the spectral distortion and computational performance of the three-

part SSVQ at 24 bits/frame with varying number of switching directions and different bit

allocations. For each number of switching directions, m, the least spectral distortion is
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Figure 5.29: Average spectral distortion (SD) of two-part and three-part SSVQ at 24
bits/frame as a function of the bits required for switching

highlighted in bold. It can be seen that lower spectral distortion can be achieved when

the first and second parts are given more bits than the third.

Another important observation to be made from Tables 5.18 and 5.19 is the consis-

tent downward trend of the spectral distortion, as the number of switching directions is

increased, which is plotted in Figure 5.29. This is due to the increased ability of the uncon-

strained switch vector quantiser to exploit dependencies and PDF shape as its codebook

becomes larger. Also, three-part SSVQ shows larger reductions in distortion, as a result

of using more switching directions, than two-part SSVQ. In order to explain this, consider

a three-part split vector quantiser. Vectors are split into three parts, rather than two, and

these are then independently quantised. The use of more independent quantiser stages

results in more degradation in overall quantiser performance since there is less exploitation

of full vector dependencies. SSVQ compensates this loss of quantiser performance, caused

by more vector splitting, by using the unconstrained switch vector quantiser to exploit full

vector dependencies before coding using split vector quantisers. As more bits are diverted

away from the SVQs to the switch vector quantiser, it is expected that compensating

the suboptimality of three-part SVQ with a full-vector VQ leads to larger performance

improvements than compensating a two-part SVQ with a full-vector VQ.
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Figure 5.30: Computational complexity of two-part and three-part SSVQ at 24 bits/frame
as a function of the bits required for switching

As well as this, there is a reduction in the number of computations required, which

is shown in Figure 5.30. By using three-part split vector quantisers in the SSVQ, we can

reduce the number of computations by as much as one tenth in exchange for only a modest

increase in spectral distortion. Therefore, for the same bitrate, SSVQ achieves gains in

both distortion and computational complexity. We should note that there is a saturation

of the distortion for large values of m because there are an insufficient number of training

vectors.

Performance as a Function of Bitrate

Table 5.20 shows the spectral distortion and computational performance of the two-part

switched split vector quantiser as a function of bitrate. It can be observed that transparent

coding was achieved using 22 bits while requiring 17.7 kflops for each LSF frame. Table

5.21 shows the performance of the three-part SSVQ where transparent coding was achieved

using 23 bits/frame.

Also shown in Tables 5.20 and 5.21 are the memory requirements (ROM) of SSVQ.

It can be observed that while SSVQ achieves gains in quantiser performance with re-

duced computational complexity, they are at the expense of larger memory requirements.
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Table 5.20: Partial-band spectral distortion (SD), computational complexity, and memory
requirements (ROM) of the two-part switched split vector quantiser as a function of bitrate
and number of switch directions

m
Total bits/frame Avg. SD Outliers (in %) kflops/ ROM
(bm + b1 + b2) (in dB) 2–4 dB > 4 dB frame (floats)

8 24 (3+10+11) 0.902 0.43 0.00 65.9 131152
23 (3+10+10) 0.973 0.84 0.00 41.3 82000
22 (3+9+10) 1.031 1.20 0.00 33.1 65616

16 24 (4+10+10) 0.912 0.57 0.00 41.6 164000
23 (4+9+10) 0.965 0.78 0.00 33.4 131232
22 (4+9+9) 1.038 1.29 0.00 21.1 82080

32 24 (5+9+10) 0.903 0.52 0.00 34.0 262464
23 (5+9+9) 0.972 0.94 0.00 21.8 164160
22 (5+8+9) 1.029 1.26 0.00 17.7 131392

Table 5.21: Partial-band spectral distortion (SD), computational complexity, and memory
requirements (ROM) of the three-part switched split vector quantiser as a function of
bitrate and number of switch directions

m
Total bits/frame Avg. SD Outliers (in %) kflops/ ROM
(bm + b1 + b2 + b3) (in dB) 2–4 dB > 4 dB frame (floats)

8 24 (3+7+7+7) 0.955 0.90 0.00 5.44 10320
23 (3+7+7+6) 1.006 1.21 0.00 4.41 8272
22 (3+7+6+6) 1.112 2.46 0.01 3.64 6736

16 24 (4+7+7+6) 0.925 0.75 0.00 4.73 16544
23 (4+7+6+6) 1.002 1.38 0.00 3.96 13472
22 (4+6+6+6) 1.080 1.97 0.01 3.20 10400

32 24 (5+7+7+5) 0.921 0.86 0.00 4.86 28992
23 (5+6+6+6) 0.991 1.13 0.00 3.84 20800
22 (5+6+6+5) 1.049 1.70 0.00 3.32 16704
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part switched split vector quantiser (m = 16) using minimum distortion (using weighted
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Three-part SSVQ with 8 switching directions at 23 bits/frame is therefore, the best coder

configuration with a good balance of low spectral distortion (1.006 dB), computational

complexity (4.41 kflops/frame) and memory requirements (8272 floats).

Minimum Distortion Versus Nearest Neighbour Selection

Better performance, in terms of spectral distortion, can be achieved by quantising a vec-

tor using all split vector quantisers and then choosing the one which incurs the least

distortion. However, such a scheme would involve a large amount of computations as

each vector to be coded needs to be quantised multiple times in order to find the best

representation. Therefore, we adopted a classification approach where each Voronoi re-

gion, from which split vector quantisers are designed, is represented by its centroid, and a

switching decision, based on the nearest neighbour criteria, is made before it is quantised

by the corresponding split vector quantiser. We have argued that the penalty in spec-

tral distortion would be more than offset by the reduction in computational complexity.

Figure 5.31 shows the histograms of the spectral distortion from SSVQ operating at 24

bits/frame using minimum distortion (weighted distance measure and spectral distortion)
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and nearest neighbour selection. As expected, the spectral distortion version of minimum

distortion selection gives the lowest distortion (0.852 dB). However the resulting quantiser

is very computationally intensive since m spectral distortion calculations need to be per-

formed for each vector to be coded. The weighted MSE version of minimum distortion

selection gave a slightly higher average spectral distortion (0.875 dB), while the spectral

distortion of the nearest neighbour selection was the worst out of the three (0.912 dB).

However, when we compare the number of computations required in minimum distortion

selection (approx. 655 kflops/frame) compared with the nearest neighbour selection (42

kflops/frame), we see the computational complexity reduced by 15 times at the expense

of an extra 0.04-0.06 dB. It is clear that the nearest neighbour version of SSVQ is the best

in terms of the distortion versus computational complexity trade-off.

Comparison with Split Vector Quantisers

Tables 5.4 and 5.5 show the performance of the two-part and three-part split vector quan-

tiser, described in [123], on the TIMIT database, respectively. By comparing Tables 5.20

with 5.4 and Tables 5.21 with 5.5, we can see that SSVQ outperforms SVQ for all bitrates.

The 23 bits/frame three-part SSVQ is comparable to a three-part split vector quantiser

operating at 25 bits/frame while requiring only about 33% of the number of computa-

tions of the latter. This shows the effectiveness of SSVQ in exploiting correlation between

subspaces for lower distortion performance while requiring less computations, at the same

bitrate.

In general, SSVQ requires more codebook memory than SVQ. However, the 23 bits/frame

three-part SSVQ has slightly better spectral distortion than the 23 bits/frame two-part

SVQ but with a third of the memory requirements (8272 cf. 28672 floats) and a fraction

of the complexity (4.4 cf. 114 kflops/frame).

Comparison with Multistage Vector Quantisers

Table 5.6 lists the results of the sequentially searched, two stage multistage vector quan-

tiser (MSVQ) on the TIMIT database where transparent coding has been achieved at 22

bits/frame. Comparing this with Table 5.21, we observe comparable spectral distortion

performance between SSVQ and MSVQ. However, MSVQ is considerably more complex
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(246 cf. 4.4 kflops/frame) and has higher codebook memory requirements (61440 cf. 8272

floats) than SSVQ at 23 bits/frame. Also, the sequential searched MSVQ is prone to

producing unstable frames. Stability in a frame is determined by the ascending ordering

of the LSFs. Split vector quantisers can be designed to ensure correct ordering between

subvectors by including an extra condition when choosing codevectors, based on the rela-

tive value of LSFs on the boundaries. The ability to verify this ordering is lost in MSVQ

because the second stage operates on residual vectors.

Comparison with Scalar Quantisers

Table 5.3 shows the spectral distortion performance of independent, non-uniform scalar

quantisers. A spectral distortion of 1 dB is achieved at 32 bits/frame. It can be seen

that the 23 bits/frame three-part SSVQ is comparable in performance to scalar quantisers

operating at 32-34 bits/frame. Table 5.2 shows the performance of the non-uniform scalar

quantisers that are used in the U.S. Federal Standard 1016, 4.8 kbps CELP coder [27]. It

is clear that SSVQ performs considerably better than the scalar quantisers in the FS-1016

4.8 kbps CELP coder.

Comparison with GMM-based Block Quantisers

Table 5.7 presents the spectral distortion performance of the GMM-based block quantiser

(single frame) on the TIMIT database. Comparing Table 5.7 with 5.21, the 23 bits/frame

three-part SSVQ gives comparable spectral distortion to that of the GMM-based block

quantiser operating at 25 bits/frame, while requiring less than 2% of the number of com-

putations.

Furthermore, this quantisation scheme is particularly intensive in computation as each

vector is quantised multiple times and spectral distortions are calculated for each cluster.

This is highlighted in Table 5.8. As an informal comparison of computational performance,

we measured the times it took to quantise LSF vectors at 24 bits/frame using the 16

cluster GMM-based block quantiser20 and three-part SSVQ (8 switching directions). The

platform used to perform the test was a 2.4 GHz Intel Pentium 4 processor running the

Linux operating system. The 24 bits/frame GMM-based block quantiser took, on average,

20Note that the full spectral distortion was calculated. There is a simpler approximation of spectral
distortion given in [52].
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301 seconds to quantise 85353 LSF vectors (SD of 1.049 dB) while the 24 bits/frame three-

part SSVQ took 7 seconds (SD of 0.955 dB). Therefore, in terms of spectral distortion

and computational complexity, SSVQ performs better than the memoryless, fixed rate

GMM-based block quantiser in coding LSFs.

5.7 Chapter Summary

In this chapter, we first reviewed the basics of speech coding, such as speech production and

the modelling of speech using linear prediction analysis. The operation of various speech

coders was also described and this highlighted the role and importance of LPC quantisa-

tion. Different LPC parameter representations, that are both robust to quantisation and

provide simple checks for filter stability, were covered. The line spectral frequencies are

one of the more popular representations and were thus used in our evaluation of various

quantisation schemes.

The first quantisation scheme that we evaluated was the multi-frame GMM-based

block quantiser, which has the advantage of bitrate scalability and bitrate independent

complexity. By extending the decorrelating transform to exploit the linear dependencies

between multiple frames, the multi-frame GMM-based block quantiser was able to achieve

transparent coding at bitrates as low as 21 bits/frame, though the computational complex-

ity and memory requirements become an issue. This quantisation scheme was compared

with scalar quantisers, the split vector quantiser, the multistage vector quantiser, and the

single-frame GMM-based block quantiser, and was generally found to perform better in

terms of spectral distortion, bitrate, and complexity.

The switched split vector quantiser was also evaluated as an LSF quantiser. Transpar-

ent coding was achieved at bitrates as low as 22 bits/frame, though the memory require-

ments of the two-part SSVQ were relatively high. It was determined that the three-part

SSVQ, with transparent coding at 23 bits/frame, was well-balanced in terms of quanti-

sation performance and complexity. Compared with other single-frame quantisers, the

SSVQ achieved generally better spectral distortion performance. One aspect that the

SSVQ excelled was the low computational complexity.



Chapter 6

LPC Parameter Quantisation in

Wideband Speech Coding

6.1 Abstract

In this chapter, we report on the contributions to LPC parameter quantisation in the area

of wideband speech coding. We begin with the definition of wideband speech and describe

its advantages over toll-quality narrowband speech, such as improved naturalness and the

ability to distinguish between fricatives, as well as allowing better presence of the speaker,

all of which can alleviate listener fatigue. Next, we review some of the state-of-the-art

coding schemes for wideband speech, such as the Transform Coded Excitation (TCX)

coder, and the industry standard coders such as the ITU-T G.722, which is a 64 kbps

subband/ADPCM coder, and ITU-T G.722.2, which is the Adaptive Multirate wideband

(AMR-WB) ACELP coder.

In the remaining half of the chapter, we provide a review of the various quantisation

schemes for coding LPC parameters that have been reported in the wideband speech coding

literature. In addition to this, we evaluate some of these schemes, such as PDF-optimised

scalar quantisers with non-uniform bit allocation, vector quantisers, and the GMM-based

block quantiser on the two competing LPC parameter representations: line spectral fre-

quencies (LSFs) and immittance spectral pairs (ISPs). Our experimental results indicate

that ISPs are superior to LSFs by 1 bit/frame in independent quantiser schemes, such

as scalar quantisers; while it is the opposite for joint vector quantiser schemes. We also

263
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Figure 6.1: Waveform and spectrogram of wideband speech. The sentence that is spoken
is ‘she had your dark suit in greasy wash-water all year’, and with the unvoiced /s/ and
voiced /iy/ sounds in she, highlighted.

derive informal lower bounds, 35 bits/frame and 36 bits/frame, for the transparent cod-

ing of LSFs and ISPs, respectively, via the extrapolation of the operating distortion-rate

curve of the unconstrained vector quantiser. Finally, we present and discuss the results

of applying the switched split vector quantiser (SSVQ) with weighted distance measure

and the multi-frame GMM-based block quantiser, which achieve transparent coding at 42

bits/frame and 37 bits/frame, respectively, for LSFs. ISPs were found to be inferior to

the LSFs by 1 bit/frame.

Publications resulting from this research: [168, 170, 171, 172, 173]

6.2 Introduction

6.2.1 The Improved Quality of Wideband Speech

While narrowband speech has acceptable quality (otherwise known as toll quality), that

is similar to telephone speech, it was found to be inadequate for applications that de-

manded higher quality reconstruction, such as videophones, teleconferencing, multimedia,

etc. Problems with narrowband speech include lack of naturalness and speaker ‘presence’,

as experienced in face-to-face speech communication, as well as difficulty in distinguishing

between fricative sounds, such as /s/ and /f / [5]. All of these can lead to listener fatigue.

By lowering the low frequency cut-off from 300 Hz to 50 Hz, the naturalness and
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Figure 6.2: Spectral envelope estimate of 20 ms of wideband speech (starting from 3.53 s)
for different orders of linear prediction analysis: (a) using 10th order autocorrelation
method; (b) using 16th order autocorrelation method.

fullness of the speech can be improved, while extending the high frequency cut-off from

3400 Hz to 7000 Hz, improves the distinguishing of fricative sounds [134]. This extended

range of 50–7000 Hz of wideband speech roughly corresponds to the bandwidth of speech

sampled at 16 kHz. Figure 6.1 shows the waveform and spectrogram of 16 kHz speech. We

can see that most of the spectral information for voiced speech, in the form of formants,

occurs below 3.4 kHz. However, for unvoiced speech, there is some spectral information

extending beyond 3.4 kHz that may be important for discriminating fricative sounds. For

example, the spectrum starting at 1.5 and 2.25 seconds is stronger at frequencies above 4

kHz (darker areas) than the spectra for other unvoiced sections.

6.2.2 LPC Analysis of Wideband Speech

Figure 6.2 shows the spectral envelope estimates and power spectral densities of wideband

speech using different orders of linear prediction analysis. Using the speech utterance of

Figure 6.1, a 20 ms frame was extracted starting from 3.53 s. A Hamming window was

applied to prevent the masking of high frequency formants by spectral leakage and the

autocorrelation method was used in the linear prediction analysis.
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We can see that the 10th order linear prediction analysis has captured the two formants

below 4 kHz (Figure 6.2(a)), which corresponds to the frequency range of narrowband

speech. However, three formants can be observed above 4 kHz which are not captured

by the 10th order linear prediction analysis. Therefore, higher orders are required for

accurate estimation of the short-term correlation information in wideband speech. Figure

6.2(b) shows the spectral envelope estimate from a 16th order linear prediction analysis,

where we can see the capturing of the higher order formants.

6.2.3 Coding of Wideband Speech

The wideband speech coders that have appeared in the literature can be broadly classified

as either transform coders or CELP-based coders. Examples of transform coders include

the 64 kbps ITU-T G.722 subband coder and those of Wuppermann and de Bont [202],

Quackenbush [137], and Crossman [33]. These transform coders are not designed to exploit

the properties of speech and hence can accommodate other types of audio, such as music.

However, better coding performance can be achieved with the CELP-based coders, which

are specifically designed for speech coding, though they perform poorly when other types

of audio are present [5].

CELP-based coders for wideband speech were first investigated by Shoham [162],

Laflamme et al. [92], and Roy and Kabal [148]. It was recognised that due to the increase

in bandwidth and sampling frequency, maintaining acceptable quality at low bitrates often

required a significant increase in the complexity of CELP, which was already computa-

tionally demanding, and this inhibited the use of full-band CELP in wideband speech

coding. For instance, very large excitation codebooks are needed due to the need to use

larger frame sizes [92]. Full-band CELP also suffers from an intermittent background hiss.

This is because full-band CELP generally achieves accurate coding of speech in the low

frequency spectrum but does poorly in coding the high frequency spectral region, due to

the spectral tilt that can be large as 35 dB [190].

Various techniques were applied to reduce the computational burden of CELP and/or

improve its quality, which included the use of algebraic CELP (ACELP) at 16 kbps [92],

which uses a more compact and search efficient algebraic codebook, and split-band CELP

at 16 kbps [148], which splits the excitation signal into two frequency bands while placing

more emphasis on coding the low frequency band. However, enough emphasis is placed on
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Figure 6.3: Block diagram of the 64 kbps ITU-T G.722 wideband speech coder (after [5]).
The blocks labelled as ‘2:1’ and ‘1:2’ are decimators and interpolators, respectively

the high frequency band to overcome the limitations of full-band CELP in handling the

spectral tilt. Consequently, split-band CELP has better quality and lower complexity than

full-band CELP. Other methods that deal with the spectral tilt include pre-processing the

speech with a pre-emphasis filter and modified error weighting [190].

Harborg et al. [64] reported a full-band CELP coder at 16 kbps which had a low

complexity and was able to run in real-time on a TMS320C31 DSP. Ubale and Gersho

[190] introduced the multi-band CELP approach that uses off-line filtered multi-band

excitation codebooks. Multi-band CELP was designed to overcome the quality issues

in split-band CELP that were due to the band overlap. Finally a hybrid scheme called

transform coded excitation (TCX), which combined transform coding with the CELP

approach, was investigated by Lefebvre et al. [95] and this was reported to achieve high

quality speech reconstruction at 16 kbps. The TCX coder will be described in Section

6.3.2.

6.3 Wideband Speech Coders

6.3.1 The ITU-T G.722 Wideband Speech Coder

In 1986, the ITU-T standardised G.722, which is a 64 kbps wideband speech coder [5]. As

shown in Figure 6.3, it is a two-band subband coder using ADPCM. The 24-tap quadrature

mirror filters (QMFs) split the speech frequency spectrum into two overlapping bands.

Because most of the energy appears in the lower half of the spectrum (0–4 kHz), the

G.722 coder allocates 6 bits/sample to the lower band, and 2 bits/sample to the upper

band [5].

The G.722 speech coding standard allows other data channels to be accommodated by

lowering the overall rate to free up some bits. This is achieved by varying the number of
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Figure 6.4: Block diagram of the 16 kbps TCX wideband speech coder (after [94]).

bits given to the lower band, which can take the values of 6, 5, and 4 bits/sample, and

these correspond to a total bitrate of 64, 56, and 48 kbps, respectively [5].

The G.722 speech coder is classified as a waveform-approximating coder, where the

aim is to minimise the quantisation error between the reconstructed and original speech.

The distortion measure is non-weighted mean squared error and because of this, auditory

masking properties are not exploited. Waveform-approximating coders achieve excellent

reconstruction at medium to high bitrates, but degrade considerably at low bitrates [124].

Therefore, parametric coders that are based on the CELP principle have been investigated

for wideband speech coding at lower bitrates and these are discussed in the following

sections. The G.722 coder, though, serves as a useful quality reference for these low

bitrate coders [5].

6.3.2 The Transform Coded Excitation (TCX) Wideband Speech Coder

Representing the state-of-the-art in wideband speech coding is the transform coded excita-

tion (TCX) wideband speech coder, which was introduced by Lefebrve et al. [94] as a low

complexity alternative to the traditional CELP speech coders at bitrates, where there are

a large number of bits to encode the excitation signal [5]. Originally used for narrowband

speech coding, it was later applied to wideband speech coding in [95], where at 16 kbps,

there were enough bits to encode the excitation signal.

The CELP coder achieves acceptable quality at lower bitrates because of the vector

quantisation of the excitation signal, coupled with an analysis-by-synthesis approach. In

CELP, each code-vector is scaled by a gain and filtered using the long-term and short-term

predictors before the error between the synthesised and original speech is calculated. Based
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on minimising the weighted version of this error, the appropriate excitation vector is then

selected. This code-vector search of the fixed innovation codebook using the analysis-by-

synthesis approach is the most computationally intensive procedure in the CELP coder.

The TCX coder, which is shown in Figure 6.4, operates at a lower complexity by

removing the analysis-by-synthesis procedure and directly quantising the excitation signal

(otherwise, known as the target signal) using a transform coder in a weighted domain [5].

Speech is initially pre-emphasised using the filter, H(z) = 1 − µz−1 where µ = 0.5, to

remove the spectral tilt of the speech spectrum and emphasise high frequency formants

[95]. Backward adaptive LPC analysis is performed on the past reconstructed speech

and these parameters are used in the synthesis filter, 1/A(z). This filter is driven by an

excitation signal which is comprised of a pitch-correlated and innovation component. The

adaptive codebook, which is used to generate a pitch-correlated excitation, is similar to

the one used in CELP coders, but instead uses past synthesised speech that has been

whitened by A(z).

In order to code the speech, short-term and long-term correlations are removed initially

by whitening with the filter, A(z), and then subtracting the pitch-correlated excitation,

respectively. The resulting residual signal, which is termed the target signal, is then

weighted with the filter, F (z) = 1/A(z/γ) where γ = 0.9, and then coded using a Fourier

transform coder. In speech decoding, the coded innovation excitation is decoded and

then long-term and short-term correlation information is introduced by adding the pitch

excitation and filtering with the synthesis filter, 1/A(z), respectively.

It is of interest to note the similarities between the TCX coder and the error-weighted

DPCM coder of [15]. Both schemes remove long-term and short-term correlations from the

speech before directly quantising the residual in a weighted error domain. The fundamental

difference between these two schemes is the use of a transform coder in TCX, which is

generally more efficient in a rate-distortion sense, than the scalar quantiser in DPCM.

6.3.3 The Adaptive Multirate Wideband (AMR-WB) Speech Coder

The AMR-WB wideband speech coder was adopted by the 3GPP in 2000 and standardised

by the ITU-T as recommendation G.722.2. It is based on the ACELP coder and can

operate at different bitrates (23.85, 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85, and 6.6
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kbps) [19]. In this section, we describe briefly the main points of operation, specifically

the pre-processing, LPC analysis, and LPC parameter quantisation. For more details on

the AMR-WB speech coder, the reader should consult the following references: [3, 19].

Speech Pre-Processing

The 16 kHz speech is processed in two frequency bands, 50–6400 Hz and 6400–7000 Hz, to

decrease complexity and prioritise bit allocation to the subjectively important lower band

[19]. In the lower band, speech is down-sampled to 12.8 kHz and pre-processed using a

high pass filter, Hh(z), and pre-emphasis filter, Hp(z), which are given by [3]:

Hh(z) =
0.989502 − 1.979004z−1 + 0.989502z−2

1 − 1.978882z−1 + 0.979126z−2
(6.1)

Hp(z) = 1 − 0.68z−1 (6.2)

The role of the high pass filter is to remove undesired low frequency components while

the pre-emphasis filter removes the spectral tilt in the speech spectrum and emphasises

higher frequency formants for more accurate LPC analysis.

LPC Analysis

Speech frames of 20 ms are extracted using a 30 ms asymmetric Hamming window which

emphasises the fourth subframe (subframes are 5 ms long each). Autocorrelations are

calculated with a 5 ms lookahead. The autocorrelation method is used to perform a 16th

order LPC analysis with a 60 Hz bandwidth expansion (using the lag window method) and

a white noise correction factor of 1.0001 [3]. The 16 LPC coefficients are transformed to

immittance spectral pairs (ISPs) [23], {qi}16
i=1, and then further converted to immittance

spectral frequencies1 (ISFs), {fi}16
i=1, for quantisation [3]:

fi =





Fs

2π cos−1(qi) , for i = 1, 2, . . . , 15

Fs

4π cos−1(qi) , for i = 16
(6.3)

where Fs = 12.8 kHz is the sampling frequency.

1It should be noted that the last ISF corresponds to half the arc-cosine of the 16th reflection coefficient,
thus it is a different quantity to the first 15 ISFs.



Chapter 6 LPC Parameter Quantisation in Wideband Speech Coding 271

Quantisation of Residual ISF Vectors

In order to exploit interframe correlation, a first order moving average (MA) predictor is

applied:

r(n) = f(n) − p(n) (6.4)

where r(n) is the prediction residual vector, f(n) is the current frame of ISFs, and p(n)

is the predicted ISF that is given by:

p(n) =
1

3
r̂(n− 1) (6.5)

where r̂(n− 1) is the quantised residual vector of the previous frame [3].

The residual ISF vectors are quantised using split-multistage vector quantisation (S-

MSVQ) at 36 bits for the lowest bitrate mode (6.6 kbps); and 46 bits for the other higher

bitrate modes. S-MSVQ first appeared in the ATCELP wideband speech coder described

by Combescure et al. [30] and is essentially a multistage vector quantiser with split vector

quantisers in each stage. It combines the low complexity characteristics of both split

vector quantisers (SVQ) and multistage vector quantisers (MSVQ), making it practical to

quantise 16-dimensional vectors using 46 bits. The S-MSVQ and its performance will be

discussed in a later section.

6.4 Quantisation of Wideband LPC Parameters

6.4.1 Introduction

In this section, we provide a brief review of the LPC quantisation schemes that have been

reported in the wideband speech coding literature. Also included are results from some

popular quantisation schemes, such as PDF-optimised scalar quantisers with non-uniform

bit allocation, unconstrained vector quantisers, the split-multistage vector quantiser from

the AMR-WB coder, and the GMM-based block quantiser [183]. These will serve as

a bases for comparison, when we apply the two schemes that were introduced in this

dissertation, namely the switched split vector quantiser and multi-frame GMM-based block

quantiser. We will also attempt to extrapolate the operating distortion-rate curve of the

unconstrained vector quantiser to find an informal lower bound on the bitrate required for
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transparent coding of wideband LPC parameters.

Because of the adoption of immittance spectral pairs (ISPs) as the LPC parameter

representation in the AMR-WB speech coder, we also have included quantisation results for

ISPs as well as LSFs and compare their relative performance. More specifically, we quantise

the ISPs in the frequency domain, which are referred to from here on as immittance spectral

frequencies (ISFs). Therefore, we will use the terms ISP and ISF interchangeably in the

rest of the chapter. We follow the definition of ISFs given by (6.3) [3].

6.4.2 Literature Review

Harborg et al. [64] quantised 16 to 18 log-area-ratio coefficients at 60 to 80 bits/frame using

non-uniform, PDF-optimised scalar quantisers, in their real-time wideband CELP coder.

Lefebvre et al. [94] used a split vector quantiser with seven part splitting (2, 2, 2, 2, 2, 3, 3)

to quantise 16 LSFs at 48 bits/frame in their TCX wideband coder. Chen et al. [29]

also used a seven-part split vector quantiser, with the same subvector sizes as in [94]

operating at 49 bits/frame to quantise 16 LSF parameters in their transform predictive

coder. Transparent results were reported by Biundo et al. [24] for a four and five part

split vector quantiser at 45 bits/frame.

Because successive LSF frames are highly correlated [61], better quantisation can be

achieved by exploiting the interframe correlation. Roy and Kabal [148] quantised 16 LSFs

at 50 to 60 bits/frame using non-uniform differential scalar quantisation. They noted

that because the LSFs were related to the formant positions, then the lower frequency

LSFs were perceptually more important, hence more bits should be allocated to them.

Combescure et al. [30] quantised 12 LSFs from a decimated lower band using a predictive

split multistage vector quantiser at 33 bits/frame. Ubale et al. [190] used a seven-stage

tree-searched multistage vector quantiser [93] with a moving average (MA) predictor at 28

bits/frame, while Biundo et al. [24] reported transparent results using an MA predictive

split multistage vector quantiser (S-MSVQ) at 42 bits/frame. Guibé et al. [61] achieved

transparent coding using a safety-net vector quantiser at 38 bits/frame, while the Adaptive

Multirate wideband (AMR-WB) speech codec [19, 3] uses an S-MSVQ with MA predictor

at 46 bits/frame to quantise ISPs.

Other quantisation schemes recently reported include the predictive Trellis-coded quan-
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tiser [160] and the HMM-based recursive quantiser [42] which achieve a spectral distortion

of 1 dB at 34 and 40 bits/frame, respectively.

6.4.3 Experimental Setup

The TIMIT database was used in the training and testing of the quantisation experi-

ments, where speech is sampled at 16 kHz. We have used the lower band pre-processing

and LPC analysis of the 3GPP implementation of the AMR-WB speech codec (floating

point version) [3, 4] to produce linear prediction coefficients which are then converted

to line spectral frequency (LSF) representation [75] and immittance spectral pairs (ISP)

representation [23] (quantisation is performed on the frequency form of ISPs, ie. ISFs).

The training set consists of 333789 vectors while the evaluation set, consisting of speech

not contained in the training, has 85353 vectors. Unless specified otherwise, unweighted

mean squared error is used as the distance measure for quantiser design and spectral

distortion is used for evaluating quantisation performance. In narrowband speech coding,

the conditions for transparent speech from LPC parameter quantisation are [123]:

1. The average spectral distortion (SD) is approximately 1 dB;

2. there is no outlier frame having more than 4 dB of spectral distortion; and

3. less than 2% of outlier frames are within the range of 2–4 dB.

According to Guibé et al. [61], listening tests have shown that these conditions for trans-

parency also apply to the wideband case. Therefore, we have adopted these conditions in

our analysis.

6.4.4 PDF-Optimised Scalar Quantisers with Non-Uniform Bit Alloca-

tion

Figure 6.5 shows the histogram of ISFs and LSFs from the test set of the TIMIT database.

We can see that the distribution of the low to medium frequency parameters tend to be

multimodal while high frequency ones are unimodal. Therefore, the best strategy is to

quantise each LPC parameter using a scalar quantiser that is optimised for each specific

probability density function (PDF). In this experiment, we have designed non-uniform
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Figure 6.5: Histograms of LPC parameters from the TIMIT database (the first and last
components are labelled): (a) immittance spectral frequencies (ISFs); (b) line spectral
frequencies (LSFs)

scalar quantisers using the generalised Lloyd algorithm for each LPC parameter. Bit

allocation was performed using a greedy algorithm that is similar to that described by

Soong and Juang [175], where each bit is given to the scalar quantiser which results

in the largest distortion improvement. This simple algorithm results in a locally optimal

allocation of bits. To reduce the computational complexity of the bit allocation procedure,

we have used mean squared error as the distortion measure rather than spectral distortion.

Table 6.1 shows the spectral distortion performance of non-uniform, PDF-optimised

scalar quantisers on immittance spectral frequency vectors from the TIMIT database. We

can see that a spectral distortion of 1 dB can be achieved at a bitrate of 58 bits/frame. In

Table 6.2, which shows the spectral distortion performance of non-uniform scalar quantisa-

tion of line spectral frequency vectors, we can see that 1 dB spectral distortion is achieved

at 59 bits/frame. We note that these results reflect the narrowband speech coding results

given by Bistritz and Peller [23], where ISPs were observed to also perform better than

LSFs by 1 bit/frame, in differential scalar quantisation.
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Table 6.1: Average spectral distortion of the PDF-optimised scalar quantisers as a function
of bitrate on wideband ISF vectors from the TIMIT database

Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

61 0.911 0.85 0.00
60 0.947 0.97 0.00
59 0.961 1.00 0.01
58 1.016 1.22 0.01
57 1.060 1.51 0.01
56 1.137 2.19 0.01
55 1.181 2.63 0.01

Table 6.2: Average spectral distortion of the PDF-optimised scalar quantisers as a function
of bitrate on wideband LSF vectors from the TIMIT database

Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

61 0.918 0.82 0.00
60 0.970 0.95 0.00
59 1.011 1.18 0.01
58 1.080 1.64 0.01
57 1.120 1.88 0.01
56 1.162 2.26 0.01
55 1.219 2.98 0.03
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6.4.5 Unconstrained Vector Quantisers and an Informal Lower Bound

for Transparent Coding

In theory, unconstrained vector quantisers can achieve the lowest distortion of any quan-

tisation scheme at a given bitrate and dimension. However, the exponentially growing

complexity and storage, with respect to increasing bitrate and dimensionality, inhibits

their use in practical schemes that require high bitrates. However, they can be used to

provide an informal lower bound on the spectral distortion via extrapolation to higher

bitrates, similar to that reported in [125] for narrowband LSF quantisation.

We have applied unconstrained vector quantisers to the task of quantising ISF and

LSF vectors from the TIMIT database and their spectral distortion performance is shown

in Tables 6.3 and 6.4, respectively. Unweighted mean squared error is used in the design

and encoding phases of the vector quantiser. Due to computational constraints, we have

only been able to train VQ codebooks up to 16 bits. For higher bitrates (18 bits/frame),

we have used a VQ codebook that consists of randomly selected vectors from the training

set. The resulting codebook will perform suboptimally, hence the spectral distortion will

serve as an upper bound.

We notice from Tables 6.3 and 6.4 that for vector quantisation, LSFs produce slightly

lower spectral distortion than ISFs, which is contrary to the results for scalar quantisation

in the previous section. This is probably due to the inclusion of the 16th immittance

spectral frequency (which is related to the reflection coefficient), in the joint quantisation

of the vector. Because this parameter is not really a ‘frequency’, unlike the first 15 ISFs,

and possesses different quantisation properties and sensitivity characteristics, then using

the unweighted mean squared error (which assumes all vector components are similar) as

a distance measure may not be optimal. The VQ code-points for the 16th ISF become

dependent on (and their locations are more or less constrained by) the other 15 ISFs.

Therefore, independent quantisation of the 16th ISF, as is the case with the PDF-optimised

scalar quantisers, will generally result in lower spectral distortion.

In order to highlight the different quantisation characteristics of the 16th ISF, Figures

6.6(a) and (b) show the original and reconstructed spectral envelope estimates for the LSF

and ISF representation, where the last (16th) parameter has been shifted by 142 Hz. We

note the spectral localisation of the distortion caused by a shift of the 16th LSF. On the
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Table 6.3: Average spectral distortion of the unconstrained vector quantiser as a function
of bitrate on wideband ISF vectors from the TIMIT database

Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

16 2.445 70.36 1.86
15 2.521 72.09 2.69
14 2.609 73.16 4.01
13 2.705 74.07 5.53
12 2.814 73.96 7.96
11 2.934 72.60 11.30
10 3.067 70.50 15.56
9 3.218 66.79 21.20
8 3.385 61.96 27.80
7 3.577 55.96 35.50

Table 6.4: Average spectral distortion of the unconstrained vector quantiser as a function
of bitrate on wideband LSF vectors from the TIMIT database

Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

16 2.420 70.22 1.54
15 2.498 72.09 2.29
14 2.585 73.58 3.28
13 2.686 74.46 4.92
12 2.794 74.31 7.31
11 2.916 73.28 10.63
10 3.051 71.06 14.96
9 3.203 67.20 20.67
8 3.370 62.23 27.41
7 3.563 56.44 35.02
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Figure 6.6: Original and reconstructed power spectral envelope estimates for 16th order
LPC analysis: (a) Shifting the 16th LSF by 142 Hz (SD=0.583 dB); (b) Shifting the 16th
ISF by 142 Hz (SD=0.6838 dB). The solid and dashed vertical lines show the original and
shifted parameters (LSF and ISF), respectively.

other hand, because the 16th ISF is not really a ‘frequency’, but is essentially related to

the 16th reflection coefficient, a shift of 142 Hz results in distortion appearing throughout

the entire spectrum. The average spectral distortion of the modified LSF power spectral

density is also less than that of the modified ISF power spectral density (0.583 cf. 0.684

dB).

Figures 6.7(a) and (b) shows the operating distortion-rate (D-R) curves of the uncon-

strained vector quantisation of LSFs and ISFs, respectively. The squares represent the

performance of the vector quantiser that is properly trained using the LBG algorithm

while the triangles represent the performance of the vector quantiser with a codebook

formed from randomly picked training vectors. We can see that at low bitrates, the D-R

curve is exponential-like, while at high bitrates, the curve is more linear. If we make the

loose assumption of a linear D-R curve from 13 bits/frame and onwards, then a least-

squares linear regression (the line in Figure 6.7) shows that single frame, vector quantisers

need at least 35 bits/frame and 36 bits/frame to achieve a spectral distortion of 1 dB, for

LSFs and ISFs, respectively. We should note that this is by no means a tight lower bound
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Figure 6.7: Extrapolating from the operating distortion-rate curve of the unconstrained
vector quantisers to approximate a lower bound for transparent coding, when using: (a)
line spectral frequencies (wideband); and (b) immittance spectral frequencies (wideband).
2’s indicate the performance of a VQ codebook trained using LBG, while 4’s indicate the
performance of a VQ codebook consisting of random vectors from the training set.
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Figure 6.8: Block diagram of the split-multistage vector quantiser (after [24])

for several reasons. Firstly, the high rate linearity assumption of the D-R curve is rather

loose as there are not enough operating points to determine such a trend. Also, due to the

finite and limited number of training vectors, the vector quantiser becomes more and more

‘over-trained’. Furthermore, the LBG algorithm generally produces codebooks that are lo-

cally optimal, depending on the initialisation used. Finally, the distortion performance of

a VQ codebook consisting of randomly selected training vectors, should generally be worse

than an LBG trained one. This is demonstrated in Figure 6.7(a) at 15 bits/frame, where

there is a 0.5 dB spectral distortion difference between the randomly selected codebook

and LBG trained codebook. Therefore, 35 bits/frame and 36 bits/frame can be said to be

informal lower bounds only, for the transparent coding of LSFs and ISFs, respectively. A

better approach would be that of Hedelin and Skoglund [66], where a Gaussian mixture

model (GMM) with bounded support is used to estimate the LSF vector source. This

GMM can then be used to generate a set of artificial training vectors which are used to

train VQ codebooks using the LBG algorithm. This avoids the ‘over-training’ issue due

to a limited size training set.

6.4.6 Split-Multistage Vector Quantisers with MA Predictor

The split-multistage vector quantiser (S-MSVQ), which is shown in Figure 6.8, is used in

the AMR-WB speech coder for coding immittance spectral frequencies. It can be seen

that it is essentially a modified multistage vector quantiser with split vector quantiser

stages. This combination of product code vector quantisers allows for a large reduction in

computational complexity. During residual ISF encoding, the S-MSVQ is searched using

the efficient M-L tree search algorithm [93], where M surviving paths are determined and

the path which minimises the distortion is selected.

For the 46 bits/frame S-MSVQ in the AMR-WB speech coder, residual ISF vectors



Chapter 6 LPC Parameter Quantisation in Wideband Speech Coding 281

Table 6.5: Average spectral distortion as a function of bitrate of the AMR-WB (ITU-T
G.722.2) split-multistage vector quantiser with MA prediction on wideband ISF vectors
from the TIMIT database

Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

46 0.894 0.76 0.01
36 1.304 5.94 0.03

are split into two subvectors of dimension 9 and 7, respectively. Each subvector is then

quantised using a two-stage multistage vector quantiser, where in the first stage, each

subvector is quantised using 8 bits, and in the second stage, the two residual subvectors

are further split into 3 and 2 subvectors, respectively. The bit allocation for each subvector

in the second stage are (6, 7, 7) bits and (5, 5) bits [3].

Table 6.5 shows the spectral distortion performance of the S-MSVQ with MA predictor

on ISF vectors from the TIMIT database. The S-MSVQ was adapted from the 3GPP

implementation of the AMR-WB speech coder [4] and operates at 36 and 46 bits/frame.

We can see that the S-MSVQ at 46 bits/frame, which is used in all bitrate modes except

the lowest, achieves a spectral distortion that is lower than 1 dB, though there is a small

percentage of outlier frames having a spectral distortion of greater than 4 dB. At 36

bits/frame, which is used in the lowest bitrate mode, we observe a higher spectral distortion

and percentage of outlier frames, hence the coding is speech is less likely to be transparent.

6.4.7 GMM-Based Block Quantisers

Subramaniam and Rao [183] applied the GMM-based block quantiser to quantise nar-

rowband speech LSFs. The distortion measure used for the minimum distortion block

quantisation was spectral distortion. We can see in Figure 6.5 that higher frequency ISFs

and LSFs tend to be unimodal, while the lower frequency ones have a multimodal distri-

bution. Therefore, the GMM-based block quantiser is expected to perform well because

of the ability to estimate and quantise the multimodal PDFs of the lower frequency LSFs,

which are perceptually more important. Also, because of the use of decorrelating trans-

forms, the GMM-based block quantiser is expected to achieve lower spectral distortions

than the independent PDF-optimised scalar quantisers at a given bitrate.
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Table 6.6: Average spectral distortion performance of the 16 cluster memoryless, fixed
rate GMM-based block quantiser using spectral distortion criterion at different bitrates
on wideband ISF vectors from the TIMIT database

Bits/frame
Avg. SD Outliers (in %)
(in dB) 2–4 dB > 4 dB

46 0.856 0.30 0.00
42 1.001 0.91 0.00
41 1.040 1.14 0.00
40 1.080 1.46 0.00
36 1.254 4.08 0.01

Table 6.7: Average spectral distortion performance of the 16 cluster memoryless, fixed
rate GMM-based block quantiser using spectral distortion criterion at different bitrates
on wideband LSF vectors from the TIMIT database

Bits/frame
Avg. SD Outliers (in %)
(in dB) 2–4 dB > 4 dB

46 0.844 0.22 0.00
42 0.985 0.66 0.01
41 1.025 0.88 0.01
40 1.064 1.18 0.01
36 1.240 3.51 0.01
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Tables 6.6 and 6.7 show the spectral distortion performance of the fixed-rate GMM-

based block quantiser on ISF and LSF vectors, respectively, from the TIMIT database. The

GMM consists of 16 clusters and during the training process, we have used 20 iterations

of the EM algorithm. We can observe that a spectral distortion of 1 dB is achieved

at 41 bits/frame when using the LSF representation and 42 bits/frame when using the

ISF representation. This difference in performance is similar to that seen in the vector

quantiser from the previous section, and is contrary to the scalar quantiser result. Like

the vector quantiser, the GMM-based block quantiser exploits correlation within each

vector and tends to lose performance if some of the vector components are rather lightly

correlated. Because the 16th ISF is a different type of parameter from the first 15 ISFs,

this fact may explain the performance loss of using the ISF representation in joint vector

and block quantisation schemes, compared with independent scalar quantisation schemes,

where ISFs were experimentally determined to be more superior. More specifically, the

16th ISF is not really a ‘frequency’, hence it does not possess the spectral localisation

properties of the first 15 ISFs.

Comparing Table 6.7 with 6.2, we can see that the 41 bits/frame GMM-based block

quantiser is comparable in spectral distortion performance to a 59 bits/frame PDF opti-

mised scalar quantiser. Both schemes utilise scalar codebooks that are optimised for the

PDF of each vector component. Therefore, it is apparent that the saving of up to 18

bits/frame by using the GMM-based block quantiser is mostly due to the exploitation of

correlation within LSF frame by the multiple Karhunen-Loève transforms.

Comparing Table 6.6 with 6.5, we can see that the GMM-based block quantiser achieves

slightly less spectral distortion and outlier frames than the S-MSVQ with MA predictor at

46 and 36 bits/frame. Because the GMM-based block quantiser is a single frame scheme

and does not exploit interframe dependencies, then we can conclude that it is more efficient,

in the rate distortion sense, than the S-MSVQ (without MA predictor).

We determined an informal lower bound of 35 bits/frame for the transparent coding of

LSFs in Section 6.4.5. Therefore, we can say that the GMM-based block quantiser performs

about 6 bits/frame worse than the unconstrained vector quantiser, when transparently

coding LSFs, though it must be stressed that the lower bound is by no means a tight one.

Table 6.8 shows the bitrate independent computational complexity and memory re-

quirements of the GMM-based block quantiser for different numbers of clusters. The
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Table 6.8: Bitrate independent computational complexity (in kflops/frame) and memory
requirements (ROM) of the GMM-based block quantiser using spectral distortion-based
quantiser selection as a function of the number of clusters for wideband speech coding

m kflops/frame ROM (floats)

4 66.4 1472
8 132.9 2688
16 265.8 5120
32 531.5 9984

Table 6.9: Average spectral distortion (SD), computational complexity, and memory re-
quirements (ROM) of the five-part switched split vector quantiser using unweighted MSE
as a function of bitrate and number of switch directions of wideband LSF vectors from
the TIMIT database

m
Total bits/frame Avg. SD Outliers (in %) kflops/ ROM

(b1 + b2 + b3 + b4 + b5 + bm) (in dB) 2–4 dB > 4 dB frame (floats)

8 46 (8+8+9+9+9+3) 0.919 0.54 0.00 27.13 53376
45 (8+8+8+9+9+3) 0.953 0.64 0.00 24.06 47232
44 (8+8+8+8+9+3) 0.984 0.79 0.00 20.99 41088
43 (7+8+8+8+9+3) 1.018 0.90 0.00 19.45 38016
42 (7+7+8+8+9+3) 1.066 1.37 0.00 15.35 34944

16 46 (8+8+8+9+9+3) 0.903 0.48 0.00 24.57 94464
45 (8+8+8+8+9+3) 0.932 0.60 0.00 21.50 82176
44 (7+8+8+8+9+3) 0.964 0.73 0.00 19.96 76032
43 (7+7+8+8+9+3) 1.007 0.97 0.00 18.43 69888
42 (6+7+8+8+9+3) 1.050 1.19 0.01 17.66 66816

spectral distortion calculation accounts for a large part of the complexity, requiring at

least 15.3 kflops/frame (assuming a 256 point FFT). However, the memory requirements

of the GMM-based block quantiser are relativity low.

6.4.8 Switched Split Vector Quantisers

Using the Unweighted Mean-Squared-Error as the Distance Measure

Table 6.9 shows the average spectral distortion, computational complexity, and memory

requirements of the five-part switched split vector quantiser (SSVQ) on wideband LSF

vectors from the TIMIT database. Also shown are the bit allocations used, which were

determined experimentally to result in minimal spectral distortion, while maintaining

moderate complexity, with bm being the number of bits that were given to the switch vector
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quantiser. The 16 dimensional vectors are split into 5 subvectors of sizes (3, 3, 3, 3, 4). An

unweighted mean-squared-error was used as the distance measure for codebook training

and searching. We can see that the 8 switch, five-part SSVQ can achieve transparent

coding at 43 bits/frame with a moderate computational complexity (19.45 kflops/frame).

By using more switches (16 switches), the SSVQ achieves slightly lower spectral distortions

and complexity, which is offset by a large increase in memory requirements.

Comparing the performance of the SSVQ with that of the S-MSVQ with MA predictor

in Table 6.5, we can see that at the SSVQ achieves slightly higher spectral distortion (0.919

cf. 0.894 dB) at 46 bits/frame, though the number of outlier frames having a spectral

distortion of 2 and 4 dB is less (0.54 cf. 0.76%) than that of the S-MSVQ. These results

are to be expected since the S-MSVQ scheme is an interframe scheme which uses an MA

predictor, while the SSVQ operates on single frames only and does not exploit interframe

correlation. Prediction-based schemes tend to achieve lower distortion at a given bitrate

with a higher percentage of outlier frames, due to the inability of predictors to capture

rapid changes [61].

Comparing Tables 6.9 and 6.7, we can see that the GMM-based block quantiser achieves

lower spectral distortion than the SSVQ, which is in contrast to narrowband LSF quanti-

sation, where the SSVQ was found to be better. This is because of the larger dimension

and bitrates in wideband LSF quantisation. That is, in order to keep the complexity

manageable, the SSVQ splits vectors into five subvectors. Splitting vectors into more and

more parts, while dramatically reducing the computational complexity and memory re-

quirements, also reduces all three vector quantiser advantages (space filling, shape, and

memory) [103], which penalises the rate-distortion performance of the vector quantisa-

tion scheme. However, comparing the computational complexity of the SSVQ with that

of the GMM-based block quantiser (in Table 6.8), we can see that the former requires

only 7.3% of the complexity of the latter, at 43 bits/frame. Therefore, the SSVQ is more

computationally efficient than the GMM-based block quantiser.

Table 6.10 shows the average spectral distortion of the five-part switched split vector

quantiser on wideband ISF vectors from the TIMIT database. The same vector splitting

(3, 3, 3, 3, 4) was applied and an unweighted mean-squared-error was used as the distance

measure. We can see that the 8 switch, five-part SSVQ achieves transparent coding at

44 bits/frame for wideband ISFs. Comparing the spectral distortions with those in Table



286 Chapter 6 LPC Parameter Quantisation in Wideband Speech Coding

Table 6.10: Average spectral distortion (SD), computational complexity, and memory
requirements (ROM) of the five-part switched split vector quantiser using unweighted
MSE as a function of bitrate and number of switch directions of wideband ISF vectors
from the TIMIT database

m
Total bits/frame Avg. SD Outliers (in %) kflops/ ROM

(b1 + b2 + b3 + b4 + b5 + bm) (in dB) 2–4 dB > 4 dB frame (floats)

8 46 (8+8+9+9+9+3) 0.931 0.53 0.00 27.13 53376
45 (8+8+8+9+9+3) 0.968 0.86 0.00 24.06 47232
44 (8+8+8+8+9+3) 0.999 1.07 0.00 20.99 41088
43 (7+8+8+8+9+3) 1.037 1.21 0.00 19.45 38016
42 (7+7+8+8+9+3) 1.080 1.68 0.00 15.35 34944

16 46 (8+8+8+9+9+3) 0.920 0.63 0.00 24.57 94464
45 (8+8+8+8+9+3) 0.948 0.77 0.00 21.50 82176
44 (7+8+8+8+9+3) 0.983 0.87 0.00 19.96 76032
43 (7+7+8+8+9+3) 1.032 1.30 0.00 18.43 69888
42 (6+7+8+8+9+3) 1.078 1.57 0.01 17.66 66816

6.9, we notice that, as observed previously with the GMM-based block quantiser and

unconstrained vector quantiser, ISFs perform slightly worser than LSFs, which can amount

to a 1 bit/frame difference.

Using the Weighted Mean-Squared-Error as the Distance Measure

It is well known that each quantised LSF2 influences the reconstructed power spectral

envelope in different ways, depending on its location. Figure 6.9 shows the original and

reconstructed spectral envelopes when two different LSFs have been shifted. The 15th

LSF falls on top of a formant while the 4th LSF is located in a spectral valley. We can

see from the Figure that a shift in the 15th LSF results in a shifting of the formant that is

more dramatic than the distortion caused by a similar shift to the 4th LSF. Therefore, we

can say that ‘not all LSFs are considered equal’, and a weighted distance measure, that

finely quantises the LSFs that are located in the vicinity of a spectral peak, should result

in less spectral distortion, as shown in Figure 6.9.

We have adopted a partial implementation of the weighted mean-squared-error measure

introduced by Paliwal and Atal [123] in narrowband LSF quantisation, which applies a

2We have observed the first 15 ISFs to possess the same properties, hence a similar weighted Euclidean
distance measure can be applied. However, the 16th ISF does not possess spectral error localisation
properties, but rather, shifting this ‘frequency’ affects the entire spectrum. Therefore, direct application
of a weighted Euclidean distance measure is not as straightforward.
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Figure 6.9: Original and reconstructed spectral envelope for a 16th order LPC analysis:
(a) shifting the 15th LSF (SD=1.7475 dB); (b) shifting the 4th LSF (SD=0.5441 dB). The
solid and dashed vertical lines show the original and shifted LSFs, respectively.

dynamic weighting (that emphasises LSFs in strong regions of the power spectral density)

as well as a fixed weighting (which accounts for the difference in sensitivity of the human

ear). In this work, our weighted distance measure implements only the dynamic weighting

and is used in both the training and searching of the VQ codebooks.

The weighted distance measure, dw(f , f̂), between the original vector, f , and the

approximated vector, f̂ , is defined as [123]:

dw(f , f̂) =
16∑

i=1

[
wi(fi − f̂i)

]2
(6.6)

where fi and f̂i are the ith LSF in the original and approximated vector respectively. The

dynamic weights, {wi} are given by [123]:

wi = [P (fi)]
r (6.7)

where P (f) is the LPC power spectral density and r is a constant (typical value used is

0.15).
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Table 6.11: Average spectral distortion (SD) of the five-part switched split vector quantiser
using weighted MSE as a function of bitrate and number of switch directions of wideband
LSF vectors from the TIMIT database

m
Total bits/frame Avg. SD Outliers (in %)

(b1 + b2 + b3 + b4 + b5 + bm) (in dB) 2–4 dB > 4 dB

8 46 (8+8+9+9+9+3) 0.889 0.33 0.00
45 (8+8+8+9+9+3) 0.922 0.43 0.00
44 (8+8+8+8+9+3) 0.953 0.57 0.00
43 (7+8+8+8+9+3) 0.986 0.66 0.00
42 (7+7+8+8+9+3) 1.037 1.05 0.00

16 46 (8+8+8+9+9+3) 0.878 0.34 0.00
45 (8+8+8+8+9+3) 0.906 0.44 0.00
44 (7+8+8+8+9+3) 0.936 0.50 0.00
43 (7+7+8+8+9+3) 0.975 0.64 0.00
42 (6+7+8+8+9+3) 1.018 0.83 0.00

Table 6.11 shows the average spectral distortion performance of the five-part SSVQ

using a weighted MSE. By comparing these results with the unweighted MSE-based scheme

(Table 6.9), we can see that by using a weighted distance measure, which emphasises

specific LSFs that are located near the formant peaks, the SSVQ results in lower spectral

distortions and percentages of outlier frames. The SSVQ with weighted MSE can achieve

transparent coding at 42 bits/frame. In comparison, the memoryless, five-part split vector

quantiser reported by Biundo et al. [24] required 45 bits/frame for transparent coding.

Comparing Tables 6.11 and 6.5, we can see that the SSVQ with weighted MSE, which is

a memoryless scheme, achieves comparable spectral distortion performance to the S-MSVQ

with MA predictor scheme from the AMR-WB speech coder, at 46 bits/frame. In addition,

the SSVQ with weighted MSE has produced only half the number of outlier frames than

the S-MSVQ, which is to be expected, since the latter has a predictive component.

6.4.9 Multi-Frame GMM-based Block Quantisers

Spectral Distortion Performance when Using 16 Clusters

Table 6.12 shows the average spectral distortion of the 16 cluster, multi-frame GMM-based

block quantiser at varying bitrates and number of concatenated frames, p. Unweighted

mean-squared-error is used for the cluster quantiser selection. Table 6.14 shows the bi-

trate independent computational complexity and memory requirements of the multi-frame
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Table 6.12: Average spectral distortion as a function of bitrate and number of concatenated
frames, p, of the 16 cluster multi-frame GMM-based block quantiser on wideband LSF
vectors from the TIMIT database

p Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

2 46 0.754 0.09 0.00
42 0.881 0.29 0.00
40 0.951 0.52 0.00
39 0.991 0.69 0.00
38 1.028 0.91 0.00
37 1.067 1.23 0.00

3 46 0.725 0.07 0.00
42 0.845 0.18 0.00
40 0.911 0.37 0.00
39 0.946 0.49 0.00
38 0.983 0.65 0.00
37 1.021 0.84 0.00
36 1.060 1.15 0.00

4 46 0.713 0.05 0.00
42 0.831 0.14 0.00
40 0.897 0.26 0.00
39 0.931 0.36 0.00
38 0.967 0.47 0.00
37 1.004 0.61 0.00
36 1.042 0.86 0.00

5 46 0.711 0.02 0.00
42 0.830 0.10 0.00
40 0.895 0.18 0.00
39 0.930 0.28 0.00

GMM-based block quantiser. Comparing this with Table 6.8, we can see that despite the

larger dimensionality, the multi-frame GMM-based block quantiser is still computation-

ally more efficient than the single frame GMM-based block quantiser of [183]. This is due

to the replacement of the spectral distortion calculation in the cluster quantiser selection

with the mean-squared-error, which is computationally less complex.

When quantising 2 frames jointly (p = 2), transparent coding is achieved at 39

bits/frame. By comparing this with the memoryless GMM-based block quantiser in Table

6.7, where transparent coding was achieved at 41 bits/frame, the saving of 2 bits/frame by

the former may be attributed to the exploitation of correlation between successive pairs of

frames. Also, there is a drop in the percentage of outlier frames having spectral distortion

between 2 and 4 dB. The p = 3 scheme has a moderate tradeoff between distortion and
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complexity, as shown in Table 6.14, where transparent coding is achieved at 37 bits/frame.

As more frames are concatenated, the average spectral distortions and number of outliers

decrease, though the benefit of joint quantisation starts to diminish for p > 4.

Table 6.13 shows the average spectral distortion performance of the multi-frame GMM-

based block quantiser on wideband ISF vectors. It can be observed that the spectral

distortions are slightly higher than those in the LSF quantiser. For p = 2 and p = 3,

40 bits/frame and 38 bits/frame are required for transparent coding of ISFs, which is 1

bit/frame more than for LSFs.

Comparing Tables 6.13 and 6.5, we can see that the multi-frame GMM-based block

quantiser outperforms the S-MSVQ from the AMR-WB speech coder in all bitrates. It

is particularly interesting to compare the p = 2 multi-frame GMM-based block quantiser

with S-MSVQ with MA predictor since both these schemes exploit memory across two

consecutive frames, where we can see that the former achieves a spectral distortion that

is 0.11 dB lower than the latter at 46 bits/frame.

Spectral Distortion Performance when Using 32 Clusters

Table 6.15 shows the average spectral distortion for the 32 cluster, multi-frame GMM-

based block quantiser on wideband LSF vectors. Comparing with Table 6.12, we note

that the spectral distortion and percentage of outliers are lower. This may be attributed

to more accurate modelling of the PDF by using more clusters in the GMM. As we can

see from Table 6.14, the computational and memory requirements of the 32 cluster scheme

are much higher than those of the 16 cluster one.

6.5 Chapter Summary

This chapter began with the definition of wideband speech and described its advantages

over toll-quality narrowband speech, such as improved naturalness and the ability to dis-

tinguish between fricatives, as well as provide better presence of the speaker, all of which

can alleviate listener fatigue. We have also shown through the visual inspection of LPC-

based spectral envelopes that, due to the extra bandwidth, a higher order LPC analysis is

required to capture most of the short-term correlation information in the speech. Following
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Table 6.13: Average spectral distortion as a function of bitrate and number of concatenated
frames, p, of the 16 cluster multi-frame GMM-based block quantiser on wideband ISF
vectors from the TIMIT database

p Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

2 46 0.781 0.16 0.00
42 0.910 0.45 0.00
40 0.983 0.80 0.00
39 1.021 1.02 0.00
38 1.060 1.30 0.00
37 1.100 1.77 0.00

3 46 0.753 0.11 0.00
42 0.879 0.32 0.00
40 0.946 0.56 0.00
39 0.982 0.78 0.00
38 1.019 1.01 0.00
37 1.058 1.35 0.00
36 1.097 1.74 0.00

4 46 0.743 0.07 0.00
42 0.868 0.24 0.00
40 0.935 0.46 0.00
39 0.972 0.56 0.00
38 1.010 0.81 0.00
37 1.049 1.08 0.00
36 1.087 1.40 0.00

5 46 0.744 0.06 0.00
42 0.867 0.20 0.00
40 0.934 0.34 0.00
39 0.970 0.51 0.00

Table 6.14: Bitrate independent computational complexity (in kflops/frame) and memory
requirements (ROM) of multi-frame GMM-based block quantiser as a function of the
number of concatenated frames, p and number of clusters, m

m p kflops/frame ROM (floats)

16 1 22.29 5120
2 38.66 18176
3 55.05 39424
4 71.43 68864
5 87.81 106496

32 1 44.58 9984
2 77.33 36096
3 110.1 78593
4 142.9 137472
5 175.6 212736
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Table 6.15: Average spectral distortion as a function of bitrate and number of concatenated
frames, p, of the 32 cluster multi-frame GMM-based block quantiser on wideband LSF
vectors from the TIMIT database

p Bits/frame Avg. SD (dB)
Outliers (in %)

2–4 dB > 4 dB

2 46 0.728 0.07 0.00
42 0.850 0.21 0.00
40 0.919 0.34 0.00
39 0.955 0.44 0.00
38 0.992 0.62 0.00
36 1.069 1.13 0.00

3 46 0.700 0.02 0.00
42 0.817 0.12 0.00
40 0.882 0.22 0.00
39 0.916 0.31 0.00
38 0.951 0.40 0.00
37 0.987 0.54 0.00
36 1.026 0.77 0.00

4 46 0.693 0.02 0.00
42 0.810 0.09 0.00
40 0.873 0.18 0.00
39 0.910 0.28 0.00
38 0.942 0.35 0.00
37 0.979 0.48 0.00
36 1.015 0.62 0.00

this, we have given a review of the state-of-the-art coding schemes for wideband speech as

well as the industry standard coders such as the ITU-T G.722 (subband/ADPCM coder)

and ITU-T G.722.2 (AMR-WB ACELP coder).

Since the focus of this chapter is primarily on spectral quantisation for wideband

LPC-based speech coders such as CELP, we provided a review of quantisation schemes

that have been reported in the wideband speech coding literature. We have also evaluated

some of these schemes such as PDF-optimised scalar quantisers, vector quantisers, and

the GMM-based block quantiser on the two competing LPC parameter representations:

line spectral frequencies (LSFs) and immittance spectral pairs (ISPs). Our experimental

results have shown that ISPs are superior to LSFs by 1 bit/frame in independent quan-

tisation schemes, such as scalar quantisers; while LSFs are the superior representation

in joint vector schemes, such as the vector quantiser and GMM-based block quantiser.

Through the extrapolation of the operating distortion-rate curve of unconstrained vector
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quantisation, we also derived an informal lower bound of 35 bits/frame and 36 bits/frame,

for the transparent coding of wideband LSFs and ISPs, respectively. We speculate that

this may be due to the fact that the last ISP parameter, which is not really a ‘frequency’,

is not correlated with the other ISPs and hence impacts on the memory advantage of

block and vector quantisation schemes, which aim to minimise the unweighted MSE for

each vector as a whole. Furthermore, because this parameter is a reflection coefficient, it

does not possess the error localisation properties of LSFs, but rather propagates errors

throughout the entire spectrum. Therefore, additional measures may need to be taken,

such as independent quantisation of the last ISP, or use of a weighted distance measure,

when vector quantising ISPs.

Finally, we presented and discussed the results of the switched split vector quantiser

(SSVQ) and the multi-frame GMM-based block quantiser, for coding wideband LSF and

ISF vectors. The SSVQ was able to achieve transparent coding at 43 bits/frame and

44 bits/frame, when using an unweighted mean-squared-error (MSE) on LSFs and ISFs,

respectively. The spectral distortion performance of the SSVQ on LSFs was improved by

using a weighted MSE that emphasised LSFs located near peaks in the power spectral

density. The resulting scheme was transparent at 42 bits/frame. The multi-frame GMM-

based block quantiser was able to achieve transparent coding at 37 bits/frame and 38

bits/frame with a moderate computational complexity for LSFs and ISFs, respectively.

These two quantisation experiments again confirm our finding that LSFs are superior to

ISFs by about 1 bit/frame in joint vector quantisation schemes.
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Chapter 7

MFCC Quantisation in

Distributed Speech Recognition

7.1 Abstract

This chapter investigates the application of the multi-frame GMM-based block quantisa-

tion scheme to MFCC quantisation in distributed speech recognition and examines how

it compares with other schemes. The advantage of the multi-frame GMM-based block

quantiser is: superior recognition performance at low bitrates, which is comparable with

vector quantisation; fixed and relatively low computational and memory complexity that

is independent of bitrate; and bitrate scalability, where the bitrate can be dynamically

altered without requiring codebook re-training.

We begin the chapter with some background theory on speech recognition, which covers

the basic ideas of feature extraction and pattern recognition using hidden Markov models

(HMMs). Following this, we provide a general review of client/server-based speech recog-

nition systems and the various types of modes (NSR and DSR) that have been proposed

and reported in the literature. We also briefly describe the Aurora-2 DSR experimental

framework, which will be used extensively to evaluate the performance and robustness to

noise of the various DSR schemes. The second half of the chapter is dedicated to pre-

senting and discussing results of different quantisation schemes applied to a common DSR

framework. The schemes investigated include the multi-frame GMM-based block quan-

tiser, the memoryless GMM-based block quantiser, the non-uniform (Lloyd-Max) scalar

295
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Figure 7.1: A typical speech recognition system (after [178])

quantiser, and vector quantiser. Two sets of experimental results are presented. The first

set compares the recognition performance of each quantisation scheme as a function of

bitrate in clean and matched conditions. The second set compares the recognition perfor-

mance of each scheme as a function of SNR in noisy, mismatched conditions.

Publications resulting from this research: [131, 174]

7.2 Preliminaries of Speech Recognition

Figure 7.1 shows a block diagram of a speech recognition system, highlighting the main

components in general. In this section, we give only a brief review of each of these compo-

nents rather than a comprehensive coverage of the algorithms used in modern recognition

systems, as the scope of this chapter is focused on the efficient quantisation of MFCC

features for distributed speech recognition.

7.2.1 Speech Production

Speech sounds can be broadly classified as either voiced or unvoiced. Voiced sounds,

such as /iy/ (as in see), are periodic and have a harmonic structure that is not present in

unvoiced sounds, such as /s/, which are aperiodic and noise-like. These are best visualised

in Figure 7.2, which shows the waveform and spectrogram of the sentence, she had your

dark suit in greasy wash-water all year, and highlights the voiced and unvoiced sections

in the first word, she. Notice that the spectrum for /sh/ is flat, similar to that of noise,

while the spectrum of /iy/ shows a harmonic structure, as characterised by the alternating

bands.

Voiced sounds are produced when air from the lungs is excited by vibrating vocal

folds in the larynx. A glottal wave, with a fundamental frequency of f0 and harmonics
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Figure 7.2: Waveform and spectrogram of the sentence, she had your dark suit in greasy
wash-water all year, highlighting the unvoiced /s/ and voiced /iy/ sounds in she.

at multiples of the fundamental frequency, is generated and this wave passes through

the vocal tract, which can be viewed as an acoustic tube that starts at the larynx and

terminates at the lips. This tube changes shape to create resonances and anti-resonances

that emphasise and de-emphasise certain parts of the spectrum, respectively. Formants

occur where the spectrum has been emphasised by the resonances of the vocal tract. Along

with changes in the articulators (the lips, tongue, jaws, and teeth), different quasi-periodic

sounds can be produced [73, 151]. The vocal folds do not vibrate for unvoiced sounds but

instead, the vocal tract is constricted by the articulators and air passes through rapidly

to produce a noise-like sound [151].

Speech production can be modelled as consisting of a source and filter component.

The source component represents the excitation (which is aperiodic noise for unvoiced

sounds and periodic for voiced sounds) while the filter component emphasises parts of the

spectrum, just like the vocal tract with its resonances and anti-resonances [151].

7.2.2 Feature Extraction

The role of feature extraction is to compactly represent speech in a way that preserves

information that is relevant and important for subsequent recognition [73]. Speech is

initially passed through a pre-emphasis filter:

H(z) = 1 − αz−1 (7.1)
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Figure 7.3: Magnitude and phase response of the pre-emphasis filter, H(z) = 1 − 0.95z−1

where α = 0.95. The magnitude response of this filter is shown in Figure 7.3. The role

of the pre-emphasis filter is to remove the spectral tilt (ie. flatten the spectrum) [138], as

shown in Figure 7.4(b), where the first formant has been shifted down while the higher

frequency formants have been shifted up, allowing them to be analysed at the same level.

Assuming that speech is sampled at 8 kHz, the pre-emphasised speech is then windowed

into overlapping segments of 25 ms with 10 ms shift before analysis. A tapered window

function, such as the Hamming window, is used to reduce the effects of spectral leakage

caused by the blocking process. Acoustic information in speech (eg. formants) manifests

itself in the frequency domain1 (as shown in Figure 7.4), hence the most popular parametric

feature sets for speech recognition are spectral-based and can be categorised into two

classes: linear prediction-based and Fourier transform-based [35].

Linear Prediction-Based Features

In linear prediction-based feature extraction, feature vectors are derived from the LPC

spectra of speech, which models the vocal tract. Examples include the linear prediction

coefficients themselves, reflection coefficients [35], line spectral frequencies [62], etc. In

pre-HMM speech recognition systems, the Itakura minimum prediction residual distance

measure [76], which calculates the residual error when the tested speech frame is filtered

through the reference LPC filter, is used as a distance measure for features based on the

LPC spectra. Alternatively, features can be derived from the LPC cepstra and these

1The temporal movement of formants, as shown in Figure 7.2, is also useful for speech recognition
and is expressed in the delta and acceleration features, which are the first and second derivatives of the
spectral-based features [73].
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Figure 7.4: The effect of pre-emphasis on the power spectral density of speech: (a) Original
PSD of speech; (b) PSD of speech filtered with pre-emphasis filter.

include the linear prediction-based cepstral coefficients (LPCCs) and perceptual linear

prediction (PLP) coefficients [67]. The advantage of cepstral-based features is that, be-

cause they are derived from an orthogonal basis, simpler Euclidean distance measures can

be used [35]. Through a recursive equation, LPCCs are calculated directly from the linear

prediction coefficients which represent the speech spectrum in terms of linear frequency.

PLP coefficients are calculated in a similar way, where the only difference is that the

autocorrelation coefficients used for the linear prediction analysis are derived from the

inverse Fourier transform of the Bark frequency-warped power spectral density, obtained

using the short-time Fourier transform [73]. The advantage of PLPs over LPCCs is the

non-linear frequency scale which matches more closely to the perceptual response of the

human auditory system.

Mel Frequency-Warped Cepstral Coefficients

The other class of features are Fourier transform-based and include the Mel frequency-

warped cepstral coefficients (MFCCs) and Bark frequency-warped cepstral coefficients

(BFCCs), though the former is more commonly used. The discrete Fourier transform is

applied to each windowed segment of speech, where the magnitude spectrum is squared
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to obtain the short-time power spectral density (PSD) or power spectrum of the speech.

The PSD is then filtered by a series of M overlapping triangular-shaped filters that are

centred on the Mel scale2. The filters are overlapped in such a way that the starting

and ending frequencies fall on the centres of the previous and next filter, respectively, in

order to simulate critical bandwidths [151]. Figure 7.5 shows 20 Mel frequency-warped

triangular-shaped filters.

The energy from each filter is accumulated and compressed non-linearly using the

natural logarithm to reduce the dynamic range, resulting in a vector of M coefficients for

each frame. It has been noted in previous studies that most of the variation in speech

can be compactly represented by the first few eigenvectors, whose directional cosines are

similar to a cosine series expansion [135, 35]. Hence PCA can be approximated by the

discrete cosine transform (DCT), which is applied to the vector of log energies to give

the final MFCC vector. The decorrelation aspect of the DCT is a desirable characteristic

because of the use of hidden Markov models (HMM) in the subsequent pattern recognition

stage. The mixture of Gaussians used in each state of the HMMs use diagonal covariance

matrices because of the difficulty in re-estimating off-diagonal components when only a

finite training data set is available [138].

The first cepstral coefficient, c0, may be replaced with the log energy, logE, of the

speech frame and this captures the changes in recording level. Also cepstral mean subtrac-

tion (CMS) is often applied to reduce the effect of convolutional distortion due to changes

in the microphone, its distance from the speaker, and the acoustics of the room. In CMS,

the mean is removed from the MFCCs [73]. In order to capture temporal changes in the

spectra, the approximated first and second derivatives of the MFCC feature vectors are

calculated to give the delta and acceleration coefficients, respectively, which are concate-

nated with the mean-removed MFCCs to give a final feature vector of dimension 3M [73].

Typically, speech recognition systems use M = 13 MFCC coefficients. Therefore, after

concatenating with the delta and acceleration coefficients, the final feature vector has a

dimension of 39.

It has been shown in various studies (for example, in [35]) that MFCC features perform

2The Melody scale, or more commonly known as the Mel scale, is a non-linear and perceptually-
motivated frequency scale. It was derived through perception experiments by Stevens and Volkman [179],
where the test subject was asked to manually adjust a stimulus tone so that it perceptually had half the
pitch of a given reference tone [157].
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Figure 7.5: Filterbank of Mel frequency-warped triangular-shaped filters used for MFCC
calculation from 8 kHz speech (M = 20)

better in speech recognition than LPCCs or other linear prediction-based feature sets.

Therefore, it is to no surprise that MFCCs are the predominant feature set in modern

speech recognition systems.

7.2.3 Pattern Recogniser

The role of the pattern recogniser is to determine which reference template matches the

current test feature vector. Of all the pattern recognisers available, the hidden Markov

model (HMM) has had the most success in speech recognition. The HMM is a stochastic

signal model that consists of a number of probabilistic states [138]. At each instant of time,

the model changes from the current state to another state (or, the same state), known as

state transition, that is governed by an unobservable or hidden stochastic process. Within

each state, there is another stochastic process that produces an output symbol based on

a probability distribution, which is usually represented by a Gaussian mixture model.

Typical HMM parameters include the number of states, N , the number of observation

vectors per state (for discrete HMMs), M , state transition probability matrix, A, output

probability matrix, B, and initial state distribution, π [138]. An HMM is designed from

training feature vectors using the Baum-Welch algorithm (also known as the Forward-



302 Chapter 7 MFCC Quantisation in Distributed Speech Recognition

1 2 3 4 5 6
a a a a a

aaaa

12

a a

23 34 45 56

24 35

22 33 44 55

Figure 7.6: A typical 6 state, left-to-right hidden Markov model (HMM) (after [203])

Backward algorithm) which is based on a similar principle to the EM algorithm for GMM

estimation [73]. In order to calculate the likelihood, P (λ|O), of an HMM, λ, generating

a given observation sequence, O, the Viterbi algorithm is used to select the optimum

state sequence that maximises the probability [73]. Therefore, P (λ|O) can be considered

a similarity measure between the given observation sequence and the reference sequence

used train the HMM.

In a speech recognition system, an N -state HMM with left-to-right topology, as shown

in Figure 7.6, is typically designed for each speech unit (phoneme or word) based on its

feature vectors. During the recognition phase, probabilities or likelihoods are calculated

for each stored HMM and the one which has the highest likelihood is deemed as matching

the given test feature vector. In earlier speech recognition systems, which used discrete

HMMs, where each state has a finite set of output symbols, feature vectors are quantised

using a vector quantiser before they are matched with all the stored HMM models [138]. In

modern speech recognition systems, which use continuous HMMs, the vector quantisation

stage is not required [73].

The detailed operation of the HMM is beyond the scope of this work and the reader

should refer to Rabiner’s HMM tutorial [138] for details.

7.3 Client/Server-Based Speech Recognition

With the increase in popularity of remote and wireless devices such as personal digital

assistants (PDAs) and cellular phones, there has been a growing interest in applying au-

tomatic speech recognition (ASR) technology in the context of mobile communication

systems. Speech recognition can facilitate consumers in performing common tasks, which
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have traditionally been accomplished via buttons or pointing devices, such as making a

call through voice dialing or entering data into their PDAs via spoken commands and

sentences. Some of the issues that arise when implementing ASR on mobile devices in-

clude: computational and memory constraints of the mobile device; network bandwidth

utilisation; and robustness to noisy operating conditions.

Mobile devices generally have limited storage and processing ability which makes im-

plementing a full on-board ASR system impractical. The solution to this problem is to

perform the complex speech recognition task on a remote server that is accessible via the

network. Various modes of this client/server approach have been proposed and reported

in the literature. The most common ones are shown in Figure 7.7 and are discussed in the

following subsections.

7.3.1 Network Speech Recognition

In the Network Speech Recognition (NSR) mode [85], the user’s speech is compressed

using conventional speech coders (such as the GSM speech coder) and transmitted to the

server which performs the recognition task. In speech-based NSR (Figure 7.7(a)), the

server calculates ASR features from the decoded speech to perform the recognition. In

bitstream-based NSR (Figure 7.7(b)), the server uses ASR features that are derived from

linear predictive coding (LPC) parameters taken directly from the bitstream. Numerous

studies have been reported in the literature evaluating and comparing the performance of

these two forms of NSR [48, 69, 74, 83, 99, 140, 189, 51].

Literature Review of Speech-Based NSR

Euler and Zinke [48] investigated the effect of three CELP-based speech coders, LD-CELP,

RPE-LTP, and TETRA-CELP at 16, 13, and 4.8 kbps, respectively, on isolated word

recognition and speaker verification. Narrowband speech was coded and decoded using

the CELP coders, and 12 LPCCs and their delta coefficients extracted from the decoded

speech. They found that the speech coders operating at 13 kbps and lower decreased the

recognition performance in matched and mismatched conditions.

Lilly and Paliwal [99] examined the influence of six speech coders at bitrates ranging

from 40 kbps to 4.8 kbps. The tandeming of speech coders and its effect was also investi-
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gated. High bitrate ADPCM coders were found to have minimal effect on the recognition

while low bitrate CELP coders achieved the lowest recognition accuracy. The same trend

was also observed when tandeming. This may be due to the influence of the quantisation

noise shaping in CELP coders, which is designed to improve perceptual quality. Spectral

information that is important for recognition purposes, is de-emphasised by the noise shap-

ing filter, which exploits spectral masking3. MFCCs were also found to be more robust to

the effects of speech coders than LPCCs.

Digalakis et al. [39] compared the effects of G.721 ADCPM, GSM RTE-LTP, and mu-

law on speech recognition performance. Similar to what was observed in [99], the G.721

ADPCM coder incurred minimal degradation while mu-law and GSM achieved the lowest

accuracy.

Turunen and Vlaj [189] examined five speech coders and through comparisons and

tandeming experiments, identified features that affected the recognition performance.

Their first observation was the degrading effect on recognition performance of postfil-

tering, which is applied to smooth the decoded speech and improve its subjective quality.

Secondly, the accuracy of the vocal tract model, as represented by the LPC parameters,

plays an important role in recognition results. The G.728 LD-CELP does not transmit

LPC envelope information but uses a 50th-order backward all-pole predictor. It achieves

about 2% less recognition accuracy than the G.729 CS-ACELP coder, which explicitly

transmits LPC parameters in the bitstream. Also, other vocal tract models, such as that

in the G.727 ADPCM coder which uses a pole-zero model, performed as good as G.729

[189].

Hirsch [69] investigated the influence of the AMR-NB coders at various bitrates and

compared the recognition performance with full-rate and half-rate GSM on speech cor-

rupted with noise. Feature extraction was performed using the standard ETSI Aurora

frontend and also the advanced noise-robust Aurora frontend. As expected, degradation

in recognition performance was observed for coded speech. The performance of the noise-

robust Aurora frontend, however, was about 16% higher than when using the standard

frontend.

3In spectral masking, noise that is in the presence of strong tones will tend to be masked. Therefore,
we can afford to increase the amount of noise due to quantisation in the formant regions without affecting
the perceptual quality. Noise shaping filters tend to increase the quantisation error in these regions while
decreasing, by a similar amount, errors in the spectral valleys [15].



Chapter 7 MFCC Quantisation in Distributed Speech Recognition 305

Literature Review of Bitstream-Based NSR

Kim and Cox [83] extracted LPCCs from the spectral envelope information contained in

the bitstream. Because speech recognition systems operate on frames sampled at 100 Hz

while speech coders process frames at 50 Hz, LSFs from the bitstream were interpolated

to the higher frame rate before the LPCCs were extracted. Cepstral liftering was applied

and the log energy coefficient calculated from the residual signal. In order to improve the

recognition performance further, voiced/unvoiced information from the speech coder was

added to the feature.

Huerta and Stern [74] reported their study which examined the derivation of cepstral

feature vectors from various parts of the GSM speech coder bitstream and compared the

recognition performance with speech-based NSR. One method involved converting the

LAR coefficients to LP coefficients and deriving cepstral coefficients (LPCCs). Another

involved deriving the cepstrals from the residual signal, as represented by the RPE-LTP

parameters. Though the residual signal usually contains only speaker dependent infor-

mation such as pitch, periodicity, and global waveform information, it still carries some

information relevant to speaker independent speech recognition because of the low order

(8th) of the LPC analysis [74]. Their results showed the LAR-derived cepstral features

to achieve similar performance to speech-based NSR, which had a degraded performance

compared with baseline MFCC-based recognition of the original speech. The residual-

derived cepstral features did not perform as well though. However, when the LAR-derived

and residual-derived cepstral coefficients were concatenated or added to form new features,

the recognition accuracy surpassed that of speech-based NSR and was nearly identical to

the baseline MFCC-based performance.

Raj et al. [140] used a more principled method of combining LPC-derived and residual-

derived cepstral coefficients and reported their results for the GSM, CELP and LPC

coders. The spectral envelope parameters (LAR coefficients for GSM and LPC or LSFs

for CELP), were converted to LP coefficients and LPCCs were derived. The log power

spectrum of the residual signal was also calculated and represented as a 32-dimensional

vector. The LPCCs and residual log spectra features were concatenated and the extended

feature vector reduced in dimensionality using linear discriminant analysis (LDA), whose

classes were similar to phoneme classes. The new features achieved the same recognition

performance as the baseline system (for GSM and CELP) and were better than speech-
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based NSR and LPCC-derived features in all cases.

Gallardo-Antolin et al. [51] investigated another bitstream-based NSR scheme for GSM

speech that was robust to various bit errors such as random errors, burst errors, and

frame substitutions. They derived their feature vectors by converting LAR coefficients

to LP coefficients and from these, an LPC power spectrum was calculated. MFCCs were

then derived from the LPC power spectrum, with the log energy coefficients calculated

from analysis of the decoded speech. For error-free speech, the bitstream-derived features

performed similarly to those derived from decoded speech. However, as the bit error

rate (BER) was increased, the former maintained respectable recognition scores while the

latter’s performance drops significantly.

7.3.2 Distributed Speech Recognition

In Distributed Speech Recognition (DSR), shown in Figure 7.7(c), the ASR system is dis-

tributed between the client and server. Here, the feature extraction of speech is performed

at the client. These ASR features are compressed and transmitted to the server via a

dedicated channel, where they are decoded and input into the ASR backend. Studies have

shown that DSR generally performs better than NSR [85] because, in the latter model,

speech is processed for optimal perceptual quality and this does not necessarily result in

optimal recognition performance [178]. Various schemes for compressing the ASR features

have been proposed in the literature. The disadvantage is that DSR requires some mod-

ifications to the existing mobile communications infrastructure, such as the addition of a

dedicated channel for the transmission of the compressed MFCC feature bitstream.

Digalakis et al. in [39] evaluated the use of uniform and non-uniform scalar quantisers

as well as product code vector quantisers (split vector quantiser) for compressing MFCCs

between 1.2 and 10.4 kbps. They used a greedy-based bit allocation algorithm, where

bits were added to each component and the word error rate (WER) was evaluated. The

component which resulted in the largest improvement in recognition performance was

chosen to receive the allocated bit. This procedure was continued until all bits had been

allocated [39]. They concluded that split vector quantisers achieved word error rates

(WER) similar to that of scalar quantisers while requiring less bits. Also, PDF-optimised

non-uniform scalar quantisers performed better than uniform scalar quantisers, which

suggested that the PDF of MFCCs were far from being uniformly distributed. Also,
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PDF-optimised scalar quantisation with non-uniform bit allocation performed significantly

better than one with uniform bit allocation. They concluded that 2 kbps (20 bits/frame)

was the required bitrate for split vector quantisation to achieve unquantised recognition

performance.

Ramaswamy and Gopalakrishnan [144] investigated the application of tree-searched

multistage vector quantisers with first-order linear prediction operating at 4 kbps (40

bits/frame). The current MFCC feature vector was subtracted from the previous quan-

tised frame to give a residual vector. The first 12 coefficients of the residual vector were

then quantised using a two-stage multistage vector quantiser, while the last coefficient,

representing c0, was scalar quantised. Their system achieved near identical recognition

performance as the unquantised baseline system, with only minor degradation.

Transform coding, based on the discrete cosine transform (DCT), was investigated in

[86] at 4.2 kbps. In this scheme, feature vectors of dimension 14 (13 MFCCs plus the energy

coefficient) were processed. For each cepstral coefficient, eight temporally consecutive

coefficients were grouped together and processed by the DCT, which exploited temporal

correlation between the MFCC frames. The first DCT coefficient was quantised using

PCM (12 bits) or DPCM (6 bits) with first order predictor, while the rest of the DCT

coefficients were quantised using PCM (18 bits). The energy coefficient was encoded using

PCM (12 bits) or DPCM (3 bits). The DPCM coding of the transform coefficients made

the scheme insensitive to environmental variations [86].

Zhu and Alwan [206] used a two-dimensional DCT, where 12 successive MFCC frames

were stacked together to form a block of 12 × 12. Zonal sampling was performed, where

a fraction of the lowest energy components were set to zero and the remaining transform

coefficients were scalar quantised and entropy coded with runlength and Huffman coding.

This scheme is similar to the JPEG scheme for image coding. The advantage of this

scheme, compared with that of [86], is that both intraframe as well as interframe correlation

are exploited by the 2D-DCT. This leads to better energy compaction and hence allow for

more data reduction. Noise-robust feature sets, such as peak isolated MFCC (MFCCP)

[180] and variable frame-rate peak isolated MFCCs (VFR MFCCP) [207] were also tested.

Their results showed that, firstly, the quantised MFCCs always performed slightly worse

than the unquantised MFCCs at all SNR levels. Secondly, the quantised noise-robust

features at 624 bps resulted in recognition accuracies that even surpassed the unquantised
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MFCCs at low SNRs.

The ETSI DSR standard [47] uses split vector quantisers to compress the MFCC

vectors at 4.4 kbps (44 bits/frame). Feature vectors of dimension 14 (13 MFCCs and logE)

are split into pairs of subvectors, with the energy parameters, c0 and logE belonging to

the same pair. A weighted Euclidean distance measure is used for the energy parameter

subvector.

Srinivasamurthy et al. [178] exploited correlation across consecutive MFCC features by

using a DPCM scheme followed by entropy coding. Their scheme is a scalable one, where

the bitstream is multiresolution or embedded. That is, a coarsely quantised, base layer is

transmitted. If higher recognition performance is required, the client can transmit further

enhancement layers which are combined with the base layer by the server to obtain higher

quality features [178].

Bitrate Scalability

Even though vector quantisers generally give better recognition performance using less

bits, they are not scalable in bitrate when compared with scalar quantiser-based schemes,

such as DPCM and transform coders. In other words, the vector quantiser is designed to

operate at a specific bitrate only and will need to be re-trained for other bitrates. Bitrate

scalability is a desirable feature in DSR applications, since one may need to adjust the

bitrate adaptively, depending on the network conditions. For instance, if the communi-

cations network is heavily congested, then it may be more acceptable to sacrifice some

recognition performance by operating at a lower bitrate in order to offset long response

times. In addition to this, the computational complexity of vector quantisers can be

quite high, when compared with scalar quantiser-based schemes. This form of scalability

contrasts with that mentioned by Sriniwasamurthy et al. [178], where the bitstream is

embedded with a base (coarse) layer, followed by successive enhancement layers. In order

to distinguish between the two forms of scalability, we term this latter form as bitstream

scalability. In this study, we investigate bitrate scalable quantisation schemes only.
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7.4 The ETSI Aurora-2 Experimental Framework

The purpose of the ETSI Aurora-2 experiment is to provide a common framework for

evaluating noise-robust speech recognition systems. It consists of a clean speech database,

a noise database, a standard MFCC-based frontend, and scripts for performing the various

training and test sets. The recognition engine that is used is the HMM Toolkit (HTK)

software [203].

The TIDigits database [96] forms the basis of the clean speech database, where the orig-

inal 20 kHz speech was downsampled to 8 kHz and filtered using the frequency character-

istic of ITU G.712 (300–3400 Hz). Aurora-2 also provides a database of eight background

noises, which were deemed to be commonly encountered in real-life operating conditions

for DSR. These noises were recorded at the following places [70]:

• Suburban train (subway)

• Crowd of people (babble)

• Car

• Exhibition hall (exhibition)

• Restaurant

• Street

• Airport

• Train station

This noise is added to the filtered clean speech at various SNRs to simulate noise corrup-

tion.

There are two training modes: training with clean speech4 only and training with clean

and noisy (multicondition) speech [70]. In multicondition training, the noises added are

subway, babble, car, and exhibition. When training with clean speech only, the best recog-

nition performance is achieved in matched conditions, ie. when testing with clean speech

as well. However, when the speech to be tested has background noise, then multicondition

training is desirable, as it includes the distorted speech in the training data [70].

4Note that all clean speech is filtered using the G.712 frequency characteristic before training.
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For the testing, there are three test sets, known as test set A, B, and C. In test set A

and B, 4004 test utterances from the TIDigits database are divided into four subsets of

1001 utterances each and four different types of noises are added to each subset at varying

levels of SNRs (∞, 20, 15, 10, 5, 0, −5 dB)5. Therefore, there are a total of 4 × 7 = 28

recognition accuracies reported in test set A and B. In test set C, only two subsets of 1001

utterances and two noises are used, giving a total of 14 recognition accuracies.

In test set A, the subway, babble, car, and exhibition noises are added to each subset

and these are the same noises used in multicondition training, hence test set A evaluates

the system in matched conditions. In test set B, the other four noises, namely restaurant,

street, airport, and train station, are used instead. Because these noises were not present in

the multicondition training, then test set B evaluates the system in mismatched conditions

(mismatched noise). Test set C contains two utterance subsets only (of the four) with the

noises, subway and street, added. Both the speech and noise are filtered using the MIRS

frequency characteristic before they are added, hence test set C evaluates the system in

mismatched conditions (mismatched frequency characteristic) [70].

Whole word HMMs are used for modelling the digits with the following parameters

[69]:

• 16 states per word (with 2 dummy states at beginning and end);

• left-to-right topology without skips over states;

• 3 Gaussian mixtures per state; and

• diagonal covariance matrices

For more details on the HTK reference recogniser and Aurora frontend, the reader should

refer to [70, 47].

7.5 Setup of Experiments for Evaluating Different Quanti-

sation Schemes in a DSR Framework

We have evaluated the recognition performance of various quantisation schemes using

the publicly available HMM Toolkit (HTK) 3.2 software on the ETSI Aurora-2 database

5An SNR of ∞ dB means that no noise is added and we are testing with clean speech.
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[70]. Training was done on clean data only (no multicondition training) and testing was

performed using test set A. In order to see the recognition performance as a function of

bitrate, we focus on the results of testing on clean speech (SNR of ∞ dB), where the four

word recognition accuracies for each type of noise are averaged to give the final score for

the specific quantisation scheme. In addition to this, the effect of different types of noise

at varying levels of SNR on the recognition performance is also investigated at the bitrates

of 1.2 kbps and 0.6 kbps for each quantisation scheme.

The ETSI DSR standard Aurora frontend [47] was used for the MFCC feature ex-

traction. As a slight departure from the ETSI DSR standard, we have used 12 MFCCs

(excluding the zeroth cepstral coefficient, c0, and logarithmic frame energy, logE) as the

feature vectors to be quantised. This was done to maintain consistency in the bitrate-

scalable GMM-based block quantisation scheme by avoiding arbitrary bit allocation, as c0

and logE are sensitive to changes in recording level of a speech utterance and are generally

coded independently [47, 86, 144].

It is well known that lower order cepstral coefficients are particularly sensitive to

undesirable variations caused by factors such as transmission, speaker characteristics, and

vocal efforts, etc. [80]. As bits are distributed on the basis of the variance of each MFCC,

the bit allocations will be particularly sensitive to these spectral variations. In our scalar

quantiser experiments, we have found this to degrade the performance of the recognition

as too many bits are given to the lower order MFCCs. The bit allocation formula is

derived through constrained minimisation of the MSE. However, quantisation based on

the reduction of MSE between the original and quantised MFCC feature vector does not

necessarily correlate to an improvement in recognition performance. Therefore, in order to

reduce the effect of these variations on bit allocation, we have applied the cepstral liftering

technique of [80] to the MFCCs using the following lifter window function, w(n) [80]:

w(n) = 1 +
L

2
sin

(
πn

L

)
(7.2)

where n = 1, 2, . . . , L

where L is the feature length. This cepstral liftering procedure is analogous to the weighted

distance measure used in LSF quantisation for speech coding. That is, the components

of the vector that play a larger role in affecting the final result, which in our case is

recognition performance, are emphasised by the lifter window. Cepstral mean subtraction
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Table 7.1: Average word recognition accuracy as a function of bitrate and number of
clusters for the memoryless GMM-based block quantiser (baseline accuracy = 98.01%)

Bitrate (kbps)
Recognition accuracy (in %)

2 cluster 4 cluster 8 cluster 16 cluster 32 cluster

0.3 23.46 19.99 16.69 8.06 8.06
0.4 43.52 53.25 57.67 23.25 9.07
0.6 68.66 79.73 85.72 87.59 82.03
0.8 86.24 90.32 91.45 93.70 94.48
1.0 90.53 94.18 95.03 95.49 96.05
1.2 93.88 95.85 95.94 96.40 96.68
1.5 95.96 96.46 96.96 97.17 97.23
1.7 97.02 96.98 97.16 97.28 97.38
2.0 97.34 97.17 97.54 97.58 97.69
2.2 97.58 97.33 97.62 97.70 97.69
2.4 97.58 97.54 97.69 97.90 97.74
3.0 97.90 97.81 97.87 97.83 97.93
4.4 97.99 97.99 98.09 98.04 98.03

(CMS) is applied to the decoded 12 MFCC features, which are concatenated with their

corresponding delta and acceleration coefficients, giving the final feature vector dimension

of 36 for the ASR system. The HTK parameter type is MFCC_D_A_Z. The baseline average

recognition accuracy using unquantised MFCC features is 98.01%.

In the training of the single frame and multi-frame GMM-based block quantiser, 20

iterations of the EM algorithm were used to generate a 16 and 32 cluster GMM.

7.6 Recognition Performance of the Memoryless GMM-

Based Block Quantiser

Table 7.1 shows the recognition accuracy for the memoryless GMM-based block quantiser

at various bitrates and number of clusters. At 2 kbps, the recognition accuracy is roughly

the same as the unquantised scheme. Between 2 kbps and 800 bps, the recognition perfor-

mance gradually decreases where it can be seen that the higher cluster schemes maintain

a higher accuracy. This may be attributed to the more accurate modelling of the source

PDF by using more clusters. Since it has been shown in other studies [128] that using

more clusters generally will reduce the quantisation distortion incurred at a fixed bitrate,

it would be expected to indirectly lead to better recognition.
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Table 7.2: Average word recognition accuracy as a function of bitrate and number of frames
for 16 cluster multi-frame GMM-based block quantiser (baseline accuracy = 98.01%)

Bitrate (kbps)
Recognition accuracy (in %)

2 frames 3 frames 4 frames 5 frames

0.3 78.26 89.59 91.30 92.96
0.4 91.07 94.32 95.05 95.36
0.6 95.52 96.62 97.05 96.78
0.8 96.92 97.27 97.41 97.52
1.0 97.40 97.61 97.74 97.71
1.2 97.56 97.74 97.75 97.89
1.5 97.78 97.80 97.86 97.83
1.7 97.80 97.96 97.99 97.96
2.0 97.99 97.89 98.06 97.97
2.2 98.03 97.97 97.94 98.04

At bitrates below 800 bps, the recognition performance drops dramatically, where we

have the situation of higher clusters leading to steeper decreases. For MFCC frames

containing no information (all zero), the recognition accuracy is 8.06%. This situation

may be explained by the shortage of bits to be allocated to all clusters. A 16 cluster

quantiser, for instance, requires at least 4 bits in total to be able to uniquely identify each

cluster (assuming a uniform allocation of levels) while a 32 cluster block quantiser requires

at least 5 bits6. Therefore, the single frame GMM-based block quantiser performs poorly

when the number of bits approaches log2m, where m is the number of clusters.

7.7 Recognition Performance of the Multi-Frame GMM-

Based Block Quantiser

Table 7.2 shows the average word recognition accuracy of the 16 cluster multi-frame GMM-

based block quantiser for different bitrates and number of frames. It can be observed that

this quantiser achieves an accuracy close to the unquantised, baseline system at 1 kbps or

10 bits/frame, which is half the bitrate of the single-frame GMM-based block quantiser.

For bitrates lower than 600 bps, the performance gradually rolls off.

6In reality, quantiser levels are non-uniformly allocated in this scheme, so most of the available quantiser
levels will be allocated to only a fraction of the cluster block quantisers. The decoder will be able to
determine which cluster block quantisers are operational since it performs an identical bit allocation using
the same stored models as the encoder.
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Table 7.3: Average word recognition accuracy as a function of bitrate and number of
clusters for 5 frame multi-frame GMM-based block quantiser (baseline accuracy = 98.01%)

Bitrate (kbps)
Recognition accuracy (in %)
16 clusters 32 clusters

0.2 82.94 87.70
0.3 92.96 94.20
0.4 95.36 96.03
0.6 96.78 97.06
0.8 97.52 97.58
1.0 97.71 97.57
1.2 97.89 97.89
1.5 97.83 97.93
1.7 97.96 97.96
2.0 97.97 97.95

In terms of quantiser distortion, the multi-frame GMM-based block quantiser generally

performs better as more frames are concatenated together because interframe memory can

be exploited by the KLT. Also, because the dimensionality of the vectors is high, the block

quantisers operate at a higher rate. Comparing Table 7.2 with the 16 cluster column of

Table 7.1, it can be observed that there is a trend between using more frames to reduce

MFCC frame distortion and improving the recognition accuracy, at low bitrates. In other

words, the average recognition accuracy gets progressively better as more and more frames

are jointly quantised. At 300 bps, the recognition accuracy of jointly quantising five frames

is roughly 14% higher than quantising 2 frames only. However, this comes at the expense

of higher delay, computational, and memory requirements.

Compared with the results of the single frame GMM-based block quantiser in Table

7.1, the multi-frame scheme does not suffer from a dramatic drop in recognition accuracy

at low bitrates. Unlike the single frame scheme, where there was a shortage of bits to

distribute among clusters, the multi-frame GMM-based block quantiser is able to provide

enough bits, thanks to the increased dimensionality of the vectors. For example, at 300

bps, a 16 cluster, single frame GMM-based block quantiser has a total bit budget of 3

bits. On the other hand, a 16 cluster, 2 frame multi-frame GMM-based block quantiser

has 6 bits while a 3 and 4 frame scheme has 9 and 12 bits, respectively. Therefore, the

multi-frame GMM-based block quantiser can operate at lower bitrates while maintaining

good recognition performance.
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Table 7.4: Average word recognition accuracy as a function of bitrate for non-uniform
scalar quantiser (baseline accuracy = 98.01%)

Bitrate (kbps) Recognition accuracy (in %)

0.6 38.17
0.8 72.31
1.0 86.68
1.2 93.27
1.5 95.45
1.7 96.17
2.0 96.97
2.2 97.21
2.4 97.40
3.0 97.76
4.4 97.96

Table 7.3 shows the average word recognition accuracy of a 16 cluster and 32 cluster

multi-frame GMM-based block quantiser, where the number of frames is fixed at 5. As

expected, using more clusters to reduce the quantised MFCC distortion has led to an

improvement in recognition accuracy, at the cost of an increase in complexity and memory.

7.8 Comparison with the Recognition Performance of the

Non-Uniform Scalar Quantiser

For the scalar quantisation experiment, each MFCC was quantised using a non-uniform

Gaussian Lloyd-Max scalar quantiser whose bit allocation was calculated using the high

resolution formula of (2.43). We have chosen this method over the WER-based greedy

algorithm of [39] because of its computational simplicity and this allows us to scale any

bitrate with ease.

Table 7.4 shows the average recognition accuracy of the non-uniform scalar quantiser.

It can be seen that the accuracy decreases linearly in the range of 4.4 to 1.2 kbps and drops

rapidly below this range. Comparing Table 7.4 with Tables 7.1 and 7.2, the GMM-based

block quantisers use less bits than the non-uniform scalar quantiser to achieve a certain

level of recognition accuracy. This may be attributed to the effectiveness of the KLT as a

decorrelator and energy compactor, as well as the better modelling of the source PDF.
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Table 7.5: Average word recognition accuracy, computational complexity (in
kflops/frame), and memory requirements (ROM) as a function of bitrate for vector quan-
tiser (baseline accuracy = 98.01%)

Bitrate (kbps) Recognition accuracy (in %) kflops/frame ROM (in floats)

0.4 76.94 0.77 192
0.6 91.83 3.07 768
0.8 95.65 12.29 3072
1.0 96.85 49.51 12288
1.2 97.01 196.7 49152

7.9 Comparison with the Recognition Performance of the

Unconstrained Vector Quantiser

An unconstrained, full-search vector quantiser was used to quantise single MFCC frames.

In terms of minimising quantiser distortion, the vector quantiser is considered the opti-

mum coding scheme [55], hence it will serve as an informal upper recognition bound for

single frame quantisation and highlight the effectiveness of the multi-frame GMM-based

block quantiser in exploiting interframe memory. Table 7.5 shows the average recognition

accuracies at several bitrates as well as the computational and memory requirements of the

vector quantiser. Comparing this with Table 7.1, the vector quantisation scheme achieves

higher recognition than the single frame GMM-based block quantiser for all bitrates, which

is consistent with the fact that the vector quantiser will always incur the least distortion

of all quantisation schemes for a given dimension. Comparing with the performance of the

multi-frame GMM-based block quantiser in Table 7.2, it can be observed that this scheme

gives higher recognition accuracies than the vector quantiser for all bitrates considered.

Even the 2 frame, multi-frame GMM-based block quantiser does better than the vector

quantiser. Hence this shows that there is a considerable amount of correlation between

MFCC frames that can be exploited by quantisation schemes.

As can be seen from Table 7.5, the computational complexity and memory require-

ments of the vector quantiser are dependent on the bitrate and can be quite high at

medium bitrates like 1.2 kbps. On the other hand, the complexity of the GMM-based

block quantiser, as shown in Table 7.6, is constant for all bitrates. Also of note is that,

unlike the GMM-based block quantiser, the vector quantiser is not bitrate scalable.
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Figure 7.8: Summary of average word recognition accuracies for all quantisation schemes
considered

Table 7.6: Bitrate independent computational complexity (in kflops/frame) and memory
requirements (ROM) of the multi-frame GMM-based block quantiser as a function of
number of concatenated vectors, p, and number of clusters, m

m p kflops/frame ROM (floats)

16 1 13.65 3136
2 22.86 10624
3 32.07 22720
4 41.28 39424
5 50.50 60736

32 1 27.30 4416
2 45.71 14976
3 64.14 31936
4 82.57 55296
5 101.0 121216
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7.10 Effect of Additive Noise on Recognition Performance

The effect of undesirable noise on the recognition performance is important and relevant to

DSR systems, since the operator will most likely be immersed in background environmental

noise that will also be captured by his/her mobile device. The Aurora-2 recognition task

provides various types of background noise that is added to the clean speech at various

SNR levels (20, 15, 10, 5, 0,−5 dB). In test set A, the four noises added are suburban train

(subway), babble, car, and exhibition hall [70].

In this section, we evaluate the word recognition accuracy for all quantisation schemes,

on speech corrupted with additive noise, as a function of SNR. The recognition models

are trained on clean speech only (no multicondition training). The bitrates tested are 1.2

kbps (12 bits/frame) and 0.6 kbps (or 6 bits/frame) for all quantisation schemes. The

notation we have used to abbreviate the quantisation schemes are as follows:

• GMM-5 is the five frame, multi-frame GMM-based block quantiser;

• GMM-1 is the memoryless GMM-based block quantiser;

• VQ is the unconstrained vector quantiser; and

• SQ is the non-uniform scalar quantiser.

Tables 7.7, 7.8, 7.9, and 7.10 shows the word recognition accuracy at 1.2 kbps when

speech is corrupted with subway, babble, car, and exhibition noise, respectively. The re-

sults for the original, unquantised scheme are given for comparative purposes. We can see

that the multi-frame GMM-based block quantiser (GMM-5) generally achieves the highest

recognition accuracies of all quantisation schemes with the scalar quantiser performing the

worst. The vector quantiser (VQ) is theoretically the best quantiser for a given dimen-

sion for minimising distortion, and this correlates generally to recognition performance,

where we observe it outperforming the memoryless GMM-based block quantiser (GMM-

1). Figure 7.9 shows the recognition accuracy for each quantisation scheme operating at

1.2 kbps, plotted against SNR for each of the noises. We can see that the quantisation

schemes which exploit memory (GMM-5, GMM-1 and VQ) maintain a recognition that

is close to the baseline, as opposed to the memoryless scalar quantiser which degrades

rapidly as noise is added (particularly at SNRs of 20 dB and 15 dB).
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Table 7.7: Word recognition accuracy for speech corrupted with subway noise at varying
SNRs (in dB) at 1.2 kbps.

Quantisation Recognition accuracy (in %)
scheme ∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Unquantised 98.07 94.14 86.67 66.17 38.62 23.43 16.12
GMM-5 97.64 92.48 82.68 58.89 32.61 21.86 15.23

VQ 97.11 92.26 81.30 59.32 31.62 19.65 14.03
GMM-1 96.44 89.13 77.40 50.78 27.11 19.37 13.82

SQ 92.85 68.47 48.42 30.61 22.35 17.38 12.56

Table 7.8: Word recognition accuracy for speech corrupted with babble noise at varying
SNRs (in dB) at 1.2 kbps

Quantisation Recognition accuracy (in %)
scheme ∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Unquantised 98.07 95.92 90.69 74.94 45.56 22.91 12.64
GMM-5 98.13 94.98 87.30 65.36 36.73 20.80 12.12

VQ 97.16 92.93 85.01 65.11 36.19 19.62 10.67
GMM-1 96.58 91.48 81.92 60.94 34.61 19.35 10.94

SQ 93.80 67.87 47.64 29.87 21.31 16.51 10.28

Table 7.9: Word recognition accuracy for speech corrupted with car noise at varying SNRs
(in dB) at 1.2 kbps

Quantisation Recognition accuracy (in %)
scheme ∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Unquantised 97.97 95.59 88.88 68.42 36.09 20.61 13.30
GMM-5 97.88 93.80 83.21 55.92 29.38 18.52 12.73

VQ 97.02 93.14 83.12 54.94 27.02 19.27 11.78
GMM-1 96.39 91.05 78.08 49.42 25.17 18.01 11.24

SQ 93.44 70.44 45.87 27.86 22.19 16.94 11.72

Table 7.10: Word recognition accuracy for speech corrupted with exhibition noise at vary-
ing SNRs (in dB) at 1.2 kbps

Quantisation Recognition accuracy (in %)
scheme ∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Unquantised 97.93 93.34 85.56 62.79 33.42 19.01 10.74
GMM-5 97.90 92.84 81.70 54.83 28.60 18.94 10.86

VQ 96.73 91.36 77.63 50.45 26.87 16.94 10.77
GMM-1 96.24 89.45 75.84 45.63 25.42 17.46 11.66

SQ 92.97 72.79 48.32 28.63 20.73 13.82 8.89
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Figure 7.9: Plot of recognition accuracy versus SNR for all quantisation schemes at 1.2
kbps: (a) subway noise; (b) babble noise; (c) car noise; and (d) exhibition noise. (Solid
lines are unquantised, circles are GMM-5, crosses are VQ, triangles are GMM-1, squares
are SQ)
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Table 7.11: Word recognition accuracy for speech corrupted with subway noise at varying
SNRs (in dB) at 0.6 kbps.

Quantisation Recognition accuracy (in %)
scheme ∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Unquantised 98.07 94.14 86.67 66.17 38.62 23.43 16.12
GMM-5 96.38 88.73 74.33 48.17 26.93 18.73 13.57

VQ 94.40 82.22 71.29 48.30 26.44 15.84 11.21
GMM-1 84.41 77.56 64.14 44.24 25.15 16.43 11.36

SQ 8.32 8.29 8.29 8.26 8.14 8.11 8.07

Table 7.12: Word recognition accuracy for speech corrupted with babble noise at varying
SNRs (in dB) at 0.6 kbps

Quantisation Recognition accuracy (in %)
scheme ∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Unquantised 98.07 95.92 90.69 74.94 45.56 22.91 12.64
GMM-5 97.10 91.54 77.90 53.78 30.05 18.02 11.25

VQ 91.66 83.25 72.79 52.39 29.96 16.35 10.34
GMM-1 89.94 76.12 62.61 43.02 25.94 15.90 10.13

SQ 8.25 8.22 8.16 8.13 8.16 8.13 8.13

Tables 7.11, 7.12, 7.13, and 7.14 shows the word recognition accuracy at 0.6 kbps when

speech is corrupted with subway, babble, car, and exhibition noise, respectively. Similar

to the previous case at the higher bitrate of 1.2 kbps, the multi-frame GMM-based block

quantiser generally achieves higher recognition accuracies than the other schemes, with

the scalar quantiser being the worst. There are cases where the GMM-1 scheme achieves a

slightly higher recognition performance, such as for an SNR of 0 dB of subway noise, but

this discrepancy is insignificant. Figure 7.10 shows the recognition accuracy at 0.6 kbps as

a function of SNR. It is particularly interesting to note that the difference in recognition

performance between the multi-frame and memoryless GMM-based block quantiser at 0.6

kbps is larger than that observed at 1.2 kbps (in Figure 7.9), for medium to high SNRs.

For instance, when speech is corrupted with babble noise with the SNR at 15 dB, the

multi-frame GMM-based block quantiser achieves a recognition accuracy that is about

15% higher than the memoryless GMM-based block quantiser at 0.6 kbps, while at 1.2

kbps, that difference is only 5%. This shows that there is an advantage in using more

efficient quantisation schemes at moderately high SNRs and low bitrates.

Another interesting observation, especially from the low bitrate results, is the dimin-
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Table 7.13: Word recognition accuracy for speech corrupted with car noise at varying
SNRs (in dB) at 0.6 kbps

Quantisation Recognition accuracy (in %)
scheme ∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Unquantised 97.97 95.59 88.88 68.42 36.09 20.61 13.30
GMM-5 96.51 89.02 72.89 44.92 24.22 17.00 11.03

VQ 91.92 84.22 70.00 44.02 23.11 15.81 10.86
GMM-1 87.59 76.86 59.86 36.92 21.00 14.70 11.09

SQ 8.29 8.23 8.29 8.26 8.23 8.23 8.23

Table 7.14: Word recognition accuracy for speech corrupted with exhibition noise at vary-
ing SNRs (in dB) at 0.6 kbps

Quantisation Recognition accuracy (in %)
scheme ∞ dB 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Unquantised 97.93 93.34 85.56 62.79 33.42 19.01 10.74
GMM-5 97.13 89.60 73.25 43.04 24.13 16.94 9.60

VQ 92.35 84.60 70.01 42.58 22.80 14.47 10.86
GMM-1 87.41 78.96 59.86 34.16 20.18 12.74 9.16

SQ 7.93 7.87 7.87 7.84 7.81 7.81 7.81

ishing advantage, as the SNR degrades, of the more efficient quantisation schemes, like

GMM-5, over the less efficient ones, such as GMM-1. For example, testing on clean speech

and speech with an SNR of 20 dB, the GMM-5 scheme at 0.6 kbps scheme mostly achieves

roughly 10% or better recognition performance over GMM-1 at the same bitrate. This

advantage diminishes as more and more noise is added, with the difference reduced to

roughly 2% or less at an SNR of −5 dB. A similar trend can also be seen in Figure 7.10,

when comparing VQ with GMM-1, where the advantages of VQ, in terms of lower MSE

distortion, diminish as more noise is added. We can therefore conclude that, firstly, the

advantages of using more efficient quantisation schemes manifest themselves more at SNRs

of 10 dB and higher. Also for DSR in noisy environments where the SNR is very low, the

noise robustness of the underlying speech recognition system becomes the dominant fac-

tor, rather than MFCC quantisation efficiency, when it comes to recognition performance.

This is, in fact, consistent with the results from [206], where the recognition performance

as a result of using quantised MFCCs, was always worse than when using the unquantised

MFCCs, for all levels of SNR. By quantising more noise-robust features, such as those used

in [206] (MFCCPs and VFR MFCCPs), better recognition accuracy can be achieved.
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Figure 7.10: Plot of recognition accuracy versus SNR for all quantisation schemes (exclud-
ing SQ) at 0.6 kbps: (a) subway noise; (b) babble noise; (c) car noise; and (d) exhibition
noise. (Solid lines are unquantised, circles are GMM-5, crosses are VQ, triangles are
GMM-1, squares are SQ)
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7.11 Chapter Summary

In this chapter, we provided a brief review of automatic speech recognition with particular

emphasis on the speech features such as the Mel frequency-warped cepstral coefficients.

Following this, we reviewed the literature that investigated various modes of client/server-

based speech recognition systems, such as network speech recognition and distributed

speech recognition. The experimental database used for evaluating the performance of

our MFCC quantisation schemes as well as the parameters for the recognition task were

described given in detail. Next, we presented our results on MFCC quantisation in a DSR

framework using multi-frame GMM-based block quantisers and compared its performance

against the memoryless GMM-based block quantiser, the non-uniform scalar quantiser, and

the unconstrained vector quantiser. The multi-frame GMM-based block quantiser achieved

better recognition at lower bitrates, exhibiting negligible degradation of 1% (WER of

2.5%) in recognition performance over the baseline system at 800 bps and 5% (WER of

7%) at 300 bps. Unlike vector quantisation schemes, the multi-frame GMM-based block

quantiser is scalable in bitrate and has a complexity that is independent of bitrate. The

performance of the multi-frame GMM-based block quantiser in the presence of noise was

also evaluated. It was found that the recognition performance of relatively high SNRs

was influenced mostly by the quantisation scheme. However, at low SNRs, the effect of

quantisation efficiency diminishes and recognition performance is dependent on the noise

robustness of the underlying features.
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Chapter 8

Conclusions and Future Research

8.1 Chapter Summary and Conclusions

This dissertation has examined block and vector quantisation schemes that are efficient,

in terms of rate-distortion and computational requirements, and reported on their per-

formance in four unique application areas. In this section, we give a summary as well as

present the findings and conclusions of each chapter.

8.1.1 Chapter 2: Efficient Block Quantisation

This chapter provided a general introduction to block quantisation, which is an example

of a transform coder. The decorrelating properties of the Karhunen-Loève transform

and its role in block quantisation were described. We also reviewed the discrete cosine

transform as a useful alternative transform to the KLT. For sources which have Gauss-

Markov properties, the DCTs decorrelating ability is similar to that of the KLT, hence

the DCT is popularly used in image coding.

We provided a literature review of adaptive transform coding schemes, which resolve

the problems of data non-stationarity by partitioning the vector space into local regions

and designing transforms adapted to the statistics of each region. Additionally, a simple

scheme using K-means clustering and local block quantisers was described and this formed

a useful baseline for evaluating the recent schemes that utilise Gaussian mixture models

for estimating the PDF. Following this, we gave a detailed summary of the GMM-based

327
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block quantisation scheme of [183].

We presented our modification to the GMM-based block quantiser, that replaces the

KLT with a DCT. Due to the data independence property and fixed orthogonal bases of

the DCT, the complexity of the new GMM-DCT-based block quantiser is considerably

lowered. This modified scheme is expected to be competitive with the KLT-based GMM-

based block quantiser for image coding, since images tend to have Gauss-Markov statistics

and are highly correlated. We also described our multi-frame GMM-based block quantiser,

that exploits interframe correlation using the KLT by concatenating successive frames into

larger ones.

A new bit encoding technique was introduced that allows the use and encoding of

fractional bits in a fixed-rate block quantiser. This scheme uses the concept of a generalised

positional number system and is simple in implementation. To complement this fractional

bit technique, we also described some heuristic algorithms for dealing with bit allocation

issues.

8.1.2 Chapter 3: Efficient Vector Quantisation

This chapter provided a general review of vector quantisation, its advantages over the

scalar quantiser, and its limitations, with regards to its exponential growth of complexity as

a function of the number of bits and dimensionality. Product code vector quantisers, such

as the split and multistage vector quantiser, alleviate the complexity issue by dividing the

quantisation process into codebooks of lower dimensionality, or sequential and independent

stages, respectively. These structural constraints though cause suboptimal quantisation

performance. We have also identified and analysed the main source of suboptimality in

the split vector quantiser (SVQ), namely the vector splitting which degrades the memory

advantage, the shape advantage, and the space-filling advantage. In order to address

at least two of these suboptimalities, we have introduced a new type of product code

vector quantiser called the switched split vector quantiser (SSVQ), which consists of a

hybrid of a full-dimension, unconstrained switch vector quantiser and numerous split vector

quantisers. The first stage (ie. switch vector quantiser) allows the SSVQ to exploit global

statistical dependencies as well as match the marginal PDF shape of the data, which would

otherwise have not been exploited by normal SVQ. Also, the tree structured characteristic

of the switch vector quantiser provides a dramatic reduction in search complexity. We
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have shown via computer simulations of 2-D vector quantisation how SSVQ is superior

to SVQ in terms of quantisation performance and computational complexity. The only

disadvantage of SSVQ is the increase in memory requirements.

8.1.3 Chapter 4: Lossy Image Coding

In this chapter, we have presented a comprehensive literature review of image coding tech-

niques, which includes vector quantisation, transform coding, and subband and wavelet-

based coding. Fundamental to image subband coding and image processing in general, is

the non-expansive filtering of data with a finite length. Similar to the procedure given in

[106], the symmetric extension method was examined in depth with examples provided for

even and odd tapped filters as well as filters with unequal lengths.

The remainder of the chapter was dedicated to the results and discussion of various

quantisation schemes, such as the block quantiser based on the KLT and DCT and the

GMM-based block quantiser. It was shown that the GMM-based block quantiser achieved

higher PSNRs and better subjective quality than the traditional fixed-rate block quan-

tiser/transform coder at a given bitrate, which demonstrates the advantages of accurate

source PDF estimation and the use of multiple decorrelating transforms. Because im-

ages are highly correlated and have Gauss-Markov properties, replacing the KLT with

the data dependent DCT should result in comparable performance. Through PSNRs and

visual inspection, we showed that the GMM-DCT-based block quantiser is comparable

in quantisation performance, with only a fraction of the complexity. Next, a novel and

low complexity method of encoding fractional bits in a fixed-rate framework and heuristic

algorithms for compensating quantiser levels in bit allocation were evaluated and shown

to improve the PSNR slightly. Finally, we presented a method of pre-processing an image

using the wavelet transform before block quantisation that reduces block artifacts and

improves the image quality.

8.1.4 Chapter 5: LPC Parameter Quantisation in Narrowband Speech

Coding

In this chapter, we first reviewed the basics of speech coding, such as speech production and

the modelling of speech using linear prediction analysis. The operation of various speech
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coders was also described and this highlighted the role and importance of LPC quantisa-

tion. Different LPC parameter representations, that are both robust to quantisation and

provide simple checks for filter stability, were covered. The line spectral frequencies are

one of the more popular representations and were thus used in our evaluation of various

quantisation schemes.

The first quantisation scheme that we evaluated was the multi-frame GMM-based

block quantiser, which has the advantage of bitrate scalability and bitrate independent

complexity. By extending the decorrelating transform to exploit the linear dependencies

between multiple frames, the multi-frame GMM-based block quantiser was able to achieve

transparent coding at bitrates as low as 21 bits/frame, though the computational complex-

ity and memory requirements become an issue. This quantisation scheme was compared

with scalar quantisers, the split vector quantiser, the multistage vector quantiser, and the

single-frame GMM-based block quantiser, and was generally found to perform better in

terms of spectral distortion, bitrate, and complexity.

The switched split vector quantiser was also evaluated as an LSF quantiser. Transpar-

ent coding was achieved at bitrates as low as 22 bits/frame, though the memory require-

ments of the two-part SSVQ were relatively high. It was determined that the three-part

SSVQ, with transparent coding at 23 bits/frame, was well-balanced in terms of quanti-

sation performance and complexity. Compared with other single-frame quantisers, the

SSVQ achieved generally better spectral distortion performance. One aspect that the

SSVQ excelled was the low computational complexity.

8.1.5 Chapter 6: LPC Parameter Quantisation in Wideband Speech

Coding

This chapter began with the definition of wideband speech and described its advantages

over toll-quality narrowband speech, such as improved naturalness and the ability to dis-

tinguish between fricatives, as well as provide better presence of the speaker, all of which

can alleviate listener fatigue. We have also shown through the visual inspection of LPC-

based spectral envelopes that, due to the extra bandwidth, a higher order LPC analysis is

required to capture most of the short-term correlation information in the speech. Following

this, we have given a review of the state-of-the-art coding schemes for wideband speech as

well as the industry standard coders such as the ITU-T G.722 (subband/ADPCM coder)
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and ITU-T G.722.2 (AMR-WB ACELP coder).

Since the focus of this chapter is primarily on spectral quantisation for wideband

LPC-based speech coders such as CELP, we provided a review of quantisation schemes

that have been reported in the wideband speech coding literature. We have also evaluated

some of these schemes such as PDF-optimised scalar quantisers, the unconstrained vector

quantiser, and the GMM-based block quantiser on the two competing LPC parameter

representations: line spectral frequencies (LSFs) and immittance spectral pairs (ISPs).

Our experimental results have shown that ISPs are superior to LSFs by 1 bit/frame in

independent quantisation schemes, such as scalar quantisers; while LSFs are the supe-

rior representation in joint vector schemes, such as the vector quantiser and GMM-based

block quantiser. Through the extrapolation of the operating distortion-rate curve of un-

constrained vector quantisation, we also derived an informal lower bound of 35 bits/frame

and 36 bits/frame, for the transparent coding of wideband LSFs and ISPs, respectively.

We speculate that this may be due to the fact that the last ISP parameter, which is

not really a ‘frequency’, is not correlated with the other ISPs and hence impacts on the

memory advantage of block and vector quantisation schemes, which aim to minimise the

unweighted MSE for each vector as a whole. Furthermore, because this parameter is a re-

flection coefficient, it does not possess the error localisation properties of LSFs, but rather

propagates errors throughout the entire spectrum. Therefore, additional measures may

need to be taken, such as independent quantisation of the last ISP, or use of a weighted

distance measure, when vector quantising ISPs.

Finally, we presented and discussed the results of the switched split vector quantiser

(SSVQ) and the multi-frame GMM-based block quantiser, for coding wideband LSF and

ISF vectors. The SSVQ was able to achieve transparent coding at 43 bits/frame and

44 bits/frame, when using an unweighted mean-squared-error (MSE) on LSFs and ISFs,

respectively. The spectral distortion performance of the SSVQ on LSFs was improved by

using a weighted MSE that emphasised LSFs that were located near peaks in the power

spectrum. The resulting scheme was transparent at 42 bits/frame. The multi-frame

GMM-based block quantiser was able to achieve transparent coding at 37 bits/frame and

38 bits/frame with a moderate computational complexity for LSFs and ISFs, respectively.

These two quantisation experiments again confirm our finding that LSFs are superior to

ISFs by about 1 bit/frame in joint vector quantisation schemes.
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8.1.6 Chapter 7: MFCC Quantisation in Distributed Speech Recogni-

tion

In this chapter, we provided a brief review of automatic speech recognition with particular

emphasis on the speech features such as the Mel frequency-warped cepstral coefficients.

Following this, we reviewed the literature that investigated various modes of client/server-

based speech recognition system, such as network speech recognitions and distributed

speech recognition. The experimental database used for evaluating the performance of

our MFCC quantisation schemes as well as the parameters for the recognition task were

described in detail. Next, we presented our results on MFCC quantisation in a DSR

framework using multi-frame GMM-based block quantisers and compared its performance

against the memoryless GMM-based block quantiser, the non-uniform scalar quantiser, and

the unconstrained vector quantiser. The multi-frame GMM-based block quantiser achieved

better recognition at lower bitrates, exhibiting negligible degradation of 1% (WER of

2.5%) in recognition performance over the baseline system at 800 bps and 5% (WER of

7%) at 300 bps. Unlike vector quantisation schemes, the multi-frame GMM-based block

quantiser is scalable in bitrate and has a complexity that is independent of bitrate. The

performance of the multi-frame GMM-based block quantiser in the presence of noise was

also evaluated. It was found that the recognition performance of relatively high SNRs

was influenced mostly by the quantisation scheme. However, at low SNRs, the effect of

quantisation efficiency diminishes and recognition performance is dependent on the noise

robustness of the underlying features.

8.2 Suggestions for Future Research

This dissertation has examined block and vector quantisation schemes that are efficient,

in terms of rate-distortion and computational requirements. Improvements in the rate-

distortion efficiency have been derived from compensating the suboptimalities of each

quantisation scheme, whether it be through accurate estimation of the source via para-

metric modelling (in the case of the GMM-based block quantiser), or exploitation of depen-

dencies before applying constrained quantisation (in the case of the switched split vector

quantiser). We have evaluated these schemes in four different applications, where efficient

quantisation is required. In order to continue this line of research, this section lists some
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possible directions for further investigations.

In Chapter 2, two modern transform coding paradigms were discussed. They can be

classified as either hard or soft clustering. The hard clustering paradigm takes the form

of adaptive transform coders, where the vector space is partitioned into disjoint regions

and a local transform is designed. Archer and Leen [13] developed the optimal adaptive

transform coder, where the partitioning of the vector space, the local transform design, and

quantiser design are performed jointly, in order to minimise distortion. The soft clustering

paradigm involves modelling the source of the vectors using a mixture of individual and

overlapping Gaussian sources, and designing optimal block quantisers for each source. It

would be interesting to compare and contrast these two transform coding paradigms.

In Chapter 3, we identified the sources of suboptimality in the split vector quantiser

and proposed the switched split vector quantiser, which compensates for the losses in the

memory and shape advantages, by using a switch vector quantiser. As we have discussed

in this chapter, the switched vector quantiser aims to exploit global dependencies in the

vector space initially, which would otherwise have been neglected by an initial vector split.

A further step would be to exploit the dependencies within each local cluster of vectors to

increase the efficiency of the local split vector quantiser. Therefore, one possible path that

warrants further research is to use different sized splitting for each of the local split vector

quantisers. This variable splitting algorithm should adapt to the unique statistics of each

cluster in order to minimise distortion. Another possible path is to develop a method

of decorrelating the subvectors within each local split vector quantiser. That is, we can

improve the efficiency of the split vector quantiser by removing correlation between each

of the subvectors. A transform that can perform this partial decorrelation was discovered

during the course of this research and this could be applied to the SSVQ.

In Chapter 5, we evaluated various quantisation schemes for LPC parameter coding

used in narrowband speech coding. The training and test speech were assumed to be clean

and noise-free. However, in a real-life scenario, the negative effects of additive background

noise (such as babble and car noises) on the output quality of a speech coder cannot be

neglected. In addition to this, the transmission channel was assumed to be perfect and

lossless. However, this is not always possible in practice. Therefore, it is necessary to

further investigate the effects of background noise and frame erasure conditions on the

spectral distortion performance for each of the quantisation schemes considered in this
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dissertation.

In Chapter 6, we compared the relative performance of line spectral frequencies (LSFs)

and immittance spectral pairs (ISPs) in quantisation experiments for wideband speech.

We showed that ISPs outperformed LSFs in independent scalar quantisation while the

trend was reversed for joint block and vector quantisation schemes. The unique nature

of the last ISP warrants further investigation into how joint vector quantisation schemes

can be applied in an optimal way. Similar to the case in MFCC quantisation, where

the logarithmic energy coefficient, logE, is quantised separately, separate quantisation of

the last ISP may be required, which can be handled in a (15, 1) split vector quantisation

scheme. A weighted Euclidean distance measure needs to be developed for this type of

quantisation scheme that takes into account the nature of the last ISP and how deviations

affect the reconstructed power spectrum. In this chapter, we have also derived an informal

lower bound on the number of bits required to transparently code LSFs and ISPs, by

extrapolating the operating distortion-rate curve of the vector quantiser. We pointed out,

however, that issues with ‘over-training’ were present that affected the tightness of this

bound. Further work in determining a lower bound would involve undertaking the process

outlined by Hedelin and Skoglund [66], where a GMM with bounded support is derived

from training data, and used to generate artificial vectors. These vectors can then be

used to train the vector quantiser. Lastly, as we have pointed out earlier, the effects of

background noise and frame erasure conditions need to be investigated as well.

In Chapter 7, we evaluated the recognition performance of the various quantisation

schemes in the task of quantising Mel frequency-warped cepstral coefficients (MFCCs).

The distance measure that was used to design and search the quantiser codebook was

mean-squared-error that is weighted with a fixed lifter window. It would be interesting

to derive a weighted distance measure, that incorporates both fixed and dynamic weights,

to emphasise parts of the speech that may be beneficial for recognition. Also, evaluating

these quantisation schemes on feature sets that have been determined to be more robust

to noise deserves further attention. The Aurora-2 connected-digits recognition task has a

relatively small vocabulary and thus is not a very complex recognition task. It is proposed

that the DSR evaluation be extended to databases with a larger vocabulary, such as the

Aurora-3 and the DARPA Resource Management (RM) databases.
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