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ABSTRACT

Conventional pattern recognition systems have two components: fea-

ture analysis and pattern classification. Feature analysis is achieved in two

steps: parameter extraction step and feature extraction step. In the pa-

rameter extraction step, information relevant for pattern classification is

extracted from the input data in the form of parameter vector. In the

feature extraction step, the parameter vector is transformed to a feature

vector. Feature extraction can be conducted independently or jointly with

either parameter extraction or classification. Linear Discriminant Analy-

sis (LDA) and Principal Component Analysis (PCA) are the two popular

independent feature extraction algorithms. Both of them extract features

by projecting the parameter vectors into a new feature space through a

linear transformation matrix. But they optimize the transformation ma-

trix with different intentions. PCA optimizes the transformation matrix by

finding the largest variations in the original feature space. LDA pursues

the largest ratio of between-class variation and within-class variation when

projecting the original feature space to a subspace. The drawback of inde-

pendent feature extraction algorithms is that their optimization criteria are

different from the classifier’s minimum classification error criterion, which

may cause inconsistency between feature extraction and the classification

stages of a pattern recognizer and consequently, degrade the performance

of classifiers. A direct way to overcome this problem is to conduct feature
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extraction and classification jointly with a consistent criterion. Minimum

Classification Error (MCE) training algorithm provides such an integrated

framework. MCE algorithm was first proposed for optimizing classifiers. It

is a type of discriminative learning algorithm but achieves minimum classi-

fication error directly. The flexibility of the framework of MCE algorithm

makes it convenient to conduct feature extraction and classification jointly.

Conventional feature extraction and pattern classification algorithms, LDA,

PCA, MCE training algorithm, minimum distance classifier, likelihood clas-

sifier and Bayesian classifier, are linear algorithms. The advantage of linear

algorithms is their simplicity and ability to reduce feature dimensionalities.

However, they have the limitation that the decision boundaries generated

are linear and have little computational flexibility. SVM is a recently devel-

oped integrated pattern classification algorithm with non-linear formulation.

It is based on the idea that the classification that affords dot-products can

be computed efficiently in higher dimensional feature spaces. The classes

which are not linearly separable in the original parametric space can be lin-

early separated in the higher dimensional feature space. Because of this,

SVM has the advantage that it can handle the classes with complex non-

linear decision boundaries. However, SVM is a highly integrated and closed

pattern classification system. It is very difficult to adopt feature extraction

into SVM’s framework. Thus SVM is unable to conduct feature extraction

tasks. This thesis investigates LDA and PCA for feature extraction and
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dimensionality reduction and proposes the application of MCE training al-

gorithms for joint feature extraction and classification tasks. A generalized

MCE (GMCE) training algorithm is proposed to mend the shortcomings of

the MCE training algorithms in joint feature and classification tasks. SVM,

as a non-linear pattern classification system is also investigated in this thesis.

A reduced-dimensional SVM (RDSVM) is proposed to enable SVM to con-

duct feature extraction and classification jointly. All of the investigated and

proposed algorithms are tested and compared firstly on a number of small

databases, such as Deterding Vowels Database, Fisher’s IRIS database and

German’s GLASS database. Then they are tested in a large-scale speech

recognition experiment based on TIMIT database.
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Chapter 1

Introduction

Human beings have dreamed to build a highly intelligent machine that can
do things like themselves. The motivation for this effort comes from the
practical need to find more efficient ways to accomplish intellectual tasks in
many areas, such as manufacturing, biology, clinics, mining, communication
and military application. Intellectual tasks include realization, evaluation
and interpretation of information that comes from sensors. All of these can
be summarized by perception. Perception allows human beings to acquire
knowledge about the environment, react to it and finally influence it [70].
Although every human being has the ability to perceive information, it is by
far impossible to explain the intrinsic mechanics of perception, that is, the
algorithms which might be implemented on a computer. It has been of great
scientific interest to exploit the mathematical aspect of perception. This is
found in the area of artificial intelligence, in which pattern recognition is a
core technique that assigns to machines the ability to recognize and classify
external objects so as to react to the changing environments. Because of
the nature of lacking a complete theory of perception, the study of pattern
recognition has led to an abstract mathematical model that provides the
theoretical basis for recognizer design.

1.1 Pattern Recognition

Pattern recognition deals with mathematical and technical aspects of clas-
sifying different objects through their observable information, such as grey
levels of pixels for an image, energy levels in frequency domain for a wave-
form and the percentage of certain contents in a product. The objective of
pattern recognition is achieved in a three-step procedure, as shown in Figure
1.1. The observable information of an unknown object is first transduced
into signals that can be analysed by computer systems. Parameters and/or
features suitable for classification are then extracted from the collected sig-
nals. The extracted parameters and/or features are classified in the final

1
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step based on certain types of measures, such as distance, likelihood and
Bayesian, over class models.

Unknown Object

�Observable
Information

Transduction

�Collected
Signal x(t)

Parameter and/or
Feature Extraction

�Feature
Vector Xn

Classification

�Classified
Object

Figure 1.1: A typical pattern recognition procedure.

Transduction step is achieved by physical or chemical methods or appa-
ratus which are closely related to the physical or chemical characteristics of
the objects. It is normally beyond the scope of the study of pattern recogni-
tion. Thus a typical pattern recognition system consists of two components:
feature analysis, which includes parameter extraction and/or feature ex-
traction, and pattern classification. The structure of a conventional pattern
recognition system is shown in Figure 1.2.

�

Input
data

Parameter

Extraction
�

x
Feature

Extraction
�

y

Class

Models

�
Pattern

Classifier
�

Recognized

class

Feature Analysis
Pattern

Classification

Figure 1.2: Conventional pattern recognition system.

1.1.1 Feature Analysis

Feature analysis is achieved in two steps: parameter extraction and/or fea-
ture extraction. In the parameter extraction step, information relevant to
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pattern classification is extracted from the input data in the form of a p-
dimensional parameter vector x. In the feature extraction step, the parame-
ter vector x is transformed to a feature vector y, which has a dimensionality
m (m ≤ p). If the parameter extractor is properly designed so that the pa-
rameter vector x is matched to the pattern classifier and its dimensionality
is low, then there is no necessity for the feature extraction step. However
in practice, parameter vectors are not suitable for pattern classifiers. For
example, parameter vectors have to be decorrelated before applying them to
a classifier based on Gaussian mixture models (with diagonal variance ma-
trices). Furthermore, the dimensionality of parameter vectors is normally
very high and needs to be reduced for the sake of less computational cost
and system complexity. Due to these reasons, feature extraction has been
an important part in pattern recognition tasks.

Feature extraction can be conducted independently or jointly with ei-
ther parameter extraction or classification. Independent feature extraction
method is a well-developed area of research. A number of independent
feature extraction algorithms have been proposed [19, 27, 42, 46, 48, 80].
Among them, LDA and PCA are the two popular independent feature ex-
traction methods. Both of them extract features by projecting the original
parameter vectors onto a new feature space through a linear transforma-
tion matrix. But they optimize the transformation matrix with different
intentions. PCA optimizes the transformation matrix by finding the largest
variations in the original feature space [48, 53, 80]. LDA pursues the largest
ratio of between-class variation and within-class variation when projecting
the original feature to a subspace [13, 78, 93]. The drawback of independent
feature extraction algorithms is that their optimization criteria are different
from the classifier’s minimum classification error criterion, which may cause
inconsistency between feature extraction and the classification stages of a
pattern recognizer and consequently, degrade the performance of classifiers
[54].

A direct way to overcome the problem with independent feature extrac-
tion algorithms is to conduct feature extraction and classification jointly
with a consistent criterion. Integrated feature extraction and classification
has become a subject of major importance, recently[76]. The structure of a
pattern recognition system using integrated feature extraction and classifi-
cation algorithm is shown in Figure 1.3. MCE training algorithm provides
an ideal integrated framework for joint feature extraction and classifica-
tion. MCE training algorithm was first proposed for optimizing classifiers
[54, 56]. It was derived from discriminant analysis but achieves minimum
classification error directly. This direct relationship has made MCE training
algorithm widely popular in a number of pattern recognition applications,
such as dynamic time-wrapping based speech recognition[20, 57] and Hid-
den Markov Model (HMM) based speech and speaker recognition[21, 63, 79].
The characteristics of MCE training algorithm also enable it to conduct joint
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feature extraction and classification tasks easily. In this thesis, we propose
the use of MCE training algorithm for integrated feature extraction and
classification. A generalized MCE (GMCE) training algorithm is proposed
to mend the shortcomings of MCE training algorithm that appear in the
joint feature extraction and classification tasks.

�

Input
data

Parameter

Extractor
�

x

Feature Extraction

& Class Models

�
Integrated Feature

Extractor & Classifier
�

Recognized

class

Integrated Feature Extraction
and Classification System

Figure 1.3: Integrated pattern recognition system.

Both independent and integrated feature extraction algorithms extract
features through a linear transformation matrix. The advantage of linear
transformation matrices is their ability to reduce feature dimensionalities.
Pattern recognition systems can be benefitted from feature dimensionality
reduction, such as less system complexity and computational cost. There-
fore, the performances of feature extraction algorithms in feature dimen-
sionality reduction are also investigated in this thesis.

1.1.2 Pattern Classification

The objective of pattern classification is to assign an input feature vector
to one of K existing classes based on a classification measure. Conven-
tional classification measures include distance (Mahalanobis or Euclidean
distance), likelihood and Bayesian a posteriori probability. These measures
lead to linear classification methods, i.e., the decision boundaries they gen-
erate are linear. Linear methods, however, have the limitation that they
have little computational flexibility and are unable to handle complex non-
linear decision boundaries. SVM is a recently developed pattern classifica-
tion algorithm with non-linear formulation. It is based on the idea that the
classification that affords dot-products can be computed efficiently in higher
dimensional feature spaces [14, 82, 99]. The classes which are not linearly
separable in the original parametric space can be linearly separated in the
higher dimensional feature space. Because of this, SVM has the advantage
that it can handle the classes with complex non-linear decision boundaries.
SVM has now evolved into an active area of research [52, 86, 87, 89].

Different from conventional pattern recognition systems, SVM bypasses
feature extraction step and uses parameter vectors directly as its input.
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However, the dimensionality of parameter vectors in modern pattern recog-
nition systems are normally very high. In speech recognition, for example,
the dimensionality is around 40 and in image recognition, it is often more
than 100. This leads to high complexity of SVM systems. Furthermore,
large amount of irrelevant information that resides in parameter vectors will
make the computational expense of SVM unnecessarily high. In this the-
sis, we investigate the performance of SVM in low-dimensional discriminated
feature spaces. A reduced-dimensional SVM (RDSVM) is proposed to adopt
feature extraction into SVM training.

1.2 Contributions

The following contributions are made in this thesis:

• Alternative MCE Training Algorithm, Chapter 4: The conventional
MCE training algorithm uses additive model to formulate the mis-
classification measure. However, additive model is not suitable for
accommodating gradient descent method for optimization. This chap-
ter proposes an alternative form of MCE training algorithm to improve
the performance of conventional MCE training algorithm. The pro-
posed algorithm uses a ratio model of misclassification measure, which
is more suitable for the gradient descent method than the additive
model used conventionally.

• MCE Training Algorithm for Joint Feature Extraction and Classifi-
cation, Chapter 5: Independent feature extraction method is a well-
developed area of research. LDA and PCA are the two popular inde-
pendent feature extraction algorithms. However, they have inconsis-
tent optimization criteria to the minimum classification error objec-
tive. This may cause dismatch between the features extraction and the
classification and thus degrade the performance of pattern recognition
systems. A direct way to mend this drawback is to conduct feature
extraction and classification jointly. This chapter proposes the use of
MCE training algorithm for joint feature extraction and classification.
MCE training algorithm provides an integrated framework and is suit-
able for this joint task. The corresponding formulation is derived in
this chapter.

• Generalized MCE (GMCE) training Algorithm, Chapter 6: One sig-
nificant limitation appearing in the performance of MCE training al-
gorithm in joint feature extraction and classification tasks is that the
success of MCE training is highly dependent on the the initialization of
the parameter set, especially the transformation matrix. This leads to
poor generalization properties of MCE models. A major reason is that
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MCE training algorithm employs gradient descent method for model
optimization, while the gradient descent method is dependent to the
starting point and does not guarantee the global minimum. This chap-
ter proposes a generalized MCE (GMCE) training algorithm to mend
this shortcoming of MCE training algorithm in joint feature extrac-
tion and classification tasks. GMCE training algorithm achieves the
classification objective in two steps. The first step is a initialization
step, which searches for a suitable initialization for MCE training. The
second step conducts MCE training.

• Reduced-Dimensional SVM, Chapter 8: SVM is a recently developed
pattern classification algorithm with non-linear formulation. However,
it overpasses the feature extraction step and uses parameter vectors
directly as input. This causes a number of problems to pattern recogni-
tion systems, such as high system complexity and low efficiency. This
chapter proposes a reduced-dimensional SVM (RDSVM) to adopt fea-
ture extraction into SVM. The proposed RDSVM algorithm has a
two-layer structure. The first layer conducts feature extraction and
provides a discriminated and/or reduced-dimensional feature space for
the second layer. The second layer conducts SVM training in this fea-
ture space.

1.3 Thesis Organization

This thesis is mainly concerned with feature extraction and dimensionality
reduction algorithms for pattern recognition. It is organized as follows:

Chapter 1: This chapter gives a brief introduction to the main purpose,
structure and contributions of this thesis.

Chapter 2: This chapter gives a brief introduction to the fundamentals
of pattern recognition. It includes the formulation of pattern recognition
problems, definitions of some basic concepts, approaches to design feature
extractors and classifiers, integrated pattern recognition systems and feature
dimensionality problems in pattern recognition.

Chapter 3: This chapter discusses two popular independent feature extrac-
tion algorithms — LDA and PCA. In the following chapters, they are used
as the references to evaluate integrated feature extraction and classification
algorithms.

Chapter 4: This chapter discusses the framework of MCE training algo-
rithm and proposes an alternative form of MCE training algorithm, which
uses a ratio model of misclassification measure. The performance of alter-
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native MCE training algorithm is compared to those of conventional MCE
training algorithm, LDA and PCA.

Chapter 5: This chapter proposes the use of MCE training algorithm for
joint feature extraction and classification tasks. Corresponding formulation
is derived. An experiment is carried out on two small databases (Deterding
Vowel database and D. German’s GLASS database). In the experiment, the
performance of MCE training algorithm is compared to those of LDA and
PCA.

Chapter 6: This chapter proposes a generalized MCE (GMCE) training
algorithm. GMCE has a general searching step to search for a suitable
initialization of transformation matrix before MCE training process. The
criterion for general searching process is investigated.

Chapter 7: This chapter introduces the formulation of SVM. SVM is em-
ployed on vowel classification tasks based on Deterding Vowel database. Its
performance is compared to those of MCE and GMCE training algorithms.

Chapter 8: This chapter discusses the shortcomings of SVM and proposes
a RDSVM algorithm to adopt feature extraction into SVM. The proposed
RDSVM is tested on Deterding Vowel database and its performance is anal-
ysed.

Chapter 9: This chapter first introduces the database used in our vowel
classification experiments — TIMIT database and the selection of vowels.
The setup of the experiments is also introduced. The recognition results of
LDA, PCA, MCE, GMCE, SVM and RDSVM are then shown and analysed.

Chapter 10: This chapter concludes the whole thesis and summarizes the
conclusion obtained in each chapter.

1.4 Publications Resulting from Research for This
Thesis

This thesis has in many parts been shaped by colleagues’ and reviewers’
comments regarding many of the publications listed below. It has also been
shaped by the comments and suggestions resulting from conference presen-
tations.

1. X.Wang and K.Paliwal, “Feature extraction and dimensionality reduc-
tion algorithms and their application in vowel recognition”, Pattern
Recognition, Accepted in December 2002.
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2. X.Wang and K.Paliwal, “A modified minimum classification error train-
ing algorithm for dimensionality reduction”, Journal of VLSI Signal
Processing Systems, vol 32, pp. 19-28, April 2002.

3. X.Wang and K.Paliwal, “Discriminative learning and informative learn-
ing in pattern recognition”, 9th International Conference on Neural
Information Processing, Singapore, November 2002.

4. X.Wang and K.Paliwal, “Feature extraction for integrated pattern
recognition systems”, Fourth Workshop on Signal Processing and Ap-
plications, Brisbane, Australia, December 2002.

5. X.Wang and K.Paliwal, “Generalized minimum classification error train-
ing algorithm for dimensionality reduction”, Microelectronic Engineer-
ing Research Conference 2001, Brisbane, Australia, 2001.

6. X.Wang and K.Paliwal, “Using minimum classification error training
in dimensionality reduction”, Proceedings of the 2000 IEEE Work-
shop on Neural Networks for Signal Processing X, pp. 338-345, Sydney,
2000.

7. X.Wang, K.Paliwal and J. Chen, “Extension of minimum classifica-
tion error training algorithm”, Microelectronic Engineering Research
Conference 1999, Brisbane, Australia, 1999.



Chapter 2

Fundamentals of Pattern
Recognition

2.1 Data Flow in Pattern Recognition Systems

Data flow in a typical pattern recognition system is shown in Figure 2.1. The
collected information of an object, x(t), is firstly processed by a parameter
extractor. Information relevant to pattern classification is extracted from
x(t) in the form of a p-dimensional parameter vector x. x is then transformed
to a feature vector y, which has a dimensionality m (m ≤ p), by a feature
extractor. The purpose of feature extraction is to make the input data
more suitable for pattern classifier and/or reduce the dimensionality of the
input data vectors. Feature vector y is assigned to one of the K classes,
Ω1,Ω2, · · · ,ΩK , by the classifier based on a certain type of classification
criteria.

�
Collected

Information x(t)

Parameter Extractor

�Parameter
Vector x

Feature Extractor

�Feature
Vector

y

Classifier

�
Assigned

Class Ωk

Figure 2.1: Data flow in a typical pattern recognition system.
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Designing a pattern recognition system, therefore, includes three parts:
the design of parameter extractor, feature extractor and classifier. This
thesis concentrates on the last two parts: the design of feature extractor
and classifier.

2.2 Definition of Some Basic Concepts

2.2.1 Pattern

Pattern is a quantitative or structural description of an object or some other
entity of interest[40]. It is usually arranged in the form of a feature vector
as:

x =




x1

x2
...

xn




where x1, x2, . . . , xn are the features. Depending on the measurements of
an object, features in a pattern can be either discrete numbers or real con-
tinuous values. The requirement on features is that the features can reflect
the characteristics of desired objects and differ from those of other objects
to the largest extent.

2.2.2 Class

Class or pattern class is a set of patterns that share some common properties.
The feature vectors of the same type of objects will naturally form one set.
Due to the diversity of the objects, the patterns extracted from the same
type of objects are seldom identical. This can be interpreted as clusters of
points in a n-dimensional space, which are called distributions of classes.
Figure 2.2 shows an example of distributions of Fisher’s iris data in a two-
dimensional space, in which only two out of four dimensions, i.e., petal
length and petal width, are used. Since the purpose of pattern recognition
is to classify these patterns, the distributions of classes are desired to be
separable and not empty. Suppose we have K classes, in a mathematical
form, the requirement is:

Ωk �= φ k = 1, . . . ,K; Ωk

⋂
Ωl = φ k �= l ∈ {1, . . . ,K} (2.1)

2.2.3 Classification Criterion

Classification Criterion is also called decision rule. The most widely used
classification criteria are distance, Bayes decision rule and likelihood. A brief
summary of these criteria is given in the following:
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Figure 2.2: Distribution of Fisher’s iris data in a two-dimensional space.

• Distance criterion is the simplest and most direct criterion. The basic
idea of distance classification criterion is that a data is classified to
the class that is closest to it. Euclidean distance and Mahalanobis
distance are the two most common forms. Suppose we have K classes,
let (µi,Σi) be the known parameter set of class i, where µi is the
reference vector of class i, Σi is the covariance. The square form of
Euclidean distance of an observation vector x from class i is:

di(x) = ‖x − µi‖2 (2.2)

The square form of Mahalanobis distance of x from class i is:

di(x) = (x − µi)T Σ−1
i (x − µi) (2.3)

Euclidean distance is in fact a special case of Mahalanobis distance.

• Bayes decision rule is based on the assumption that classification prob-
lems are posed in probabilistic terms and all of the relevant probabil-
ities are known. It will assign an observation vector to the class that
has the largest a posteriori probability p(Ωj|x). Suppose we have K
classes, Ω1,Ω2, . . . ,ΩK , and also we have known the a priori probabil-
ity of each class P (Ωi), i = 1, 2 . . . ,K and the conditional probability
density p(x|Ωi), i = 1, 2, . . . ,K, the a posteriori probability can be
calculated by Bayes rule:

p(Ωj|x) =
p(x|Ωj)P (Ωj)

p(x)
=

p(x|Ωj)P (Ωj)∑J
i=1 p(x|Ωi)P (Ωi)

(2.4)
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• Likelihood criterion is a special case of Bayes classification criterion. It
assumes that all of the a priori probabilities P (Ωi) are equal and the
distributions of classes are normal, i.e., x ∼ N(µi,Σi), i = 1, 2 . . . ,K.
Then we have:

p(Ωj |x) = p(x|Ωi) (2.5)

and
p(x|Ωi) =

1
|2πΣi|1/2

e−
1
2
(x−µi)T Σ−1

i (x−µi) (2.6)

If the parameters of a class are known, likelihood is in fact the PDF
(probability density function) of the class. Using likelihood can greatly
simplify the calculation arisen by using Bayes decision rule. A further
logarithm of likelihood is usually taken to make the calculation simpler.
The log-likelihood has the form as follows:

Pi(x) = −1
2
ln|Σi| −

n

2
ln2π − 1

2
(x − µi)T Σ−1

i (x − µi) (2.7)

2.2.4 Classifier

A classifier first creates a series of functions gi(x,Λi), i = 1, . . . ,K as the
input-output functions, which are called discriminant functions. In a dis-
criminant function g(x,Λ), x is the input vector and Λ is the parameter
set of the class. Each discriminant function will output a value. Based on
these values, the classifier then assigns x to one of the classes following the
decision rule:

x ∈ Class i if gi(x,Λi) = max
for all j∈K

gj(x,Λj) (2.8)

Based on the classification criterion used in the discriminant functions, clas-
sifiers can be grouped into Bayesian classifier, Likelihood classifier and dis-
tance classifier. Figure 2.3 shows discriminant functions of these classifiers
in a two-class problem.

2.3 Approaches to Designing Feature Extractors

The main task of feature extractor is to select or combine the features that
preserve most of the information and remove the redundant components in
order to improve the efficiency of the subsequent classifiers without degrad-
ing their performances. Feature extraction methods can be grouped into two
categories: feature selection method and feature extraction method [62, 75].

2.3.1 Feature Selection Method

Feature selection method generates feature vectors by removing one mea-
surement at a time and maintaining the highest value in some performance
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Figure 2.3: Discriminant functions of Bayesian, likelihood and distance clas-
sifiers.

indices. Measurements are removed until there is an unacceptable degra-
dation in system performance. Karhunen-Loéve (K-L) expansion [36] and
F -ratio [75] are the two major feature selection algorithms.

K-L Expansion

In K-L expansion, the input vector x is assumed to be a zero-mean vector.
Re-write x in an orthogonal expended form:

x = Qc (2.9)

where Q = (q1, . . . , qn) is an orthogonal matrix formed by n normalized
orthogonal basis in the observation space, c is a set of random uncorrelated
coefficients. These coefficients c can be calculated by re-arranging equa-
tion 2.9 as follows:

c = QT x (2.10)

If we define the covariance matrix of x as:

R = E[xxT ] (2.11)

Then we have:
R = E[Qc(Qc)T ] = QE[ccT ]QT (2.12)

Since c is uncorrelated, the expectation of ccT will be diagonal and let it be
Λ, so that

R = QΛQT (2.13)

This means that the diagonal elements of Λ are the eigenvalues of R and Q
can be formed by the normalized eigenvectors of R. We can rewrite Q as:

Q = {q1, · · · , ql, ql+1, · · · , qn} = {Q′
Q

′′} (2.14)
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where q1, · · · , ql are the eigenvectors corresponding to first l largest eigenval-
ues. By discarding ql+1, · · · , qn, c is formed again to represent x in a lower
dimensional space with Q

′
, c

′
= Q

′T x. In this newly formed space, most of
the variances of x are retained. The error, e = x − Qc, due to the selection
of first l features can be minimized by the least mean squared method.

F -ratio Method

F -ratio approach selects the features in a different way to K-L method. It se-
lects the features by finding the largest ratio of between-class covariance and
within-class covariance. Suppose we have K classes, µ1, . . . , µK represent
means of each classes, which are calculated by:

µi =
1
ni

ni∑
j=1

xij (2.15)

where nj is the number of data in class j. Let µ be the overall mean:

µ =
1
n

K∑
i=1

ni∑
j=1

xij (2.16)

where n =
∑K

i=1 ni is the total number of data. Then within-class covariance
is defined as:

SW =
1
n

K∑
i=1

ni∑
j=1

(xij − µi)(xij − µi)T (2.17)

Between-class covariance is defined as:

SB =
1
K

K∑
i=1

(µi − µ)(µi − µ)T (2.18)

and F-ratio is defined as:
F−ratio =

SB

SW
(2.19)

Then the features that can keep the ratio largest will be kept and the others
will be discarded.

2.3.2 Feature Extraction Method

Feature extraction method generates feature vectors by projecting parame-
ter vectors onto a feature space through a linear transformation Tp×m, p ≥
m:

y = T T x (2.20)

where y is feature vector and x is parameter vector. In independent fea-
ture extraction algorithms, transformation T is optimized separately from
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the class models with different criterion, while in integrated feature extrac-
tion and classification algorithms, T is optimized synchronously with class
models.

LDA and PCA are the two popular independent feature extraction algo-
rithms. They optimize the transformation T with different intentions. LDA
optimizes T by maximizing the ratio of between-class variation and within-
class variation. PCA obtains T by searching for the directions that have the
largest variations. Therefore LDA and PCA project parameter vectors along
different directions. Figure 2.4 shows the difference between the projecting
directions of LDA and PCA when projecting the parameter vectors from a
two-dimensional parametric space onto a one-dimensional feature space. A
detailed discussion of LDA and PCA will be given in Chapter 3.

LDA projecting direction
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Figure 2.4: A comparison of the directions in which LDA and PCA project
data from a two-dimensional space onto a one-dimensional space.

In this thesis, MCE training algorithm is applied to integrated feature
extraction and classification systems due to its flexible framework. Corre-
sponding formulation and investigation on MCE’s performance in integrated
feature extraction and classification tasks will be given in Chapter 4 and 5.

2.4 Approaches to Designing Classifiers

2.4.1 Procedure of Training Classifiers

When designing a classifier, we usually have no knowledge about the classes,
especially the information of class distributions. What we have is only a
bunch of data obtained from observations. Classifiers have to be built up
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based on these observed data. Normal process of building up a classifier in-
cludes the initialization of the classifier, estimation of error and adjustment
of the parameters in the classifier, as shown in Figure 2.5. This is often called
a training process. Since the classifiers assign observations to classes based

�

Input

Feature Set X Classifier
w0, w1, . . . , wτ

� Error
Estimation

� �⊗

�Parameter
Adjustment

Optimized

Model

�

�
��

Figure 2.5: Training process of a classifier.

on the output of discriminant functions, the success of classifiers is highly
dependent on the selection of discriminant functions. Unfortunately, it is
often very difficult to find a suitable parametric form of discriminant func-
tions for classification. So in some approaches, an unstructured estimation
of discriminant functions is used. These methods are called non-parametric
training. Non-parametric training approaches, however, in some cases, can
be very complex and require a large number of samples to give accurate
results. Thus this leads to the consideration of simpler procedures for de-
signing classifiers. In particular, the mathematical forms of discriminant
functions are pre-specified and a small set of parameters is left to be deter-
mined. This type of approaches is called parametric training. The following
subsections will give a brief introduction to both non-parametric training
and parametric training.

2.4.2 Non-parametric Training

The most fundamental technique of non-parametric approaches situates on
the fact that the probability P of an observation vector x that falls into a
region R is given by

P =
∫
R

p(x)dx (2.21)

Thus the probability density function of x can be estimated by estimating
the probability P . Suppose that n samples x1, . . . , xn are independently
drawn by the probability density p(x). Obviously, a good estimate of the
probability P that k of n samples fall into R is [12]:

P =
k

n
(2.22)
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If we assume that p(x) is continuous and the region R is so small that p(x)
does not vary significantly within it, then the right side of equation (2.21)
can be re-written as: ∫

R
p(x)dx ≈ p(x)V (2.23)

where V is the volume of R. Combining (2.21), (2.22) and (2.23), the
estimate of p(x) is obtained as follows:

p̂(x) ≈ k/n

V
(2.24)

If we fix V and increase n, the ratio k/n will converge as desired. But what
we have obtained is an estimate of the average value, P/V , of p(x) over
R. If an estimate of density at x, p(x), is desired rather than an averaged
estimate of p(x) over a region, we have to let V approach zero. However,
if we fix n and let V → 0, the region will eventually become so small that
p̂(x) will approach zero and become useless. Since in practice n is always
limited, volume V can not be be arbitrarily small. If p̂(x) is to converge to
p(x), three conditions have to be satisfied:

(1) limn→∞ V = 0
(2) limn→∞ k = ∞
(3) limn→∞ k/n = 0.

(2.25)

The first condition ensures that the region average will converge to p(x);
the second condition ensures that the ratio k/n will converge to P and the
last condition ensures that estimate in equation (2.24) converges. There
are two common approaches to obtain V and k that satisfy the conditions.
One is called Parzen estimate, which fixes V and obtains the value of k by
counting the number of training data falling in V . The other approach is
called k-nearest neighbour estimate or k-NN, which fixes k and evaluate V
by finding the volume of the region which captures the k nearest neighbours
of x [50].

Parzen estimate

In Parzen estimate, an initial region around the data point x, Rx, is set
up and shrunk by specifying the volume V as a function of n. The region
is usually assumed to be a d-dimensional hypercube and the length of each
side be r, then the volume is given by:

V = rd (2.26)

In some cases, Rx is assumed to be a hypersphere. Given the radium r, the
volume is then:

V =
∫

L(x)
dy =

πd/2

Γ(d+2
2 )

|Σ|1/2rd (2.27)
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where Σ is the covariance of n samples [36]. The number of the samples
that fall into Rx, k, is often given by a kernel function k(x − xi), which is
set up under the condition

∫
k(x)dx = 1. Then the estimate is obtained by:

p̂(x) =
1
n

n∑
i=1

1
V

k(x − xi) (2.28)

The selection of kernel function is usually limited to either a uniform or a
normal kernel in high dimensional space. For a uniform kernel,

K(y) =

{
1 if y inside Rx

0 if y outside Rx
(2.29)

For a normal kernel,
K(y) = e−

1
2
(y−x)T rΣ(y−x) (2.30)

Clearly, the choice of r, which decides volume V , has a major effect on p(x).
r can be optimized by minimizing the mean-square error between p̂(x) and
p(x) with respect to r, which is represented as follows:

MSE{p̂(x)} = E{[p̂(x) − p(x)]2}
∇(MSE{p̂(x)}) = 0

(2.31)

k-NN estimate

One of the problems encountered in Parzen estimate approach is that the
results are very sensitive to the initial choice of V (or r). Furthermore, it
may be the case that a volume that works well for one value of x might
be totally unsuitable elsewhere. One remedy for these problems is k-NN
method. In k-NN, V becomes a function of the data and is extended until k
samples are captured [12, 36]. These k samples are the k nearest neighbours
of x.

Suppose we have N classes, for k-NN rule, each class Ωi, i = 1, . . . , N is
represented by a set of known points, z

(i)
j , j = 1, . . . , ni, in the feature space.

For each observation vector x, a k-NN list d(x, z
(i)
j ) is made for all classes,

where d(x, z
(i)
j ) usually uses the distance of observation x to the jth point in

Ωi, instead of the probability for the sake of simplicity of calculation. The
distance measure is defined in terms of a metric d(x, y). One of the widely
used metrics is the Minowski metric,

d(x, y) = ‖x − y‖p =

(
n∑

i=1

|xi − yi|p
)1/p

(2.32)

When p = 2 this metric becomes the well-known Euclidean distance.
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Among the non-linear metrics, quadratic metrics are of most practical
interest and defined in the following equation:

d(x, y) = (x − y)tA(x − y) =
n∑

i=1

n∑
j=1

aij(xi − yi)(xj − yj) (2.33)

where A is an n× n positive-definite real symmetric matrix. A special case
of quadratic metrics is the Mahalanobis distance.

These lists of distance measures are used to define the distance of x to
Ωi. There are a number of k-NN rules to define the distance. The simplest
one defines the distance as the smallest distance in Ωi:

D(x,Ωi) = arg min d(x, z
(i)
j ), j = 1, . . . , ni (2.34)

Another popular k-NN rule defines the distance as the average distance of
x to the K nearest neighbours in Ωi:

D(x,Ωi) =
1
k

K∑
j=1

d(x, z
(i)
j ) (2.35)

Still another k-NN rule defines the distance based on a majority decision, in
which the decision rule first finds k nearest neighbours within all the nearest
neighbour lists, then the distance to class Ωi is represented by the number
of points appeared in the k nearest neighbour list:

D(x,Ωi) =
1
li

(2.36)

where li is the number of points in the k nearest neighbour list which are
associated with class Ωi.

The observation x is then classified following the decision rule:

x ∈ Ωi if D(x,Ωi) = arg min
for all n �=i

D(x,Ωn) (2.37)

2.4.3 Parametric Training

In typical pattern classification problems, most of the difficulties arise from
the estimation of class-conditional densities. If the conditional densities are
parameterized by our general knowledge about the problems, the severity of
these difficulties can be reduced significantly. For example, if we assume that
p(x|Ωi) is a Gaussian density with mean µi and covariance Σi, the problem
of estimating a density function p(x|Ωi) is simplified to that of estimating
the parameters µi and Σi. The approaches that use this strategy are called
parametric training approaches or supervised learning approaches. Distance
estimate, Maximum Likelihood estimate, and Bayesian estimate are three
common parametric training methods. The following sub-sections will give
detailed discussion on them.
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Distance Estimate

In distance estimate, the data is assumed to distribute in many hyperspheres
and each hypersphere can be represented by a reference point µ, which is
a p-dimensional vector, and a dispersion matrix Σ of the hypersphere in
different directions. Σ is required to be an positive definite, symmetric and
non-singular matrix. Thus the problem is simplified to find µ and Σ.

Suppose we have K classes and K sets of samples for them. The distance
of a sample x to class Ωi is defined as the distance to the reference vector
of the class:

d(x,Ωi) = (x − µ(i))T Σ(i)(x − µ(i)) (2.38)

Mahalanobis distance is a special case of this definition when Σ(i) is the
covariance matrix of Ωi. The total distance in a class Ωi is defined as the
sum of the distances of the samples to Ωi:

D(Ωi) =
ni∑

j=1

d(x(i)
j ,Ωi) (2.39)

where ni is the number of samples in class Ωi. Obviously, the distance of
a data to its desired class should be the smallest among the distances of
it to all the classes. Therefore, the problem of estimating the parameters
becomes how to choose {µ̂(i), Σ̂(i)} so that the total distance in Ωi is the
minimum.

Gradient descent method is often preferred to minimize D(Ωi). However,
the total distance defined in (2.39) is still not suitable for differentiation
because D(Ωi) is not continuous over Ωi. So it is usually smoothed by
a monotonical differentiable function so that the normal gradient descent
method can be employed to obtain the estimated {µ̂(i), Σ̂(i)}. There is a
number of choices of smooth functions. Sigmoid function and exponential
function are two popular forms among them:

• a) Sigmoid function

L[D(Ωi)] =
1

1 + e−ξ(D(Ωi)+α)
(2.40)

where 0 < ξ < 1 and α is a constant and usually set to 0.

• b) Exponential function

L[D(Ωi)] =

{
(D(Ωi))ξ, D(Ωi) > 0
0, D(Ωi) ≤ 0

(2.41)

where ξ > 0 and ξ → 0.
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The samples from different classes are assumed to be uncorrelated so
that we can optimize each class independently. Let µ(i) be a p-dimensional
vector, Σ(i) be a p× p matrix and the smooth function be sigmoid function.
Then the gradient of L[D(Ωi)] with respect to µ(i) and Σ(i) is calculated as
follows:

∇µ(i),Σ(i)L =




ξL(1 − L)∂D(Ωi)

∂µ
(i)
1

...
ξL(1 − L)∂D(Ωi)

∂µ
(i)
p

,

ξL(1 − L)∂D(Ωi)

∂σ
(i)
11

...
ξL(1 − L)∂D(Ωi)

∂σ
(i)
pp




(2.42)

The optimized parameters are obtained by setting ∇µ(i),Σ(i)L = 0. The
procedure of distance estimate is shown in Figure 2.6.

Step 1
Sampling

Step 2
Calculating
distance

Step 3
Smoothing

Step 4
Optimizing

Boundary 
by Σ

m 

m 

D
(Ω

) 

m 

L[
D

(Ω
)]

 

m 

Figure 2.6: Procedure of distance estimate.

Maximum Likelihood Estimate

Suppose we have K classes and a set of samples, Xi, for each class. The
samples are drawn identically and independently. It is assumed that p(x|Ωi)
has a known parametric form and is determined uniquely by the parameter
set θi. We use p(x|θi) to represent p(x|Ωi, θi) to show the dependence of
p(x|Ωi) on θi. Then the problem is changed to use the samples to obtain an
appropriate estimate for the unknown parametric sets θ1, · · · , θK .

It is plausible to assume that samples from different sets are uncorrelated
so that we can work with each class separately. For a single class, suppose
that the sample set, X , contains n samples, X = x1, . . . , xn. Then, since
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the samples are drawn independently, the conditional probability,

p(X|θ) =
n∏

j=1

p(xj|θ) (2.43)

is a function of θ and called the likelihood of θ with respect to the set of
samples. The maximum likelihood estimate of θ is to value θ̂ that maxi-
mizes p(X|θ)(as shown in Figure 2.7) Likelihood is usually embedded into
a monotonically increasing or decreasing function so that θ̂ can be found
by standard differential methods. Logarithm of the likelihood is the most
common form used.

θθ

Li
ke

lih
oo

d 
  p

(x
| θ

) 

Parameter  θ 

Figure 2.7: Maximum likelihood estimate for a parameter θ.

Let θ = (θ1, . . . , θp)t be the p-dimension vector, let ∇θ be the gradient
operator:

∇θ =




∂
∂θ1
...

∂
∂θp


 (2.44)

The log-likelihood is defined as follows:

l(θ) = log p(X|θ)
=
∑n

j=1 log p(xj|θ)
(2.45)

The gradient of log-likelihood with respect to θ is:

∇θl =
∑n

j=1 ∇θlog p(xj|θ)

=



∑n

j=1
∂log p(xj |θ)

∂θ1
...∑n

j=1
∂log p(xj |θ)

∂θp




(2.46)

The maximum likelihood estimate for θ can be easily obtained from the set
of p equations ∇θl = 0.
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Bayesian Estimate

The key problem of Bayes estimate is the calculation of a posteriori prob-
abilities P (Ωi|x). Bayes rule allows us to compute these probabilities from
the a priori probabilities P (Ωi) and the class-conditional probability densi-
ties P (x|Ωi). However, both P (Ωi) and P (Ωi|x) are unknown. So we have
to compute them by using the information that resides in the samples. Let
X = {x1, . . . , xK} be the set of samples from K classes. If our goal is to
compute a posteriori probabilities P (Ωi|x,X ) from the samples, then:

p(Ωj |x,X ) =
p(x|Ωj ,X )P (Ωj |X )∑K
i=1 p(x|Ωi,X )P (Ωi|X )

(2.47)

Without the loss of generality, we assume that the true values of the a pri-
ori probabilities are known, i.e., P (Ωi|X ) = P (Ωi), i = 1, . . . ,K. Then
P (Ωi|x,X ) can be re-written as:

p(Ωj|x,X ) =
p(x|Ωj,X )P (Ωj)∑K
i=1 p(x|Ωi,X )P (Ωi)

(2.48)

Once again we assume that the samples in Ωi have no influence on P (Ωj|x)
if j �= i. This allows us to work with each class separately. We can sim-
plify the notation from p(x|Ωj,X ) to p(x|X ) to remove the class distinction.
Computing p(x|X ) forms the central problem of Bayesian learning.

Let θ be the parameter vector, which is unknown. Then p(x|X ) can be
computed by integrating the joint density p(x, θ|X ) over θ:

p(x|X ) =
∫

p(x, θ|X )dθ
=
∫

p(x|θ)p(θ|X )dθ
(2.49)

Equation (2.49) links p(x|X ) to the a posteriori probability p(θ|X ). If p(θ|X )
peaks very sharply above some value θ̂, we obtain p(x|X ) ≈ p(x|θ̂). p(θ|X )
can be calculated by Bayes rule:

p(θ|X ) =
p(X|θ)p(θ)∫
p(X|θ)p(θ)dθ

(2.50)

By the independent assumption:

p(X|θ) =
n∐

i=1

p(xi|θ) (2.51)

where n is the number of samples in X = {x1, . . . , xn}. Equation (2.51) can
be re-written in a recursive form:

p(X s|θ) = p(xn|θ)p(X s−1|θ) (2.52)
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where s represents sth iteration. Substitute Eq. (2.52) into Eq. (2.50) with
the understanding that p(θ|X 0) = p(θ), we obtain the recursive form of
p(θ|X ):

p(θ|X s) =
p(xn|θ)p(θ|X s−1)∫
p(xn|θ)p(θ|X s−1)dθ

(2.53)

Repeated use of Eq. (2.53), p(θ|X s) will eventually converge to a Dirac delta
function centered about the true values of θ. Thus from Eq. (2.49) we can
see that p(x|X s) will converge to p(x). This procedure is called Bayesian
learning.

2.5 Non-linear Classifier

The decision boundaries generated by conventional classifiers, such as dis-
tance, likelihood and Bayesian classifiers, are linear boundaries, as shown
in Figure 2.8. The limitation of linear decision boundaries is that it lacks
computational flexibility and is not suitable for handling the classes with
complex distributions.

a) Class distributions
b) Decision boundaries of
Conventional classifiers

decision boundaries

Figure 2.8: Linear decision boundaries of conventional classifiers.

Non-linear classifier is a recently developed classification technique. It
first projects parameter vectors onto a higher-dimensional feature space
through a non-linear kernel function. Kernel function is often defined as
the dot product between a parameter vector and a reference vector:

k(x, y) = (x · y) (2.54)
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In this higher-dimensional feature space, non-linear class boundaries may
become linear, as shown in Figure 2.9. Then the decision plane is pursuit in
the feature space. The projection of decision plane in the parameter space
is a non-linear decision boundary. Therefore, non-linear classifiers have the
advantage of handling the classes with complex distributions.

a) Class distributions with non−
linear boundries

b) Decision boundary in high 
dimensional feature space

c) Non−linear decision boundary in
low dimensional feature space 

decision
boundary

decision plane 

Figure 2.9: Non-linear decision boundaries of non-linear classifiers.

Kernel Discriminant Analysis (KDA) [82, 68], Kernel Principal Compo-
nent Analysis (KPCA) [69] and SVM [17, 18, 72, 73, 85, 87, 89, 99] are the
three major non-linear classification algorithms. In this thesis, we will con-
centrate on SVM. The formulation of SVM and corresponding experiments
are introduced in the following chapters.

2.6 The Curse of Dimensionality

2.6.1 Problems caused by High Dimensionality

Computational efficiency is an important problem to pattern recognition
systems, especially the real-time systems. The amount of computations
required for pattern recognition and the amount of data required for training
systems grows exponentially with the increase of the dimensionality of the
feature vectors. This is what Bellman called “the curse of dimensionality”
[7, 60] .

In practical pattern recognition applications, it is often the way to con-
sider adding new features if the performance of a pattern recognition system
is inadequate, because it is reasonable to believe that the Bayes risk can not
possibly be increased by adding new features. Unfortunately, it has been
frequently observed in practice that the inclusion of new additional features
sometimes leads to poorer rather than better performance[16, 107]. There
are many reasons for this apparent paradox. Firstly, with the increase of the
dimensionality of feature vectors, more training data are needed to train the
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system models. However, the number of training data is finite in practice.
When the number of features increases faster than the increase of the num-
ber of training data, the system models obtained may lose the generalization
properties because of insufficient training data. This will lead to the degra-
dation of the performances of pattern recognition systems. Another reason
is that when new features are added, both relevant and irrelevant informa-
tion to pattern classification are brought into pattern recognition systems
because it is sometimes difficult to determine necessary or useless features
before pattern recognition applications [16]. Some irrelevant information
that resides in features may bring errors into pattern recognition systems
and degrade the systems’ performances.

2.6.2 Feature Dimensionality Reduction

Reducing the dimensionality of feature vectors is the most direct way to
solve the problems caused by high feature dimensionalities. Feature dimen-
sionality reduction is normally achieved in feature extraction step in pattern
recognition systems. Both feature selection and extraction methods intro-
duced in Section 2.3 are able to conduct feature dimensionality reduction
tasks. Feature extraction method, however, shows significant advantages
over feature selection method in practice [75]. This thesis will concentrate
on feature extraction method for feature dimensionality reduction.

Feature dimensionality reduction can be easily achieved by reducing the
rank of linear transformation shown in Eq. (2.20), where the transformation
T is a p × m, p ≥ m matrix, p is the dimensionality of parameter vectors
and m feature vectors. Both LDA and PCA can be used for dimensionality
reduction. This thesis proposes the use of MCE training algorithm for fea-
ture dimensionality reduction. These algorithms will be introduced in the
following chapters.

Feature dimensionality reduction is an active area of research because of
its importance [55, 59, 75, 78, 93]. In this thesis, all the feature extraction
experiments will include feature dimensionality reduction tasks. The perfor-
mances of feature extraction algorithms in feature dimensionality reduction
will be investigated.

2.7 Summary of Chapter

This chapter gives a brief introduction to the fundamentals of pattern recog-
nition. It includes the formulation of pattern recognition problems, defini-
tion of some basic concepts, approaches to design feature extractors and
classifiers and introduction to feature dimensionality reduction problems in
pattern recognition.



Chapter 3

Independent Feature
Extraction

3.1 Linear Feature Extraction Formulation

Linear feature extraction method is the most basic way of extracting feature
vectors. It projects parameter vectors from parametric space onto feature
space through a linear transformation matrix T . Suppose the input observa-
tion vector x be an p-dimensional vector and T be a p×m (p ≥ m) matrix.
The extracted feature vector y is:

y = T T x (3.1)

The difference between linear feature extraction algorithms is that they
optimize T by different criteria. A number of algorithms have been pro-
posed to seek the optimized T . LDA and PCA are the most popular ones
among them. Briefly speaking, LDA optimizes T by maximizing the ra-
tio of between-class variation and within-class variation; PCA obtains T by
searching for the directions that have the largest variations. In the following
subsections, a detailed discussion of each of them will be given.

3.2 Linear Discriminant Analysis

3.2.1 Fisher’s Linear Discriminants

The goal of Fisher’s linear discriminant is to well separate the classes by
projecting classes’ samples from p-dimension space onto a finely orientated
line. For a K-class problem, c = min(K − 1, p) different lines will be in-
volved. Thus the projection is from a p-dimensional space to a c-dimensional
space[28].

Suppose we have K classes, X1,X2, · · · ,XK . Let the ith observation
vector from the Xj be xji, where j = 1, . . . ,K, i = 1, . . . , Nj and Nj is the

27
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number of observations from class j. The sample mean vector µj and the
covariance matrix Sj of class j are given by:

µj =
1

Nj

Nj∑
i=1

xji (3.2)

and

Sj =
1

Nj

Nj∑
i=1

(xji − µj)(xji − µj)T (3.3)

The within-class covariance matrix SW is given by:

SW =
K∑

j=1

Sj (3.4)

Define the overall mean µ and the total covariance matrix ST as:

µ =
1
N

K∑
j=1

Nj∑
i=1

xji =
1
N

K∑
j=1

Njµj (3.5)

and

ST =
K∑

j=1

Nj∑
i=1

(xji − µ)(xji − µ)T (3.6)

where N =
∑K

j=1 Nj . Then it follows that:

ST =
∑K

j=1

∑Nj

i=1(xji − µj + µj − µ)(xji − µj + µj − µ)T

=
∑K

j=1

∑Nj

i=1(xji − µj)(xji − µj)T +
∑K

j=1

∑Nj

i=1(µj − µ)(µj − µ)T

= SW +
∑K

j=1 Nj(µj − µ)(µj − µ)T

(3.7)
It is natural to define the second term in Eq.(3.7)the between-class covari-
ance matrix, so that we have:

SB =
K∑

j=1

Nj(µj − µ)(µj − µ)T (3.8)

and
ST = SW + SB (3.9)

The projection from a p-dimensional space to an m-dimensional space is
accomplished by m discriminant functions:

yi = wt
ix i = 1, 2, · · · ,m. (3.10)

Eq. (3.10) can be re-written in matrix form:

y = W tx (3.11)
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Then corresponding mean and covariance matrix of y are defined as:

µ̃j =
1

Nj

Nj∑
i=1

yji (3.12)

µ̃ =
1
N

K∑
j=1

Njµ̃j (3.13)

S̃W =
K∑

j=1

Nj∑
i=1

(yji − µ̃j)(yji − µ̃j)T (3.14)

and

S̃B =
K∑

j=1

Nj(µ̃j − µ̃)(µ̃j − µ̃)T (3.15)

It is straightforward to show that:

S̃W = W TSW W (3.16)

and
S̃B = W TSBW (3.17)

Fisher’s linear discriminant is then defined as the linear functions W T x
for which the criterion function

J(W ) =
|S̃B |
|S̃W |

=
W TSBW

W TSW W
(3.18)

is maximum.
It can be shown that the solution of (3.18) is that the ith column of an

optimal W is the generalized eigenvector corresponding to the ith largest
eigenvalue of matrix S−1

W SB.

3.2.2 Generalized LDA

Linear discriminant function is usually written as:

g(x) = w0 +
p∑

i=1

wixi (3.19)

and can be extended to non-linear form by adding non-linear terms into the
RHS of Eq. (3.19). If we express these non-linear terms as:

yi = φi(x) i = 1, 2, · · · , d (3.20)

where d is the number of non-linear terms. Then we obtain the generalized
linear discriminant function:

g(x) = a0 + a1φ1(x) + · · · + adφd(x) = aT y (3.21)
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This function is not linear in x any more, but it is linear in y. The common
approach to finding the solution of Eq. (3.21) is to define a criterion function
J(a) first, and then minimize J(a) subject to aT y > 0. Gradient descent
method is often employed in the procedure of minimization. The core of
this method is the regression equation:

ak+1 = ak − ηk∇J(ak) (3.22)

where k and k + 1 are index of the iteration steps, ηk is a positive scale
factor that sets the step size and is usually called learning rate and ∇J(ak)
is the gradient of J(a) at the point a = ak.

Construction of J(a) is in fact to find some analytically tractable scalar
functions so that the inequalities aT yi > 0 can be readily solved by the
gradient descent method. Three essential criterion functions are summarized
in the following. Details can be found in [28].

A. Perceptron Criterion Function

The perceptron criterion function is defined as:

Jp(a) =
∑
y∈Y

(−aT y) (3.23)

where Y is the set of samples that are misclassified. This function is pro-
portional to the sum of the distances from the misclassified samples to the
decision boundaries. The problem with Jp is that the gradient of it is not
continuous.

B. Squared Distance Criterion

The squared distance criterion is a close relative to perceptron criterion, but
distinct by its continuous gradient. It is defined as:

Jq(a) =
∑
y∈Y

(aT y)2 (3.24)

or

Jr(a) =
1
2

∑
y∈Y

(aT y − b)2

‖y‖2
(3.25)

where again Y is the set of misclassified samples and b is a margin vector.
The second definition of Jr avoids the problem arising from (3.24) that the
value of Jq can be dominated by the longest vectors.
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C. Minimum Squared Error Criterion

Unlike the above two criteria which consider only the misclassified samples,
minimum squared error criterion takes into account the entire samples. Let
b be arbitrarily specified margin vector, minimum squared error is defined
as:

Js(a) =
N∑

i=1

(aT yi − bi)2 (3.26)

It can be shown that the solution of Eq. (3.26) depends on the choice of the
margin vector b.

3.2.3 Development of LDA

Traditional LDA can be generalized into a two-step procedure: defining
the discriminant functions and looking for a solution by incorporating the
discriminant functions into a criterion function that is suitable for gradient
descent search procedure. The inadequacies in these two steps are:

a. In the second step, the decision rule of classification

C(x) = Ci if gi(x) = max
for all j=1,···,K

gj(x) (3.27)

does not appear in a functional form in the overall criterion function
for optimization. Therefore there exists an inconsistency between the
criterion function and minimum classification error probability objec-
tive.

b. The initial purpose of defining discriminant functions is to reduce the di-
mensionality, while the class information is not considered. Therefore
the discriminant functions are unable to give an adequate description
of classes, such as class distributions and class boundaries.

The first problem with LDA is often mended by embedded the decision
rule into a function of misclassification measure, in which the discriminant
functions are combined. This leads to the development of Minimum Classifi-
cation Error (MCE) training algorithm, which will be thoroughly discussed
in Chapter 4.

The improvement on the second inadequacy of LDA is made by redefining
the discriminant functions as the linear functions f :

f(x) = w · x + b with x ∈ X , b ∈ Rp (3.28)

then maximizing the distance between the hyperplane that separates the
classes and the closest samples to the hyperplane. The solution of this
problem leads to the development of Support Vector Machine (SVM), which
will be discussed in Chapter 7.
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3.3 Principal Component Analysis

3.3.1 A Brief History of PCA

The earliest descriptions of PCA appear to be proposed by Pearson in 1901
[77] and Hotelling in 1933 [48]. In Pearson’s paper, the main concern was to
find lines and planes which best fit a set of points in a p-dimensional space
and the geometric optimization problems considered lead to principal com-
ponents (PCs). It seems that little relevant work has been published in the
32 years between Pearson’s and Hotelling’s papers. Hotelling’s motivation is
that there may be a smaller ‘fundamental set of independent variables’ which
determines the values of the original p variables. The term ‘components’ was
introduced and they were chosen to maximize their successive contributions
to the total of the variances of the original variables. Hotelling called the
components derived in this way the ‘principal components’ and the analy-
sis to find these components was then christened the ‘method of principal
components’. Hotelling derived the PCs by using Lagrange multipliers and
showed in his paper how to find PCs by the power method.

In 1939, Girshick [39] investigated the asymptotic sampling distributions
of the coefficients and variances of PCs. But apart from Girshick’s work,
there appears to be little work on the development of different applications
of PCA during nearly three decades following the publication of Hotelling’s
paper. Not until 1963, based on the earlier work by Girshick(1939), An-
derson(1963) discussed the asymptotic sampling distributions of the coeffi-
cients and variances of the sample PCs, which has built up the fundamental
framework of PCA [5]. Rao(1964) provided a large number of new ideas
concerning uses, interpretations and extensions of PCA [80]. Gower(1966)
discussed some links between PCA and various other statistical techniques
and provided a number of geometric insights [41].

Despite the simplicity of the technique, much research is still being car-
ried out in the general area of PCA. Apart from being used basically as a
dimensionality reduction tool, PCA is also widely used for feature extrac-
tion, data compression and preprocession for pattern recognition, etc.

3.3.2 Definition and Derivation of PCA

The central idea of PCA is to reduce the dimensionality of a data set which
consists of a large number of interrelated variables, while retaining as much
as possible the variation present in the data set.

Suppose x is a p-dimensional random vector. PCA first looks for a linear
function αT

1 x of x which has maximum variance, where α1 = {α11, α12, · · · , α1p}
is a p-dimensional vector and

αT
1 x = α11x1 + α12x2 + · · · + α1pxp =

p∑
i=1

α1ixi (3.29)
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Then it looks for a second linear function αT
2 x which is uncorrelated with

αT
1 x and has the second maximum variance. Repeat this procedure until the

desired kth linear function αT
k x is found. These k variables, αT

1 x, αT
2 x, · · · , αT

k x,
are called k principle components(PCs). In general, up to p PCs can be
found. The mathematical expression of constraints on αi, (i = 1, 2, · · · , p)
are:

αT
i αj =

{
1, if i = j
0, if i ≤ j

(3.30)

Consider the first PC, αT
1 x. α1 maximizes var[αT

1 x] = αT
1 Σα1 subject

to αT
1 α1 = 1. Use Lagrange multiplier, we have:

αT
1 Σα1 − λ1(αT

1 α1 − 1) (3.31)

where λ1 is a Lagrange multiplier. Differentiation (3.31) with respect to α1

gives:
(Σ − λ1Ip)α1 = 0 (3.32)

where Ip is the (p × p) identity matrix. Thus, λ1 is the eigenvalue of Σ and
α1 is the corresponding eigenvector. Note the quantity to be maximized is:

αT
1 Σα1 = αT

1 λ1α1 = λ1α
T
1 α1 = λ1 (3.33)

Thus, λ1 must be the largest eigenvalue and α1 is the corresponding eigen-
vector.

Consider the second PC, αT
2 x, maximizes αT

2 xα2 subject to being uncor-
related with the first PC, αT

1 x, that is:

cov[αT
1 x, αT

2 x] = 0 (3.34)

If choosing αT
2 α1 = 0 to specify the relationship in (3.34), the quantity to

be maximized is:

αT
2 Σα2 − λ2(αT

2 α2 − 1) − φαT
2 α1 (3.35)

where λ2 and φ are Lagrange multipliers. Differentiation of (3.35) with
respect to α2 gives:

Σα2 − λ2α2 − φα1 = 0 (3.36)

and multiplication of (3.36) on the left by αT
1 gives:

αT
1 Σα2 − λ2α

T
1 α2 − φαT

1 α1 = 0 (3.37)

Eq. (3.37) can be reduced to:

Σα2 − λ 2alpha2 = 0
φ = 0

(3.38)

Again λ2 = αT
2 Σα2, therefore, λ2 is the second largest eigenvalue and α2 is

the corresponding eigenvector.
By using the same strategy, it can be shown that the coefficient vector

αk of kth PC (k = 1, 2, · · · , p) is the eigenvector corresponding to the kth
largest eigenvalue of Σ.
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3.3.3 PCA for Feature Dimensionality Reduction in Classi-
fication

For a given p-dimensional data set X , the m principal axes T1, T2, · · · , Tm,
where 1 ≤ m ≤ p, are orthonomal axes onto which the retained variance is
maximum in the projected space. Generally, T1, T2, · · · , Tm can be given by
the m leading eigenvectors of the sample covariance matrix S = 1

N

∑N
i=1(xi−

µ)T (xi − µ), where xi ∈ X , µ is the sample mean and N is the number of
samples, so that:

STi = λiTi i ∈ 1, · · · ,m (3.39)

where λi is the ith largest eigenvalue of S. The m principal components of
a given observation vector x ∈ X are given by:

y = [y1, · · · , ym] = [T T
1 x, · · · , T T

mx] = T Tx (3.40)

The m principal components of x are then uncorrelated in the projected
space. In multi-class problems, the variations of data are determined on
a global basis [58], that is, the principal axes are derived from a global
covariance matrix:

Ŝ =
1
N

K∑
j=1

Nj∑
i=1

(xji − µ̂)(xji − µ̂)T (3.41)

where µ̂ is the global mean of all the samples, K is the number of classes,
Nj is the number of samples in class j, N =

∑K
j=1 Nj and xji represents the

ith observation from class j. The principal axes T1, T2, · · · , Tm are therefore
the m leading eigenvectors of Ŝ:

ŜTi = λ̂iTi i ∈ 1, · · · ,m (3.42)

where λ̂i is the ith largest eigenvalue of Ŝ.
An assumption made for dimensionality reduction by PCA is that most

information of the observation vectors is contained in the subspace spanned
by the first m principal axes, where m < p. Therefore, each original data
vector can be represented by its principal component vector:

y = T T x (3.43)

where T = [T1, · · · , Tm] is a p × m matrix.
The merit of PCA is that the extracted features have the minimum cor-

relation along the principal axes. On the other hand, there are some defects
that reside in PCA. First, as mentioned in [62], PCA is a scale-sensitive
method, i.e., the principal components may be dominated by the elements
with large variances. Another problem with PCA is that the directions of
maximum variance are not necessarily the directions of maximum discrim-
ination since there is no attempt to use the class information, such as the
between-class scatter and within-class scatter.
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3.4 Summary of Chapter

In this chapter two popular feature extraction and dimensionality reduction
methods — LDA and PCA are discussed. In the following chapters, they will
be used as references to evaluate other feature extraction and dimensionality
reduction methods.



Chapter 4

MCE Training Algorithm

4.1 A Brief Review on MCE Training Algorithm

The input observation data of a pattern classification system usually con-
tains large amount of irrelevant information that may increase computation
expenses and degrade the performance of the system. Feature extraction is
needed to remove the irrelevant information from the raw data. Conven-
tionally, feature extractors, such as PCA and LDA, deal with data sepa-
rately from classifiers. Meanwhile, the suitable criterion for classification
is the minimum probability of error classification, which has no direct link
to feature extraction criteria. This inconsistency forces feature extractors
and classifiers to be trained separately. However, the optimized feature ex-
tractors and classifiers may cause the problem of dismatch between feature
extractors and classifiers and thus do not necessarily make the whole pattern
classification system effective. One possible way to solve this problem is to
train the feature extractors and classifiers together with consistent criteria.
In this case, MCE training algorithm is a suitable framework to achieve this
goal.

MCE training algorithm is a type of discriminant training algorithm. It
is proposed to mend the shortcomings of traditional discriminant training
[54]. As pointed out by Juang and Katagiri [56], traditional discriminant
training algorithms are inadequate in that the decision rule in classification
does not appear in the overall criterion functions and there is an inconsis-
tency between the criterion function and the minimum classification error
objective. MCE training algorithm bridges this gap by introducing a clas-
sification measure, in which the decision rule is embedded, into the overall
criterion functions.

Defining misclassification measure therefore stays in the core of the
framework of MCE training algorithm. The basic way of defining misclas-
sification measure is to embed the decision rule of classification into it so
that the extracted features are ready for minimizing the classification error.

36
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A popular way to define misclassification measure is through discriminant
functions.

Let gj(x,Λ), (j = 1, 2, · · · ,K) be the discriminant functions, which in-
dicates the degree that an observation x belongs to class k over the the
parameter set Λ. The classifier makes the classification decision by the rule:

x ∈ Class k if gk(x,Λ) = max
for all i∈K

gi(x,Λ) (4.1)

Suppose x belongs to class k, Misclassification measure of x over Λ, d(x,Λ),
is then defined as the difference between discriminant function gk(x,Λ) and
a combination of other discriminant functions gj(x,Λ), j = 1, 2, · · · ,K and
j �= k:

dk(x,Λ) = gk(x,Λ) − G[g1(x,Λ)), · · · , gk−1(x,Λ), gk+1(x,Λ), · · · , (gK(x,Λ)]
(4.2)

so that when the misclassification measure dk(x,Λ) is minimized, the op-
timized features will automatically satisfy the minimum classification error
criterion (4.1). Therefore MCE training achieves minimum classification er-
ror in a more direct manner than traditional discriminant learning. Further-
more, the simplicity of MCE algorithm makes it easy to apply MCE training
algorithm to other frameworks. As a result, besides feature extraction, MCE
training algorithm has been used in a number of pattern classification appli-
cations, such as dynamic time-wrapping based speech recognition [63] and
HMM based speech and speaker recognition [8, 65].

4.2 Derivation of MCE Formulation

4.2.1 Conventional MCE Training Algorithm

Consider an input vector x, the classifier makes its decision by the decision
rule expressed in Eq.(4.1). This criterion can be rewritten as:

x ∈ Class k if gk(x,Λ) − max
for all i �=k

gi(x,Λ) > 0 (4.3)

Thus, the higher the value of function gk(x,Λ)−maxfor all i �=k gi(x,Λ), the
more reliable the classification result. This means that we can use the neg-
ative of this function as a measure of misclassification. The form of Eq.
(4.3), however, is not suitable for optimization since it is not differentiable.
In [54], a modified differentiable version of Eq. (4.3) is introduced as a
misclassification measure. For the kth class, the definition is given by

dk(x,Λ) = −gk(x,Λ) + [
1

N − 1

∑
for all i �=k

(gi(x,Λ))η ]1/η , (4.4)
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where η is a positive number and gk(x,Λ) is the discriminant of observation
x to its known class k. When η approaches ∞, it reduces to

dk(x,Λ) = −gk(x,Λ) + gj(x,Λ), (4.5)

where class j has the largest discriminant value among all the classes other
than class k. Obviously, dk(x,Λ) > 0 implies misclassification, dk(x,Λ) < 0
means correct classification and dk(x,Λ) = 0 suggests that x sits on the
boundary. A loss function is then defined to smooth misclassification mea-
sure. Sigmoid function is often chosen since it is a smooth zero-one mono-
tonic function suitable for gradient descent algorithm. Loss function is given
as:

lk(x,Λ) = f (dk(x,Λ)) =
1

1 + e−ξdk(x,Λ)
(4.6)

where ξ > 0. For a training set X , the empirical loss is defined as:

L(Λ) = E{lk(x,Λ)} =
K∑

k=1

Nk∑
i=1

lk(x(i),Λ) (4.7)

where Nk is the number of samples in class k. Clearly, minimizing the above
empirical loss function will lead to the minimization of the classification
error. As a result, Eq.(4.7) is called the MCE criterion[56, 54, 76]. The class
parameter set Λ can be obtained by minimizing the loss function through
the steepest gradient descent algorithm. This is an iterative algorithm and
the iteration rules are:

Λt+1 = Λt − ε∇L(Λ)|Λ=Λt (4.8)

∇L(Λ) =




∂L/∂λ1
...

∂L/∂λd


 (4.9)

where t denotes t-th iteration, λ1, · · · , λd ∈ Λ are parameters, ε > 0 is
the adaptation constant. For s = 1, 2, · · · , d, the gradient ∇L(Λ) can be
computed as follows:

∂L

∂λs
= ξ

Nk∑
i=1

L(i)(1 − L(i))
∂gk(x(i),Λ)

∂λs
, if λs ∈ class k (4.10)

∂L

∂λs
= −ξ

Nj∑
i=1

L(i)(1 − L(i))
∂gj(x(i),Λ)

∂λs
, if λs ∈ class j (4.11)
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4.2.2 An Alternative MCE Training Algorithm

The purpose of defining misclassification measure is to obtain the largest
discrimination between gk(x,Λ) and gj(x,Λ). Basically, we want gk(x,Λ) to
be as large as possible while gj(x,Λ) to be as small as possible. The control
of the joint behavior of gk(x,Λ) and gj(x,Λ) is essential to the success of
MCE training. The conventional definitions in Eq.(4.4) and (4.5) uses an
additive combination between gk(x,Λ) and gj(x,Λ). Additive combination,
however, are linear combination. Its absolute value has no limitation, which
is easy to make the gradient descent search process divergent. Furthermore,
additive combination is a loose combination and has weak control of the joint
behavior of gk(x,Λ) and gj(x,Λ). To enhance MCE’s ability of controlling
the joint behavior of discriminant functions, we propose an alternative def-
inition of misclassification measure which uses a ratio combination between
gk(x,Λ) and gj(x,Λ). The ratio combination is a non-linear combination
with absolute value limitations and has strong control of the joint behavior
of gk(x,Λ) and gj(x,Λ). The alternative definition also comes from Bayes
decision rule. Since the values of discriminant functions are all positive, we
therefore can rewrite Eq. (4.1) as follows:

x ∈ Class k if
maxfor all i �=k gi(x,Λ)

gk(x,Λ)
< 1 (4.12)

The misclassification measure, dk(x,Λ) is then defined as an approximate of
the L.H.S of Eq. (4.12):

dk(x,Λ) =
[ 1
N−1

∑
for all i �=k gi(x,Λ)η ]1/η

gk(x,Λ)
(4.13)

To the extreme case, i.e. η → ∞, Eq. (4.13) becomes:

dk(x,Λ) =
gj(x,Λ)
gk(x,Λ)

(4.14)

The loss function still uses the Sigmoid function. The class parameters are
optimized using the same adaptation rules as shown in Eq. (4.8) and (4.9).
The gradients of Λ, ∇L(Λ), are calculated as follows:

∂L

∂Λs
= −ξ

Nj∑
i=1

L(i)(1 − L(i))
gj(x(i),Λ)

[gk(x(i),Λ)]2
∂gk(x(i),Λ)

∂Λs
, if Λs ∈ class k

(4.15)
and

∂L

∂Λs
= ξ

Nk∑
i=1

L(i)(1 − L(i))
1

gk(x(i),Λ)
∂gj(x(i),Λ)

∂Λs
, if Λi ∈ class j (4.16)

where Λs ∈ Λ, s = 1, · · · , d.
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4.2.3 A Comparison of Two Forms of MCE training Algo-
rithms

The proposed alternative form of MCE training algorithm differs from the
conventional one in that the misclassification measure is a non-linear com-
bination of discriminant functions. To compare these two forms of MCE
training algorithms, we use a gk(x,Λ)-gj(x,Λ) decision plane to show their
behaviors in the training process. The vertical axis of the decision plane is
gk(x,Λ), which represents the discriminant of a vector x to its desired class
k. The horizontal axis is gj(x,Λ), representing the largest discriminant of x
among all the classes other than k. The decision line is gk(x,Λ) = gj(x,Λ).
Driven by the training algorithms, all the training data move in this plane
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Figure 4.1: Theoretical and practical tracks of a data moving in the decision
plane.

throughout the training process. The behaviors of the training algorithms
are therefore demonstrated by the tracks of data. If the data move towards
the top left of the decision plane, both the absolute and relative differences
between gk(x,Λ) and gj(x,Λ) increase. Therefore the training process is
effective and robust. If, however, the data move towards the top right of the
plane, the relative difference between gk(x,Λ) and gj(x,Λ) does not increase
significantly despite an increase in the absolute difference. Furthermore, the
training can become divergent if not precisely controlled. In this case the
training process is not desirable. Fig. 4.1a shows the theoretical behaviors
of these two forms of MCE in the training process and Fig. 4.1b shows
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their practical behavior. The data used in Fig. 4.1b is randomly selected
from Deterding Vowels database. These two figures show that the proposed
alternative MCE training algorithm drives training data to the top left of
the decision plane both theoretically and practically and thus is robust. The
conventional MCE training algorithm drives training data to the top right
of the decision plane and is therefore not as robust as the alternative one.
The following section will give the experiment results of both the alternative
and the conventional MCE training algorithms on some small databases.

4.3 Classification Experiments on Small Databases

4.3.1 Databases

An evaluation of MCE training algorithms, LDA and PCA is made on several
different databases. The first one is Deterding vowel database, which has
11 vowel classes as shown in the Table 4.1. Each of these 11 vowels are
uttered 6 times by 15 different speakers. This gives a total of 990 vowel
tokens. A central frame of speech signal is excised from each of these 990
vowel tokens. A 10th order linear prediction analysis is carried out for each
frame resulting in 10 log-area parameters. These 10 parameters define the
original 10 dimensional feature space. 528 frames from the eight speakers
are used to train the models and 462 frames from the seven speakers are
used to test the models.

vowel word vowel word vowel word vowel word
i heed O hod I hid C: hoard
E head U hood A had u: who’d
a: hard 3: heard Y hud

Table 4.1: Vowels and words used in Deterding Vowels database.

The second database used is D. German’s GLASS database which con-
tains the measurements of the chemical constitutions in terms of their oxide
content (Na, Mg, Al, Si, K, Ca, Ba and Fe) and the refractive index of
the glass, manufactured through two different processes. The database has
163 instances, of which 87 measurements are made on glass manufactured
through the float process and 76 on glass through non-float process. Each
measurement has 10 numeric-valued attributes.

The third database is BREAST CANCER WISCONSIN(BCW) database
donated by Olvi Mangasarian. This database contains 699 instances and 2
classes (malignant and benign). Each data has 9 integer-valued attributes.

The forth database is IONOSPHERE database. It is from V. Sigillito.
It has 2 classes, 351 instances and 34 numeric attributes. This database is
used for classification of radar returns from the ionosphere.
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The fifth database is the famous IRIS data. It is Fisher’s classical data.
It has 3 classes, 4 numeric attributes and 150 instances. One class is linearly
separable from the other two, but the other two are not linearly separable
from each other.

The last database is WINE data, which is donated by Stefan Aeberhard.
It uses chemical analysis to determine the origin of wines. There are 3
classes, 178 instances and 13 attributes. The first attribute is the class
attribute.

The reason for using these databases is that they have been studied by
a number of researchers, such as H.Brunzell & J.Eriksson [16], B.Tian &
M.R.Azimi-Sadjadi [94] and S.Aeberhard, O. de Vel & D.Coomansso [1].
The experiment results will be comparable by using these databases.

4.3.2 Classifier

In order to evaluate the performance of the independent feature extraction
algorithms (PCA and LDA) and MCE training algorithm, we have used a
minimum distance classifier. Here, a feature vector y is classified to j-th class
if the distance dj(y) is less than the other distances di(y), i = 1, · · · ,K.
We use Mahalanobis distance measure to compute the distance of a feature
vector from a given class. Thus, the distance di(y) is computed as follows:

di(y) = (y − µi)T Σ−1
i (y − µi) (4.17)

where µi is the mean vector of class i and Σi is the covariance matrix. In
our experiments, we use full covariance matrix.

4.3.3 Classification Results

DATABASE MCE(con) MCE(alt) LDA PCA
VOWELS(Train) 85.6 99.1 97.7 97.7
VOWELS(Test) 53.7 55.8 51.3 49.1
GLASS 76.7 83.4 63.2 61.4
BCW 98.4 98.7 92.1 90.5
IONOSPHERE 95.2 98.9 62.4 61.8
IRIS 98.0 99.0 98.0 98.0
WINE 100.0 100.0 100.0 100.0

Table 4.2: Results on different databases (in % ).

Four algorithms, conventional MCE training algorithm, alternative MCE
training algorithm, LDA and PCA, are used in the classification experi-
ments. The four algorithms will do feature extraction first, then the ex-
tracted features by the four algorithms will be used in a classification task
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independently. The classifier used in the classification task is Mahalanobis
distance classifier. For the sake of convenience, we denote the conventional
MCE training algorithm as MCE(con) and the alternative MCE training
algorithm as MCE(alt) in the figures and tables. Table 4.2 shows the re-
sults of employing these four algorithms on the above six databases. The
following observations can be made from these results:

• Both the conventional MCE and the alternative MCE training algo-
rithms generally perform better than LDA and PCA on these databases.
On GLASS data the differences between the recognition rates of two
MCEs and LDA and PCA are between 13.5% ∼ 22.0%. On IONO-
SPHERE data, the differences are even higher, which are between
32.8% ∼ 37.1%.

• The alternative MCE training algorithm performs better than the
conventional MCE training algorithm. On the VOWELS(train), the
recognition rate of alternative MCE is 13.5% higher than conventional
MCE. On other database, the recognition rates of alternative MCE
are usually 1% ∼ 6% higher than those of conventional MCE.

• The performance of LDA is slightly better that that of PCA on some
of the databases, such as VOWELS(test), GLASS, BCW and IONO-
SPHERE. Their general performances are similar on other databases.

Compared to the results given in literature, Brunzell & Eriksson [16]
achieve the correct classification rate of 97.1% on BCW and 82.9% on IONO-
SPHERE by using Mahalanobis Linear Transformation (MLT) classifier.
GLASS data is not a well separated dataset. The highest recognition rate
achieved by Brunzell & Eriksson is 69.3%. WINE and IRIS datasets are
very well separated datasets. Brunzell & Eriksson’s results are very close to
the results shown in Table 4.2.

4.4 Conclusion

The classification results on a number of databases show that MCE training
algorithm, as an integrated framework of feature extractors and classifiers,
has a significant improvement over common feature extraction algorithms,
such as LDA and PCA, when employing the same classifier. The conven-
tional MCE training algorithm uses an additive model in misclassification
measure, which is not suitable for gradient descent method. This chap-
ter proposes an alternative MCE training algorithm, which employs a ratio
model in misclassification measure. The experiment results show that the
alternative MCE training algorithm is more robust and has a better perfor-
mance than the conventional MCE training algorithm.
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4.5 Summary of Chapter

In this chapter, the framework of MCE training algorithm is introduced. An
alternative MCE training algorithm, which uses a ratio model in misclas-
sification measure, is proposed. The alternative MCE training algorithm,
the conventional MCE training algorithm, LDA and PCA are evaluated in
an experiment over six popular databases and the corresponding results are
compared.



Chapter 5

Integrated Feature
Extraction & Classification

5.1 Introduction

Independent feature extraction methods, such as LDA and PCA, extract fea-
tures by transforming parameter vectors from parametric space to feature
space F through a linear transformation T . But they optimize T indepen-
dently. Their optimization criteria are different from the minimum classi-
fication error objective. Independent feature extraction and classification
may cause inconsistency between feature extraction and the classification
stages of a pattern recognizer and consequently, degrade the performance of
classifiers [54]. A direct way to overcome this problem is to conduct feature
extraction and classification jointly with a consistent criterion.

Since MCE training algorithm is derived from discriminant analysis and
used for optimizing classifiers, it provides a suitable integrated framework
for joint feature extraction and classification. In this chapter, we propose
the use of MCE training algorithm for integrated feature extraction and
classification and derive the corresponding formulation.

5.2 MCE Training Algorithms for Integrated Fea-
ture Extraction and Classification Tasks

5.2.1 Integrated Training Procedure

As with other feature extraction methods, MCE training algorithm extracts
features through a linear transformation matrix Tp×m, where p ≥ m,

y = T T x (5.1)

45
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Let the class parameter set in feature space F be Λ̃. The discriminant
functions in F becomes:

gi(y, Λ̃) = gi(T T x, Λ̃) i = 1, · · · ,K (5.2)

Include T in the expanded class parameter set Φ = (T, Λ̃), Φ ∈ F . Thus T
can be optimized synchronously with Λ̃ in the framework of MCE training
algorithm. The integrated training procedure is shown as followings:

• Step1. Initialize T with an identity matrix.

• Step2. Transform parameter vectors into feature space F through the
initial T and initialize Λ̃ in F .

• Step3. Calculate the gradients of each element of T and Λ̃ in F .

• Step4. Update T and Λ̃ by the steepest gradient descent method.

• Step5. Calculate the empirical loss. If the stop criterion is not met,
goto step 3, otherwise stop.

The stop criterion of MCE training algorithm is defined as follows:

∆L(T, Λ̃) = Lt+1(T, Λ̃) − Lt(T, Λ̃) ≤ Threshold (5.3)

where L(T, Λ̃) is the empirical loss and t and t + 1 are iteration steps.

5.2.2 Formulation for Integrated Tasks

In the integrated feature extraction and classification tasks, Λ̃ is initialized
and optimized in the feature space F rather than the original parametric
space. Accordingly, misclassification measure needs to be reformulated over
the new class parameter set Φ = (T, Λ̃) in F . For the conventional MCE
training algorithm, the misclassification measure is redefined as:

dk(y, Λ̃) = dk(T T x, Λ̃) = −gk(T T x, Λ̃) + [
1

N − 1

∑
for all i �=k

(gi(T T x, Λ̃))η ]1/η

(5.4)
When η approaches ∞, the misclassification measure becomes:

dk(y, Λ̃) = dk(T T x, Λ̃) = −gk(T T x, Λ̃) + gj(T T x, Λ̃) (5.5)

For the alternative MCE training algorithm proposed in Chapter 4, the
misclassification measure is redefined as:

dk(y, Λ̃) = dk(T T x, Λ̃) =
[ 1
N−1

∑
for all i �=k gi(T T x, Λ̃)η]1/η

gk(T T x, Λ̃)
(5.6)
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To the extreme case, i.e. η → ∞, Eq. (5.6) becomes:

dk(y, Λ̃) = dk(T T x, Λ̃) =
gj(T T x, Λ̃)
gk(T T x, Λ̃)

(5.7)

The loss of classifying an observation vector x is then calculated via its
transformed vector y:

l(x, Λ̃, T ) = l(dk(y, Λ̃)) = l(dk(T T x, Λ̃)) =
1

1 + e−αd(T T x,Λ̃)
(5.8)

The empirical loss over the whole observation set is given by:

L(Λ̃, T ) = E{l(dk(y, Λ̃))} = E{l(dk(T T x, Λ̃))} (5.9)

Since Eq. (5.9) is a function of T and Λ̃, the elements in T can be optimized
together with the parameter set Λ̃ in the same gradient descent procedure. Λ̃
can be optimized by still using function Eq. (4.8), Eq. (4.10) and Eq. (4.11).
Inherited from these equations, T is optimized by the following adaptation
rule:

Tsq(t + 1) = Tsq(t) − ε
∂L

∂Tsq

∣∣∣∣∣
Tsq=Tsq(t)

(5.10)

where t denotes tth iteration, ε is the adaptation constant or learning rate
and s and q are the row and column indicators of transformation matrix T .
For the conventional MCE training algorithm,

∂L

∂Tsq
= ξ

K∑
k=1

Nk∑
i=1

L(i)(1 − L(i))(
∂gk(T T x(i), Λ̃)

∂Tsq
− ∂gj(T T x(i), Λ̃)

∂Tsq
) (5.11)

and for the alternative MCE training algorithm,

∂L

∂Tsq
= ξ

K∑
k=1

Nk∑
i=1

L(i)(1−L(i))
∂gj(T T x(i),Λ̃)

∂Tsq
gk(T T x(i), Λ̃) − ∂gk(T T x(i),Λ̃)

∂Tsq
gj(T T x(i), Λ̃)

[gk(T T x(i), Λ̃)]2

(5.12)

5.3 Results on Some Small Databases

5.3.1 Databases and Classifiers

An evaluation of using MCE training algorithm for integrated feature ex-
traction and classification is made on two of the six databases used in the
previous chapter. One is Deterding vowel database, and the other is Ger-
man’s GLASS data. The reasons for choosing these two databases for the
evaluation are:
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• Compared to other databases, the DETERDING and GLASS databases
are difficult to classify. The results of dimensionality reduction algo-
rithms on these two databases will provide more information than
those on “easy” databases.

• The other databases are well separated databases. Most classification
algorithms can obtain fairly high correct classification rate on them, for
example, WINE data can be completely classified. Therefore, they are
not suitable for evaluating the performance of dimensionality reduction
algorithms.

Minimum distance classifier based on Mahalanobis distance measure and
full class covariance matrices are used in the MCE training procedure. The
experiment setup is identical to that in the previous chapter so that the
results are comparable. In the experiments, identity matrix is used as the
initial transformation matrix and the class parameters in Λ̃ are initialized
as class statistical means and covariances.

5.3.2 Results and Observations

Both the conventional and the alternative MCE training algorithms are used
in the integrated feature extraction and classification experiments. Their
results are compared to those of LDA and PCA. For the sake of simplicity
and consistency, we still denote the conventional MCE training algorithm
as MCE(con) and the alternative MCE training algorithm as MCE(alt) in
the figures and tables. Fig. 5.1 shows the results when using the Deterding
Vowels database in different dimensional spaces. The following observations
can be made from it:

• During the training process, all of the four algorithms have the best
performance when the training is carried out in the feature space that
has the equal dimensionality to the parametric space. But this is not
the case in testing where the best results are usually obtained when
the dimensionality of the feature space has been reduced nearly by
half.

• During the training process, recognition rates decrease with the re-
duction of dimensionality. In testing, however, no regular pattern of
changes in recognition rates with dimensionality can be observed.

• The performance of the alternative MCE training algorithm is the best
in all four algorithms on training data throughout all the dimensions.

• The alternative MCE training algorithm performs better than the
other three algorithms on most dimensions on testing data.
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Figure 5.1: Comparison of the recognition rates of MCE(con), MCE(alt),
LDA and PCA on Deterding database.

• The conventional MCE training algorithm has the poorest perfor-
mance in high-dimensional feature spaces on training data, while its
performance on testing data are better than those of LDA and PCA.

Table 5.1 shows the results of the four algorithms obtained on GLASS
database. The results of the conventional and the alternative MCE training
algorithms are given in Columns 2 and 3 respectively and the results of LDA
and PCA are in Columns 4 and 5, respectively. Similar observations can be
made from the table, except:

• The best recognition rates of the four algorithms do not appear on the
highest dimension. For example, the best recognition rate of LDA ap-
pears on dimension 2, PCA dimension 6, conventional MCE dimension
6 and alternative MCE dimension 3.

• The performances of both the conventional and the alternative MCE
training algorithms are very encouraging. The correct classification
rates of the conventional MCE training algorithm are on average around
13% higher than those of LDA and around 20% higher than those of
PCA. The alternative MCE training algorithm performs better than
the conventional MCE training algorithm. The correct classification
rates of alternative MCE training algorithm are on average around 4%
higher than those of the conventional MCE training algorithm.
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DIM MCE(con) MCE(alt) LDA PCA
2 77.9 77.9 68.1 48.5
3 75.5 83.4 64.4 49.1
4 79.1 80.4 63.2 60.7
5 77.3 80.4 65.0 63.2
6 79.7 82.8 62.0 63.8
7 76.7 83.4 63.2 61.4

Table 5.1: Results on GLASS data (in % ).

5.4 Conclusion and Findings

Following conclusion can be drawn from the above results:

• The results show that the framework of MCE training algorithm is
suitable for integrated feature and classification tasks.

• Both the conventional and the alternative MCE training algorithms
perform better than LDA and PCA, which are independent feature
extraction algorithms, in the experiments.

• The alternative MCE training algorithm has a better performance than
the conventional MCE training algorithm.

• Compared to PCA, LDA has a slightly better performance than PCA.

• The results of the experiments show that integrated feature extraction
and classification algorithms has significant advantage over indepen-
dent feature extraction algorithms.

The results, however, present some facts that conflict the common un-
derstanding of feature dimensionality reduction. These facts are:

• The classification results on the testing data of Deterding Vowels
database do not change as smoothly as those on the training data
in different dimensions. For example, the correct classification rate of
the alternative MCE training algorithm has a sharp fall on dimension
3. The recognition rates of both the conventional MCE training algo-
rithm and LDA has a deep “valley” on dimension 4. Similar situations
appear on the results on GLASS database as well.

• The highest recognition rates on testing data do not always happen
on the highest dimensions as those training data. For example, the
alternative MCE training algorithm has its highest recognition rate
on dimension 6 on Deterding Vowels database. LDA has its highest
recognition rate in dimension 2 on GLASS database.
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• Similarly, the lowest recognition rates on testing data do not always
happen on the lowest dimensions. For example, the lowest recognition
rate of the alternative MCE training algorithm appears on dimension
10 on Deterding Vowels database, which is the dimensionality of the
observation space.

Similar facts can also be found in Brunzell and Eriksson’s work [16]. Nor-
mally, the recognition rate on testing data is an index of the generalization
of the class models obtained from training process. These facts show that
feature dimensionality reduction does not necessarily lead to a degradation
of the generalization of class models. However, feature dimensionality re-
duction will definitely lead to the loss of class information. This implies that
some information carried by features is useless for discriminating classes and
the loss of it will not affect the generalization of class models. From dis-
crimination point of view, such information will exist in more than one class
and will cause confusion between classes. How to parameterize this confus-
ing information and remove it from features will be a research problem for
discriminative learning.

5.5 Summary of Chapter

In this chapter, the use of MCE training algorithm for integrated feature
extraction and classification tasks is proposed. The corresponding formu-
lation of the algorithm is derived. An experiment is carried out on two
databases, Deterding Vowels database and GLASS database. In the exper-
iment, the conventional and the alternative MCE training algorithms and
other two independent feature extraction algorithms — LDA and PCA are
employed. The performances of both the conventional and the alternative
MCE training algorithms are compared to those of LDA and PCA.



Chapter 6

Generalized MCE Training
Algorithm

6.1 Introduction

One of the major concerns with MCE training is the generalization of the
models trained. This is because the gradient descent method used in MCE
training algorithm for model optimization does not guarantee the global
minimum value. Fig. 6.1 gives an example of how gradient descent method
searches for the optimal value. The optimization procedure of gradient de-
scent method indicates that the optimality of MCE training algorithm is
largely dependent on the choice of the starting point, i.e. the initialization
of the parameters.
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Figure 6.1: Effects of the choices of the starting point on MCE training.
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A popular method of initializing the parameters of MCE training algo-
rithm is given by Paliwal, Bacchiani and Sagisaka in [76]. In this method,
the transformation matrix is initialized by an identity matrix. The class
parameters are initialized by their maximum likelihood estimates (i.e. by
their conditioned means and/or variances). In feature dimensionality reduc-
tion tasks, transformation matrix is still initialized by an identity matrix
but the last (p − m) columns will be discarded, where m < p, p is the
dimensionality of observation space and m is the dimensionality of feature
space. For convenience, this method is denoted as the normal initialization
method. This method in fact is equivalent to spanning the new reduced-
dimensional feature space by the first m dimensions of the parametric space.
The other m − p dimensions will be removed. However, in many cases, this
is a convenient way of initialization rather than an effective way because
the classification criterion has not been considered in the initialization. Fig-
ure 6.2 shows an example of the ineffectiveness of this type of initialization
method. In this example, MCE training algorithm is applied to a dimension-
ality reduction task. The dimensionalities of feature spaces used are from 3
to 8. Two training processes with different initial transformation matrix are
used in the example. The first one initializes the transformation matrix by
the above method. The second one initializes the transformation matrix still
by an identity matrix but the columns kept in the transformation matrix
are selected manually. The sequential numbers of columns selected for the
initial transformation matrix are listed as follows:

• dimension 3 — Column 0, 1 and 4

• dimension 4 — Column 0, 1, 3 and 4

• dimension 5 — Column 1, 2, 3, 5 and 8

• dimension 6 — Column 0, 1, 2, 3, 4, and 7

• dimension 7 — Column 0, 1, 2, 3, 4, 5 and 7

• dimension 8 — Column 0, 1, 2, 3, 4, 5, 7 and 8

Other parameters, such as the adaptation coefficient, are identical in the
two training processes. The database used is Deterding Vowels database.
The results are obtained on the testing dataset. The six small figures ( from
a) to f)) in Figure 6.2 record the whole training process on each dimension
(dimension 3 to dimension 8), respectively. The horizontal axis of each figure
represents the number of iteration. The maximum number of iteration is
3000. The vertical axis is the recognition rate. In this figure, the results
obtained by the first training process are represented by the “-◦-” curves.
The results obtained by the second training process are represented by the
“-∆-” curves.
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Figure 6.2: Results of different initialization of the transformation matrix
on MCE training process. (Deterding database : testing set) ◦ – Initialized
by the normal initialization method given in [76]; ∆ – Manually initialized.
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The results show that the first MCE training process, in which the trans-
formation matrix is initialized by the normal initialization method given in
[76] is not as effective as the second one, i.e. manually initialized MCE
training process. This implies that the initialization of the transformation
matrix can affect MCE training process significantly. A properly initial-
ized transformation matrix will help to increase the generalization ability of
the models optimized by MCE training process. However, no work on the
initialization problem of MCE training algorithm has been introduced in
the literature so far. In this chapter, a generalized MCE (GMCE) training
algorithm is proposed to solve this problem.

6.2 Generalized MCE (GMCE) Training Algorithm

MCE training algorithm provides a framework that enables transformation
T and class parameters Λ to be optimized synchronously. However, it em-
ploys gradient descent method for optimization. This makes MCE training
process a type of thorough searching process for local minimum. But global
minimum is not guaranteed by this process. The results in the previous sec-
tion show that the optimality of MCE training process largely depends on
the initialization of T . A generalized MCE training algorithm is proposed in
this section to mend the initialization problem of MCE training algorithm.

In GMCE training algorithm, the training process is regarded as two
sequential training procedures: the first one is an initialization procedure,
which will conduct a general search for the initial transformation matrix.
The second procedure will conduct normal MCE training. Figure 6.3 com-
pares GMCE training process with normal MCE training process.

�
Input Randomly Initialize

Transformation Matrix
Conducting

MCE training
�

Output

Normal MCE training process

�
Input

General Searching
process for the
starting point

�
T

Thorough
MCE training

process
�

Output

Generalized MCE training process

Figure 6.3: Comparison between normal MCE training process and gener-
alized MCE training process.

The initialization procedure will provide the next MCE training proce-
dure a suitable initial transformation matrix. Since this procedure is in-
dependent of the second procedure, any feature extraction criteria can be
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used in this procedure. In the following section, three different criteria, F -
ratio, linear discriminant and principal component criterion, are employed
and their corresponding performances in GMCE training are evaluated.

6.3 Criteria for Initialization Procedure

The best criterion for the initialization procedure of GMCE training al-
gorithm is unknown. In this section, we employed three types of feature
extraction criteria in this procedure. The three criteria are F -ratio, lin-
ear discriminant and principle component criteria. The evaluation of each
criterion is given correspondingly.

6.3.1 F -Ratio Criterion

Since the methods of initializing transformation matrix introduced in Section
6.1 are equivalent to selecting features from the original observation vectors,
it is natural to regard the initialization procedure as a feature selection
process. Thus feature selection methods can be applied to the initial process.
As introduced in Chapter 2, F -ratio is a very common feature selection
method. F -ratio selects features by finding the largest ratio of between-class
SB and within-class covariance SW .

F−ratio =
SB

SW
(6.1)

The features that can keep this ratio largest will be selected until required
number is selected. The other features will be discarded from the new fea-
ture vectors. The transformation matrix initialized by F -ratio is a reduced-
rank identity matrix. Figure 6.4 shows the results after employing F -ratio
method for initialization of the transformation matrix. The database is still
Deterding Vowels data, so that the results are comparable to the results
shown in Figure 6.2.

6.3.2 Linear Discriminant Criterion

Linear discriminant criterion is defined as the linear functions T T x for which
the criterion function:

J(T ) =
T T SBT

T T SW T
(6.2)

is maximum. It can be shown that the solution of this function is that the
columns of T are eigenvectors of matrix S−1

W SB .
The transformation matrix initialized by linear discriminant criterion,

T0 is a full rank matrix, of which the columns are eigenvectors of S−1
W SB

and ordered by the value of eigenvalues. In feature dimensionality reduction
tasks, the rank of T0 is reduced by discarding the trailing eigenvectors.
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Figure 6.4: Results obtained by employing F-ratio method to initialize the
transformation matrix on MCE training. (Deterding database : testing set)
◦ – Normal initialization method given in [76]; ∆ – F-ratio initialization.
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Figure 6.5 shows the recognition results of LDA, the alternative MCE
training algorithm with the normal initialization method and the GMCE
training algorithm with linear discriminant initialization criterion. The
database used is Deterding Vowels database and the classifier is Mahalanobis
distance classifier. In the figure, the GMCE training algorithm initialized
with linear discriminant criterion is denoted as GMCE+LD. The alterna-
tive MCE training algorithm initialized the normal initialization method is
denoted as MCE(alt).
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Figure 6.5: Comparison of the recognition rates of MCE(alt), GMCE+LD,
LDA on Deterding Vowels database.

6.3.3 Principal Component Criterion

Principal component criterion searches for the directions onto which the
global covariance matrix has the largest variate. Therefore the transfor-
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mation matrix initialized by principal component criterion consists of the m
leading eigenvectors of the global covariance matrix, where m is the required
dimensionality of feature space.

Figure 6.6 shows the recognition results of PCA, the alternative MCE
training algorithm with the normal initialization and the GMCE training
algorithm with linear principal component criterion. The database used is
Deterding Vowels database and the classifier is Mahalanobis distance clas-
sifier. In the figure, the GMCE training algorithm initialized with principal
component criterion is denoted as GMCE+PC. The alternative MCE train-
ing algorithm initialized by the normal initialization method is denoted as
MCE(alt).
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Figure 6.6: Comparison of the recognition rates of MCE(alt), GMCE+PC,
PCA on Deterding Vowels database.
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6.3.4 Evaluation on the Criteria

Figure 6.4 shows that the MCE training results obtained by F-ratio initial-
ization criterion are better that the normal MCE training process only on
dimension 3 and dimension 8. But its performances in other feature spaces
(from dimension 4 to dimension 7) are poorer than those of normal MCE
training process. This implies that F -ratio criterion is not stable in all di-
mensions and thus not suitable for the initialization procedure of GMCE
training.

The results shown in Figure 6.5 are very encouraging. The performance
of the GMCE training algorithm with linear discriminant initialization crite-
rion is better than that of normal MCE training algorithm on all dimensions.
The improvement of the performance of the GMCE training algorithm is
consistent over dimensions.

Figure 6.6 shows that the performance of GMCE training with principal
component initialization criterion is nearly the same as that of normal MCE
training algorithm.

To further evaluate and compare the performances of the linear discrim-
inant and principal component criteria, the two GMCE training algorithms
are employed on the GLASS database. The corresponding recognition re-
sults are shown in Table 6.1.

DIM MCE GMCE+LD GMCE+PC
2 77.9 81.0 82.8
3 83.4 82.2 84.0
4 80.4 82.8 83.4
5 80.4 84.7 82.8
6 82.8 84.1 82.2
7 83.4 82.8 82.8

Table 6.1: Results on GLASS data (in %).

Observations from the results on the two databases can be summarized
as follows:

• Performances of GMCE training algorithm on both Deterding and
GLASS databases are better than those of normal MCE training algo-
rithm when linear discriminant criterion is used for the initialization
of transformation matrix.

• The performance of GMCE training algorithm on GLASS database is
better than that of normal MCE training algorithm when principal
component criterion is used for the initialization of transformation
matrix, while on the Deterding Vowels database, the two performances
are nearly the same.
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• A dramatic pattern can be observed from the results on Deterding
and GLASS databases: the best performances of GMCE training al-
gorithms on testing data do not appear on high dimensions, but on
the dimensions that are around half of the full dimensionality.

6.4 Conclusion and Discussions

The results of GMCE training algorithms given in section 6.3 clearly show
that a good initial estimation of the transformation matrix can improve
the performance of MCE training algorithm. The proposed GMCE training
algorithm is in fact a combination of general feature extraction algorithms
and normal MCE training algorithms. The results on Deterding Vowels and
GLASS databases show that the criterion for the initialization procedure
is important to the success of GMCE training. The results also show that
the linear discriminant criterion is better than the principal component and
F -ratio criteria.

A clear pattern that can be observed from the results of both GMCE and
MCE training algorithms on the testing set is that the best results on the
testing data mostly appear on the dimensions that are around 50% ∼ 70%
of the original dimensionality. When the dimension is either lower or higher
than this region, the performances of the algorithms start degrading. Similar
patterns can also be observed from the performances of LDA and PCA. But
they are not as clear as from the performances of GMCE and MCE training
algorithms.

This pattern is very similar to the facts found in Chapter 5 and Brun-
zell and Eriksson’s work [16]. It seems against our common understanding
of the feature dimensionality reduction process. Our common understand-
ing is that the performance of the classification algorithm is degraded with
the decrease of the dimensionality because of the information loss with the
reduction of features. This common understanding is true in the model
training process because classes and their observations are known. Thus the
information that discriminates classes is known so that feature dimensional-
ity reduction algorithms can remove features in the order of the amount of
discriminative information the features carry. In the testing process, how-
ever, the situation is different. The classes and discriminative information
carried by features is unknown. Classification is largely dependent on the
generalization of the class models obtained.

The results given in the previous section shows that feature dimension-
ality reduction does not necessarily lead to a degradation of performances of
pattern classification systems. This implies that the generalization of class
models is not linearly related to the dimensionality of features and it is pos-
sible that class models gain the largest generalization in a certain region of
dimensionality. Thus the generalization of class models largely depends on
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the types of class information and their amount that are kept in the models.
Generally speaking, the information included in features can be grouped into
two types — one is discriminative information that discriminates the classes,
and the other is confusing information that represents the similarity among
classes. The generalization of class models relies on not only the amount
of discriminative information but also the amount of confusing information
kept in class models. The more the discriminative information and the less
the confusing information kept in class models, the better the generaliza-
tion of them. However, the main difficulty in linear feature extraction and
dimensionality reduction is how to define or quantify the discriminative and
confusing information properly. The discussion of this problem is beyond
the scope of this thesis. We will leave it for our future research.

6.5 Summary of Chapter

This chapter first gives an example of how initial transformation matrix
influences the MCE training process. Then a generalized MCE (GMCE)
training algorithm is proposed. GMCE has a general initialization proce-
dure searching for a suitable initial transformation matrix for the following
MCE training procedure. F -ratio criterion, linear discriminant criterion and
principal component criterion are used for the general initialization proce-
dure. The results show that the linear discriminant criterion is more suitable
for the initialization procedure.



Chapter 7

Support Vector Machine

7.1 Introduction

The Support Vector (SV) algorithm is a nonlinear generalization of the
Generalized Portrait algorithm developed in Russia in 1960s by Vapnik
and Lerner [96] and Vapnik and Chervonenkis [97]. SV algorithm is firmly
grounded in the framework of statistical learning theory — VC theory, which
improves the generalization ability of learning machines to unseen data [89].
The Support Vector Machine (SVM) was developed at AT& T Bell Lab-
oratories [14, 23, 85, 99, 101]. Due to this industrial background, SVM
had a sound character towards real-world applications. Initial work was fo-
cused on optical character recognition. Within a short period of time, SVM
classifiers became competitive with the best available systems for optical
character recognition and object recognition tasks [86, 87, 89]. SVM has
now evolved into an active area of research.

SVM is a non-linear classification algorithm. It is a type of kernel
method. Different from linear classification method, kernel method maps the
original parameter vectors into a higher dimensional feature space through a
non-linear kernel functions. The non-linear decision boundaries in paramet-
ric space may become non-linear in the feature space. One example, given
by Burges [17], is that non-linear class distribution boundaries in parametric
space can become linear in feature space, as shown in Figure 7.1. Decision
planes are then pursuit in feature space. The projection of the linear deci-
sion planes in the parametric space is a non-linear decision boundaries. Thus
SVM has advantages of handling the classes with complex distributions.

This chapter will discuss the formulation of SVM and design of SVM
classifiers and evaluate the the performances of SVM classifiers in experi-
ments based on Deterding Vowel database.
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Figure 7.1: Unseparable case for conventional feature extraction methods
but separable for SVM.

7.2 Formulation of SVM

7.2.1 Risk Minimization

Suppose we have a given set of training data X = {(x1, y1), · · · , (xN , yN )} ⊂
Rp × R, where N is the total number of training data, R and Rp repre-
sent the real number space and p-dimensional real space, xi(i = 1, . . . , N)
is observation vector and yi(i = 1, . . . , N) is the corresponding target of
xi. Assume that these training data have been drawn independently and
identically distributed (iid) from some probability distribution p(x, y). The
goal of training is then to find a function f that minimizes the following risk
function [98]:

R[f ] =
∫

c(x, y, f(x))dp(x, y) (7.1)

where c(x, y, f(x)) denotes a cost function determining the penalty on esti-
mation errors. In Eq. (7.1), p(x, y) is unknown. A possible approximation
of the risk would be to replace the integration with the empirical estimate.
The empirical risk is given as follows:

Remp[f ] =
1
N

N∑
i=1

c(xi, yi, f(xi)) (7.2)

The empirical risk function has the advantage of being easy to compute and
a uniformly consistent hypothesis of classes with bounded complexity [98].
However, direct minimization of Remp[f ] may lead to heavy overfitting, that
is, poor generalization in the case of a very powerful class of models [90].
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Hence, a capacity control term T (f) should be added to the empirical risk
function, which leads to the regularized risk function:

Rreg[f ] = Remp[f ] + λT (f) (7.3)

where λ is the regularization constant to control the trade-off between model
complexity and approximation in order to ensure a good generalization per-
formance [12, 38, 90].

7.2.2 Cost function

The objective of SVM training is to find a function f , such that f(x) is as
close to y as possible. Suppose the estimation error is ξ, then ξ = y − f(x).
Cost function is chosen to determine how we penalize the estimate errors.
There are mainly two considerations when choosing cost functions. One is
that the cost function should not lead to difficult optimization problem nor
be computationally expensive. The other consideration is that the cost func-
tion should keep the optimization problems convex programming problems.

The standard setting of a cost function in SVM is the so-called Vapnik’s
ε-insensitive cost function, which inherited from [99]. Given an estimate
f(xi) and a measurement yi, the estimation error ξ is penalized by |ξ|ε =
|yi − f(xi)|ε with:

c(ξ) =

{
0 for |ξ| < ε
|ξ| − ε otherwise

(7.4)

where ε ≥ 0. The advantage of this cost function is that it leads to sparse
decompositions and quadratic programming problems[91]. The restriction
to c(ξ) = |ξ|ε, however, sometimes is too strong and can not lead to a
good minimization of R[f ] [90]. Under the assumption that the samples
were generated by a functional dependency f(xi) and additive noise ξi with
density p(ξ), the cost function can be chosen in a maximum likelihood sense
as:

c(ξ) = −log(p(ξ)) (7.5)

This would be desirable to extend the class of different cost functions for
SVM regression. Table 7.1 gives some common density models and the
corresponding cost function derived from Eq.(7.4).

7.2.3 Constructing SVM

Consider a two-class case. Suppose the two classes are ω1 and ω2 and we
have a given set of training data X = {x1, · · · , xN} ⊂ Rp. Training data are
labeled by the following rule:

yi =

{
+1 if xi ∈ ω1

−1 if xi ∈ ω2
(7.6)
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Name Cost Function Density Model
ε-insensitive c(ξ) = |ξ|ε p(ξ) = 1

2(1+ε)exp(−|ξ|ε)
Laplacian c(ξ) = |ξ| p(ξ) = 1

2exp(−|ξ|)
Gaussian c(ξ) = ξ2/2 p(ξ) = 1√

2π
exp(−ξ2/2)

Polynomial c(ξ) = 1
p |ξ|p p(ξ) = p

2Γ(1/p)exp(−|ξ|p)

Table 7.1: Common density models and corresponding cost functions.

The basic idea of SVM estimation is to project the input observation vectors
non-linearly into a high dimensional feature space F and then compute a
linear function in F . The functions take the form:

f(x) = (w · Φ(x)) + b (7.7)

with
Φ : Rp → F and w ∈ F (7.8)

where (·) denotes the dot product, w = {w1, · · · , wp} are weights to each
Φ(x) and b is a linear constant. Ideally, all the data in these two classes
satisfy the following constraints:

(w · Φ(xi)) + b ≥ +1 for yi = +1
(w · Φ(xi)) + b ≤ −1 for yi = −1

(7.9)

These two inequations can be combined into one inequality:

yi(w · Φ(xi)) + b − 1 ≥ 0 ∀i (7.10)

Consider the points Φ(xi) in F for which the equality in (7.9) holds. These
points lie on two hyperplanes H1 : (w · Φ(xi)) + b = +1 and H2 : (w ·
Φ(xi)) + b = −1. These two hyperplanes are parallel and no training points
fall between them. The margin between the two planes is 2

||w|| . Therefore we
can find a pair of hyperplanes with maximum margin by minimizing ||w||2
subject to (7.10)[17]. This problem can be written as a convex optimization
problem:

minimize 1
2 ||w||2

subject to yi(w · Φ(xi)) + b − 1 ≥ 0 ∀i
(7.11)

where the first function is called primal objective function in convex opti-
mization problems and the second function is the corresponding constraints.
Naturally the capacity control term T (f) in Eq.(7.3) would be the primal
function:

T (f) =
1
2
||w||2 (7.12)

Consequently the regularized risk function becomes:

Rreg[f ] =
1
N

N∑
i=1

c(yi − f(xi)) +
λ

2
||w||2 (7.13)
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7.2.4 Convex Programming Problem

First consider Eq. (7.11). It can be solved by constructing a Lagrange func-
tion from both the primal function and the corresponding constraints, by
introducing dual variables. It has been proved that the Lagrange func-
tion has a saddle point at the optimal with respect to the primal and
dual variables[89, 102]. Hence we introduce positive Lagrange multipliers
αi, i = 1, · · · , N , one for each constraints in Eq.(7.11). The Lagrangian is
given by:

LP =
1
2
||w||2 −

N∑
i=1

αiyi(xi · w + b) +
N∑

i=1

αi (7.14)

LP must be minimized with respect to w and b, which requires the gradient
of LP to vanish with respect to w and b. Hence the condition:

∂LP

∂ws
= ws −

N∑
i=1

αiyixis = 0 s = 1, · · · , p (7.15)

∂LP

∂b
= −

N∑
i=1

αiyi = 0 (7.16)

where p is the dimension of space F . Combine these conditions and other
constraints on primal functions and Lagrange multipliers, we obtain the
Karush−Kuhn−Tucker (KKT) conditions. For the primal problems, the
KKT conditions are stated as follows:

∂LP

∂ws
= ws −

N∑
i=1

αiyixis = 0 s = 1, · · · , p (7.17)

∂LP

∂b
= −

N∑
i=1

αiyi = 0 (7.18)

yi(w · Φ(xi)) + b − 1 ≥ 0 ∀i (7.19)

αi ≥ 0 ∀i (7.20)

αi(yi(w · Φ(xi)) + b − 1) = 0 ∀i (7.21)

where w, b and α are the variables to be solved. The KKT conditions are
necessary and sufficient for solving problems for SVMs since they are con-
vex and the constraints are always linear[30]. There are several approaches
to finding the solution of Eq.(7.17) ∼ (7.21). Among them, the primal-
dual path following method is a popular and successful method. It will be
discussed in the next section.

In most cases, the primal objective function in Eq. (7.11) is sufficient.
However in some cases we allow for some estimation errors. Thus we achieve
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the regularized risk function expressed in Eq.(7.13) by introducing the pe-
nalized estimation errors into the primal function. Denoting the estimation
error as ξ = yi − f(xi), we can construct the convex optimization problem
from Eq.(7.13):

minimize 1
2 ||w||2 + 1

N

∑N
i=1 c(ξ)

subject to yi(w · Φ(xi)) + b − 1 ≥ 0 ∀i

(7.22)

Then the Lagrange function is:

LP =
1
2
||w||2 +

1
N

N∑
i=1

c(ξ) −
N∑

i=1

αiyi(xi · w + b) +
N∑

i=1

αi (7.23)

KKT conditions can be constructed consequently by the same process.

7.2.5 Dual Function

From KKT condition (7.17) and (7.18) we obtain:

w =
N∑

i=1

αiyiΦ(xi) (7.24)

and
N∑

i=1

αiyi = 0 (7.25)

Therefore,

f(x) =
N∑

i=1

αiyi(Φ(xi) · Φ(x)) + b =
N∑

i=1

αiyik(xi, x) + b (7.26)

where k(xi, x) is a kernel function and defined as a dot product in the feature
space:

kij = k(xi, xj) = (Φ(xi) · Φ(xj)) (7.27)

Substitute Eq.(7.24) and Eq.(7.25) into Eq.(7.14). This leads to the maxi-
mization of the dual function LD:

LD = −1
2

N∑
i=1

N∑
j=1

αiαjyiyjkij +
N∑

i=1

αi (7.28)

Writing the dual function incorporating the constraints, we obtain the dual
optimization problem:

maximize −1
2

∑N
i=1

∑N
j=1 αiαjyiyjkij +

∑N
i=1 αi

subject to
∑N

i=1 αiyi = 0
αi ≥ 0 ∀i

(7.29)
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Both the primal problem LP and the dual problem LD are constructed from
the same objective function but with different constraints. The solution
can be found by either minimizing LP or maximizing LD. Furthermore the
solution by minimizing LP with respect to w and b is bounded to the solution
by maximizing LD with respect to α. Since there is a Lagrange multiplier
αi for every feature vector, in the solution, the feature vectors with αi > 0
are called “support vectors” and lie on either hyperplane H1 or H2. These
support vectors are critical to the SVM because they are the closest training
vectors to the decision boundary(for the separable case). If all other training
vectors were removed, the same separating hyperplane would be found [17].

7.3 Primal-Dual Path Following Method for Op-
timizing SVM

7.3.1 Primal-Dual Formulation

In order to be consistent with standard notation for quadratic optimiza-
tion problem, Eq.(7.29) can be rewritten in minimization form and matrix
notation as:

minimize 1
2αT Dα − α · 1

subject to α · y = 0
α ≥ 0
α ≤ C

(7.30)

where 1 = [1, 1, · · · , 1]T , α = [α1, · · · , αN ]T , y = [y1, · · · , yN ]T , C is the
upper bound of α and D is a N ×N symmetric matrix with elements Dij =
yiyjkij . Since matrix D is positive semi-definite and the constraints are
linear, the KKT conditions are necessary and sufficient for optimality [72,
73, 102]. Before setting up KKT conditions, we first add slack variables to
remove all inequalities from Eq.(7.30). This yields:

minimize 1
2αT Dα − α · 1

subject to α · y = 0
α − g = 0
α + t = C

(7.31)
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The KKT conditions are therefore:

∇(1
2αT Dα − α · 1) + µy − Π + Υ = 0

Π(α − g) = 0
Υ(α + t − C) = 0
Π ≥ 0
Υ ≥ 0
α · y = 0
α − g = 0
α + t = C

(7.32)

Then the Wolfe dual of Eq.(7.31) is:

maximize −1
2αT Dα + CT Υ

subject to ∇(1
2αT Dα − α · 1) + µy − Π + Υ = 0

α · y = 0
α − g = 0
α + t = C

(7.33)

Moreover, since the set of primal and dual variables that is both feasible
and satisfies the KKT conditions is the optimal solution[89, 102], we have:
constraint × dual variable = 0, which is:

giΠi = 0 for all i ∈ [1, . . . , n]
tiΥi = 0 for all i ∈ [1, . . . , n]

(7.34)

An optimal solution to be found is that both the primal variable α and the
dual variable µ satisfy the feasible conditions of Eq. (7.31) and Eq. (7.33)
and KKT conditions of Eq. (7.34).

7.3.2 Iteration Strategy — Path-Following Method

We will use path-following method to solve Eq. (7.31) and Eq. (7.33) and
KKT conditions of Eq. (7.34). In this method, we will not try to satisfy the
KKT conditions as it is, but to solve the relaxed conditions for some δ > 0
and then decrease δ while iterating, that is:

giΠi = δ for all i ∈ [1, . . . , n]
tiΥi = δ for all i ∈ [1, . . . , n]

(7.35)

This can be done by linearizing the above equations and solving them by a
two-step predictor-corrector approach until the duality gap is small enough.
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first we rewrite the primal and dual formulation and KKT conditions as:

(α + ∆α)y = 0
α + ∆α − g − ∆g = 0
α + ∆α + t + ∆t = C
1
2∇(αT Dα) + 1

2∇2(αT Dα)∆α + (µ + ∆µ)y − Π − ∆Π + Υ + ∆Υ = 1
(g + ∆g)(Π + ∆Π) = δ
(t + ∆t)(Υ + ∆Υ) = δ

(7.36)
Then we solve Eq. (7.36) for the variables in ∆. We obtain:

y∆α = αy
∆α − ∆g = g − α
∆α + ∆t = C − α − t
1
2∇2(αT Dα)∆α + y∆µ − ∆Π + ∆Υ = 1 − 1

2∇(αT Dα) − yµ + Π − Υ
g−1Π∆g + ∆Π = δg−1 − Π − g−1∆g∆Π
t−1Υ∆t + ∆Υ = δt−1 − Υ − t−1∆t∆Υ

(7.37)
where g−1 = [ 1

g1
, · · · , 1

gn
], t−1 = [ 1

t1
, · · · , 1

tn
], g−1Π = [Π1

g1
, · · · , Πn

gn
] and

t−1Υ = [Υ1
t1

, · · · , Υn
tn

]. Before going further, we define:

qΠ := δg−1 − Π − g−1∆g∆Π
qΥ := δt−1 − Υ − t−1∆t∆Υ

(7.38)

Solving Eq. (7.38) for ∆g,∆t,∆Π,∆Υ, we obtain:

∆g = gΠ−1(qΠ − ∆Π)
∆t = tΥ−1(qΥ − ∆Υ)
∆Π = g−1Π(g − α − gΠ−1qΠ − ∆α)
∆Υ = t−1Υ(∆α − C + α + t + tΥ−1qΥ)

(7.39)

Again define:
w = 1 − 1

2∇(αT Dα) − yµ + Π − Υ
ν = g−1Π(g − α − gΠ−1qΠ)
τ = t−1Υ(C − α − t − tΥ−1qΥ)

(7.40)

Then a reducedKKT − system can be formulated as:[
−(1

2∇2(αT Dα) + g−1Π + t−1Υ) y
y 0

] [
∆α
∆µ

]
=

[
w − ν − τ

αy

]
(7.41)

In the predictor step Eq. (7.39) and (7.41) are solved with δ = 0 and all
∆-terms on the R.H.S. are set to 0. In corrector step the values of ∆-terms
are substituted back and solve Eq. (7.39) and (7.41) again. The values
of these ∆-terms obtained by this iteration process are used to update the
corresponding values of α, µ, g, t,Π and Υ. The above is a simplified SVM
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system, which has been used by a number of researchers [18, 32, 37, 72,
73, 74]. For a more complex SVM system, the conditions in Eq. (7.31) are
relaxed in two aspects: 1) the linear function of α does not have to pass the
origin and 2) the lower bound of α does not have to be restricted to 0. [89]
and [102] have a detailed discussion on such a SVM system.

7.4 Results on Small Databases

7.4.1 Multi-classes Classes Classifier

SVM is a two-class based training algorithm. It is not applicable for multi-
class cases. Therefore we have to expand the SVM classifier to multi-class
classifiers. So far the best method of extending the two-class classifiers
to multi-class problems is not clear [18]. Scholkopf and etc.[85] generally
constructed a “one vs. all” classifier for each class. Clarkson and Moreno
[18] proposed a construction of a “one vs. one” classifier for each pair of
classes. The two types of classifiers are shown in Figure 7.2.
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Figure 7.2: Two types of multi-class SVM classifier.

These two types of classifiers have similar structures. Both of them have
a feature extractor for each class. When an observation vector x enters the
system, each extractor will generate an output f (i)(x), i = 1, · · · ,K. The
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classifier then classifies x by the following classification criterion:

x ∈ Class i if f (i)(x) = max
for all j∈K

f (j)(x) (7.42)

The difference between “one vs. all” classifier and “one vs. one” classifier is
that the latter has a more complicated sub-structure. The extractor of each
class in the “one vs. one” classifier consists of K − 1 sub-extractors, which
combine the target class and all other classes in pairs. Each sub-extractor
will generate a score f (i,j)(x) for an input vector. These scores are combined
to generate the final output f (i)(x) for classification. So far the best way
to combine f (i,j)(x) is not clear. A straight-forward way is to calculate
f (i)(x) by f (i)(x) =

∑
for all j �=i f

(i,j)(x). However it is clear that such an
additive combination is easy to bring undesired information into f (i)(x). In
this thesis, a statistical normalization method is used to calculate f (i)(x).
In this method, we define f (i)(x) as the normalized mean of f (i,j)(x), which
is:

f (i)(x) =
µi

σi
(7.43)

where µi is the mean of f (i,j)(x), σi is the corresponding standard deviation.

7.4.2 Classification Results

Our classification experiments focus on the vowel classification tasks. De-
terding Vowels database is used for classification. So far the kernel function
k(xi, xj) in Eq. (7.27) has not been defined. Rewrite Eq. (7.27) as:

k(xi, xj) = Φ(xi) · Φ(xj) (7.44)

where Φ is a map, which can be either linear or non-linear. In the linear
case, a simple choice would be:

Φ : Rn �→ H Φ(x) = x
k(x, y) = (x · y)

(7.45)

Then the kernel function would be: k(xi, xj) = xi ·xj . In the non-linear case,
the map Φ : Rn �→ H is chosen to map the feature points to a higher di-
mensional space H. However explicitly computing the non-linear map Φ(x)
is very difficult and computationally expensive. Since Φ(x) only appears
in the feature space Rn while the computation is carried out in the higher
dimensional space H and deals with the data in the form of (Φ(xi) ·Φ(xj)),
we do not have to calculate Φ(x) explicitly. Instead, we compute the kernel
function k(xi, xj). There are many different definitions on the kernel func-
tion. Two popular forms are polynomial kernel and Gaussian radial basis
function (RBF). Their definitions are:

Polynomial : k(x, y) = (x · y + 1)p

RBF : k(x, y) = e|x−y|2/2δ2 (7.46)



CHAPTER 7. SUPPORT VECTOR MACHINE 74

Kernel Classifier Classification Rate Classification Rate
(Training Data) (Testing Data)

Linear one vs. all 49.43% 40.91%
Linear one vs. one 79.73% 53.03%

Polynomial one vs. all 59.85% 42.42%
Polynomial one vs. one 90.53% 55.63%

RBF one vs. all 78.98% 51.95%
RBF one vs. one 90.34% 58.01%

Table 7.2: Deterding Vowels database classification results.

Table 7.2 shows the classification results of using SVM in the Deterding
Vowels database. In this classification task, linear, polynomial and RBF
kernel functions are used. The degree of polynomial kernel function is 3.
The construction of multi-class classifier uses both “one vs. all” and “one
vs. one” classifiers. Some observations can be made from the results. These
observations are:

• Linear kernel function does not work well at all in classification tasks.
The corresponding performance is very poor.

• The performance of polynomial kernel function is comparable to that
of RBF.

• The “one vs. one” multi-class classifier shows a better performance
than “one vs. all” multi-class classifier no matter what type of kernel
functions is used.

• The results of SVM with RBF kernel function and “one vs. one” multi-
class classifier are comparable to those of MCE training algorithms
shown in Chapter 5.

7.4.3 Conclusion

SVM extracts features by projecting the feature vectors with a map, which
can be either linear map or non-linear kernel functions, into a higher di-
mensional space. In the higher dimensional space, SVM tries to represent
the class by the samples which are the closest to the boundary rather than
the conventional statistical class parameters, such as means and covariance.
This enables the class models to have a more accurate class boundary than
before. These features make SVM suitable for handling complex classes. In
the experiments on Deterding Vowels database, the performance of SVM is
comparable to that of linear feature extraction algorithms, such as LDA,
PCA and MCE training algorithm.On the other hand, SVM has its limi-
tations. The main limitation is that SVM is a two-class based algorithm.
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Users have to construct a multi-class classifier over SVM for multi-class clas-
sification cases. However the best way to construct the multi-class classifier
is not known yet.

7.5 Summary of Chapter

In this chapter, we discussed Support Vector Machine (SVM) for feature
extraction and employed it on vowel classification tasks. The results show
that SVM is comparable to linear feature extraction algorithms, such LDA,
PCA and MCE training algorithms.



Chapter 8

Reduced-Dimensional SVM

8.1 Introduction

The core of SVM is to map observation vectors into a high dimensional
feature space H by a non-linear map Φ(x):

Φ : Rn �→ H (8.1)

SVM then uses convex programming technique to optimize the objective
function in the feature space H. The objective function is ensured to be a
convex programming problem by a kernel function k(x, y), which is defined
as a dot product of Φ(x):

k(x, y) = Φ(x) · Φ(y) (8.2)

Thus the optimization problem in SVM becomes a quadratic programming
problem as expressed in Eq. (7.30). Rewrite the objective function of Eq.
(7.30) as follows:

1
2
αT Dα − α · 1 (8.3)

where 1 = [1, 1, · · · , 1]T1×N , α = [α1, · · · , αN ]T , D is a N × N symmetric
matrix with elements Dij = yiyjkij and N is the number of observation vec-
tors. The quadratic term in Eq. (8.3) shows that each observation vector
becomes a dimension of H after mapping. The total number of elements
in D is N2, which means that there are at least N2 times kernel computa-
tion in one SVM training. In some large speech databases, such as TIMIT
and Resource Management databases, the number of observations is more
than 10,000. Suppose the dimensionality of observation vectors is 40 and
the kernel function is a linear kernel, then 40 times multiplication and 39
times addition are needed to finish a kernel computation. Altogether more
than 100 Mbytes memory, 4 ×109 times multiplication and 3.9 ×109 times
addition are needed to employ SVM training on these databases. This will
be a large burden for any computing systems.
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Osuna [72, 73, 74] and Joachims [52] proposed a method to reduce the
consumption on computational resources of SVM by bringing the concept
“active set” into SVM training. In this method, the observation vectors are
divided into two sets. One is active and the other is non-active. Only the
observation vectors in active set participate in SVM training. This method
can effectively reduce the number of N . However, in many cases, N has to
be large enough to ensure the robustness of training and the generalization
of models.

Apart from the problem of computational burden, another problem with
SVM is that it is a two-class based feature extraction and classification
method. In multi-class cases, the SVM classifier has to be constructed based
on two-class SVM models as discussed in Chapter 7. However, a two-class
SVM model trained on a certain pair of classes may be completely not
applicable to other classes. Thus unexpected errors may be brought into
the multi-class SVM classifier.

In this chapter we propose a reduced-dimensional SVM algorithm (RDSVM)
both as a supplementary to Osuna and Joachims’ method and to reduce the
possibility of errors of two-class SVM models entering the multi-class SVM
classifier.

8.2 Reduced-Dimensional SVM

The basic idea of RDSVM to reduce computational burden is that the total
number of computations of SVM can be reduced by reducing the number of
computations in kernel functions, since the number of observation vectors
N can not be reduced to a very low level in many cases. An effective way
of reducing the number of computations in kernel functions is to reduce the
dimensionality of observation vectors.

Since SVM is an original two-class algorithm, it is hardly possible to
modify the whole algorithm into a multi-class algorithm. In practice, how-
ever, we can reduce the negative effects of its two-class originality in the
multi-class SVM classifier. For example, one of the major problems en-
countered by multi-class SVM classifier is in unseparable cases. When two
classes overlap with each other, SVM model is unable to handle the over-
lapping area. While using the discriminative learning techniques discussed
in previous chapters, the overlapping area can be reduced to its minimum.
These examples and facts naturally lead us to the consideration of combining
the advantages of discriminative learning and SVM together.

RDSVM is in fact a combination of discriminative learning and SVM
algorithms. It has a two-layer structure. The first layer conducts discrimi-
native learning, of which the objective is to reduce the dimensionality of fea-
ture space and obtain the largest discriminants of classes. The second layer
conducts SVM training in the reduced-dimensional feature space, which is
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provided by the first layer. Thus the kernel functions will be calculated as
follows:

k(x
′
, y

′
) = Φ(x

′
) · Φ(y

′
) = Φ(T T x) · Φ(T Ty) = k(T T x, T T y) (8.4)

where x
′
and y

′
are feature vectors in the reduced-dimensional feature space,

x and y are observation vectors and T is the transformation optimized by
the first layer. Figure 8.1 shows the structure of RDSVM.

The GMCE training algorithm with linear discriminant initialization cri-
terion is selected for the discriminant learning in the first layer in the pro-
posed RDSVM algorithm, since the GMCE training algorithm has shown
the best performance among other feature extraction and dimensionality
reduction algorithms in the classification tasks discussed in Chapter 6.

�
Observations

Discriminative
Learning Layer GMCE Training

�Discriminated
Feature Space

SVM
Learning Layer SVM training

�
Output

Figure 8.1: Reduced-dimensional SVM.

8.3 Experiment Result on Deterding Vowels Database

As with previous chapters, RDSVM is applied to Deterding Vowels database.
The feature dimensions used in the experiment are from 2 to 10 (full di-
mension). Figure 8.2 gives a comparison of the results of GMCE training
algorithm, LDA, SVM and RDSVM. Since SVM can only be operated in
the observation space, i.e. dimension 10, its results are presented as dots on
dimension 10. Observations from the performance of RDSVM can be drawn
as follows:

• Compared to SVM, the performance of RDSVM on dimension 10 is
improved on training data, while on testing data, RDSVM’s perfor-
mance on dimension 10 remains the same as that of SVM.

• Both SVM and RDSVM have better performances on dimension 10
than discriminative learning algorithms, i.e. GMCE training algorithm
and LDA.
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Figure 8.2: Results of reduced-dimensional SVM on Deterding Vowels
database.

• The performance of RDSVM is very close to that of GMCE training
algorithm on training data and is better than that of LDA except that
the performance curve of RDSVM over dimensions is not as smooth
as that of GMCE training algorithm.

• On testing data, RDSVM performs slightly poorer than GMCE train-
ing algorithm in low dimensional feature spaces (dimension 3 ∼ dimen-
sion 5), while on high dimensional feature spaces (from dimension 6 to
dimension 9), RDSVM has a slightly better performance than GMCE
training algorithm. On dimension 2 and dimension 10, the very low
and full dimensional feature spaces, RDSVM performs much better
than GMCE training algorithm.

• The overall performance of RDSVM is dramatically better than that
of LDA on both training and testing data.

• The highest recognition rate on testing data does not appear on the
full dimension (10) but on dimension 6. This is similar to the patterns
found in Chapter 6.
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8.4 Conclusion

The results given in Section 8.3 show that the performance of SVM on train-
ing data is poorer than that of GMCE training algorithm and LDA. This
implies that SVM has a poorer fitness to the training data than discrimi-
native learning algorithms. At the same time, the performance of RDSVM
is improved on training data. This shows that the discriminative learning
layer in RDSVM does help to reduce the negative effects of the defects of
SVM.

Another conclusion that can be drawn from the results is that the per-
formance of RDSVM in the reduced-dimensional feature spaces is compa-
rable to that of GMCE training algorithm, which is so far the best linear
feature extraction and dimensionality reduction algorithm discussed in this
thesis. The performance curve of RDSVM over dimensions, however, is not
as smooth as that of GMCE training algorithm. A possible reason may
be that the database used is small and can not provide enough number of
training data to SVM training. In the following chapters, a vowel recogni-
tion experiments on large databases will be designed and the corresponding
results will give a clear answer to this problem.

8.5 Summary of Chapter

In this chapter, a RDSVM algorithm is proposed to mend the defects with
SVM. The proposed RDSVM is a combination of discriminative learning
algorithm and SVM. It is applied on Deterding vowels database and corre-
sponding conclusion is drawn.



Chapter 9

Experiments on TIMIT
Database

9.1 Introduction

In previous chapters, we investigated major independent feature extraction
algorithms, such as LDA, PCA, integrated feature extraction and classifi-
cation algorithms, i.e. MCE training algorithm, and non-linear classifica-
tion method, i.e. SVM. We have proposed the use of MCE training algo-
rithm for joint feature extraction and classification, the alternative MCE and
GMCE training algorithm and RDSVM. Their performances on some small
databases, such as Deterding Vowels database and D. German’s GLASS
database, are shown and corresponding evaluation are made. Some results
are fairly encouraging. However, because of the small scale of these database,
it is very hard to make accurate evaluation from the performances of these
algorithms. The major drawbacks of these small databases center on their
limited number and low dimensionality of parameter vectors. Therefore, in
this chapter, experiments on a large database are designed to evaluate the
performances of the algorithms investigated or proposed in previous chap-
ters.

9.2 TIMIT Database

The database selected for the experiment is TIMIT database. TIMIT database
is a well-known large scale speech database. It is based on the TIMIT
corpus of read speech, which was designed to provide speech data for the
acquisition of acoustic-phonetic knowledge and for the development and
evaluation of automatic speech recognition systems. TIMIT database re-
sulted from joint efforts of several sites under sponsorship from the Defense
Advanced Research Projects Agency - Information Science and Technol-
ogy Office (DARPA-ISTO). Text corpus design was a joint effort of the

81



CHAPTER 9. EXPERIMENTS ON TIMIT DATABASE 82

Region Code Dialect Region Male Female Total
dr1 New England 31(63%) 18(27%) 49(8%)
dr2 Northern 71(70%) 31(30%) 102(16%)
dr3 North Midland 79(67%) 23(23%) 102(16%)
dr4 South Midland 69(69%) 31(31%) 100(16%)
dr5 Southern 62(63%) 36(37%) 98(16%)
dr6 New York City 30(65%) 16(35%) 46(7%)
dr7 Western 74(74%) 26(26%) 100(16%)
dr8 Army Brat (moved around) 22(67%) 11(33%) 33(5%)

Table 9.1: Dialect distribution of speakers in Timit database.

Massachusetts Institute of Technology (MIT), Stanford Research Institute
(SRI), and Texas Instruments (TI). The speech was recorded at TI, tran-
scribed at MIT, and was maintained, verified, and prepared for CD-ROM
production by the National Institute of Standards and Technology (NIST).
A brief description of the TIMIT Speech Corpus is contained in the file
“readme.doc” on the TIMIT database CD-ROM. Additional information
including the referenced material and some relevant reprints of articles may
be found in the printed documentation which is also available from NIST
(NIST# PB91-100354).

TIMIT database contains a total of 6300 sentences, 10 sentences spoken
by each of 630 speakers from 8 major dialect regions of the United States.
Table 9.1 shows the number of speakers from the 8 dialect regions, broken
down by gender. The percentages are given in parentheses. A speaker’s
dialect region is the geographical area of the U.S. where they lived during
their childhood years. The geographical areas correspond with recognized
dialect regions in U.S. (Language Files, Ohio State University Linguistics
Dept., 1982), with the exception of the Western region (dr7) in which dialect
boundaries are not known with any confidence and dialect region 8 where
the speakers moved around a lot during their childhood [95].

The text material in the TIMIT database prompts (found in the included
file “prompts.doc” on CD-ROM) consists of 2 dialect “shibboleth” sentences
designed at SRI, 450 phonetically-compact sentences designed at MIT, and
1890 phonetically-diverse sentences selected at TI. The dialect sentences (the
SA sentences) were meant to expose the dialectal variants of the speakers and
were read by all 630 speakers. The phonetically-compact sentences were de-
signed to provide a good coverage of pairs of phones, with extra occurrences
of phonetic contexts thought to be either difficult or of particular interest.
Each speaker read 5 of these sentences (the SX sentences) and each text
was spoken by 7 different speakers. The phonetically-diverse sentences (the
SI sentences) were selected from existing text sources - the Brown Corpus
(Kuchera and Francis, 1967) and the Playwrights Dialog (Hultzen, et al.,
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Sentence Type Sentences Speakers Total Sentences per Speaker
Dialect (SA) 2 630 1260 2

Compact (SX) 450 7 3150 5
Diverse (SI) 1890 1 1890 3

Total 2342 638 6300 10

Table 9.2: TIMIT speech material.

1964) - so as to add diversity in sentence types and phonetic contexts. The
selection criteria maximized the variety of allophonic contexts found in the
texts. Each speaker read three of these sentences, with each sentence being
read only by a single speaker. Table 9.2 summarizes the speech material in
TIMIT database.

The above data of TIMIT database come from [95].

9.3 Vowel Classification

9.3.1 Vowels Selection

Our classification task is set for vowel classification. The vowels used in the
classification task are selected from the vowels,semi-vowels and nasals that
are listed in the phoneme document “phoncode.doc” in TIMIT database.
There are altogether 20 vowels, 7 semi-vowels and 7 nasals listed in this file.
Table 9.3 ∼ 9.5 list these phonemes:

20 vowels are listed in Table 9.3. All of them, except ux,axr and ax− h,
are selected for the vowel recognition experiment. The reason that ux,axr
and ax− h are not selected is that these three vowels are very similar to
some other vowels listed in Table 9.3, such as ux is close to uh, axr is close
to ax and ax− h is close to er.

Although nasals and semi-vowels are not vowels, some nasals and semi-
vowels listed in Table 9.4 and 9.5 have significant vowel characteristics.
Therefore, some of them are also selected for our experiments. Among
the 7 nasals listed in Table 9.4, em and en are the two that are very close
to vowels. Since they are similar to each other, only en is selected for the
experiment. There are 7 semi-vowels listed in Table 9.5. Among them el
has the most notable vowel characteristics and thus is selected for the recog-
nition experiments. Table 9.6 lists all the selected phonemes for the vowels
recognition experiment.

9.3.2 Vowels Sampling

The speech signals are stored in two major sets in TIMIT database — “train”
and “test”, which are to be used for training and testing purposes, respec-
tively. The speech data in each set are further separated into 8 subsets,
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Vowels Example Words POSSIBLE PHONETIC TRANSCRIPTION
iy beet bcl b IY tcl t
ih bit bcl b IH tcl t
eh bet bcl b EH tcl t
ey bait bcl b EY tcl t
ae bat bcl b AE tcl t
aa bott bcl b AA tcl t
aw bout bcl b AW tcl t
ay bite bcl b AY tcl t
ah but bcl b AH tcl t
ao bought bcl b AO tcl t
oy boy bcl b OY
ow boat bcl b OW tcl t
uh book bcl b UH kcl k
uw boot bcl b UW tcl t
ux toot tcl t UX tcl t
er bird bcl b ER dcl d
ax about AX bcl b aw tcl t
ix debit dcl d eh bcl b IX tcl t
axr butter bcl b ah dx AXR
ax-h suspect s AX-H s pcl p eh kcl k tcl t

Table 9.3: Vowels list in TIMIT database.

Nasals Example Words POSSIBLE PHONETIC TRANSCRIPTION
m mom M aa M
n noon N uw N
ng sing s ih NG
em bottom b aa tcl t EM
en button b ah q EN
eng washington w aa sh ENG tcl t ax n
nx winner w ih NX axr

Table 9.4: Nasals list in TIMIT database.

Semi-vowels Example Words POSSIBLE PHONETIC TRANSCRIPTION
l lay L ey
r ray R ey
w way W ey
y yacht Y aa tcl t
hh hay HH ey
hv ahead ax HV eh dcl d
el bottle bcl b aa tcl t EL

Table 9.5: Semi-vowels list in TIMIT database.
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Type Phonemes
Vowel aa, ae, ah, ao, aw, ax, ay, eh, er, ey, ih, ix, iy, ow, oy, uh, uw
Nasal en

Semi-vowel el

Table 9.6: Selected phonemes for the vowel recognition experiment.

dr1 ∼ dr8, according the speakers’ dialect regions. As mentioned in Section
9.2, TIMIT database contains a total of 6300 sentences. Each occurrence
of a sentence is recorded in a speech data file (∗ .wav). The center 4K
samples of each selected vowels’ segment is picked out for the experiments.
The segments picked from the train set are used for training purposes. The
segments from the test set are used for testing.

Phonemes dr1 dr2 dr3 dr4 dr5 dr6 dr7 dr8
aa 249 541 448 458 425 221 563 124
ae 346 665 650 560 616 328 645 177
ah 176 313 364 299 355 169 352 103
ao 217 445 443 478 477 206 475 148
aw 60 126 116 121 94 65 117 30
ax 121 207 251 239 242 100 185 54
ay 198 395 398 328 343 181 395 144
eh 297 591 594 544 581 276 592 145
el 77 145 135 131 140 64 151 43
en 55 97 108 77 79 53 113 29
er 129 384 363 294 281 140 328 105
ey 189 346 371 332 354 178 407 96
ih 316 697 716 709 744 324 747 222
ix 292 583 650 622 589 319 692 161
iy 463 1089 1046 993 1034 460 1033 348
ow 183 336 355 305 327 176 359 90
oy 64 118 126 77 82 54 126 37
uh 40 57 66 69 65 49 67 25
uw 63 106 75 56 75 50 76 16

total 3535 7241 7275 6692 6903 3413 7423 2097

Table 9.7: Number of selected phonemes in training dataset.

The vowel recognition experiments are carried out on all the 8 sub-
directories of data stored both in the train and test sets (dr1 ∼ dr8). Since
each sub-directory in the train and test sets has different number of sentences
and occurrences of the sentences, the number of vowels’ segments is different
as well. Table 9.7 and 9.8 record the number of segments of the 19 selected
vowels that are picked out from these sub-directories.
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Phonemes dr1 dr2 dr3 dr4 dr5 dr6 dr7 dr8
aa 77 176 168 190 191 79 172 66
ae 79 214 229 261 234 97 199 94
ah 59 136 123 118 140 71 139 39
ao 74 168 181 226 202 67 147 77
aw 10 40 30 40 42 21 25 8
ax 41 89 83 115 103 25 65 30
ay 56 131 134 164 148 52 117 49
eh 83 225 230 252 216 84 181 90
el 22 42 40 70 64 14 43 32
en 8 34 32 41 31 15 28 21
er 47 135 128 149 103 48 109 76
ey 54 116 116 159 128 56 120 53
ih 104 239 214 326 248 92 199 100
ix 97 201 196 247 249 101 217 96
iy 168 381 384 490 422 155 354 160
ow 57 116 108 142 145 49 105 54
oy 17 49 45 42 34 17 40 19
uh 15 21 33 29 34 16 29 14
uw 15 37 28 25 25 7 12 10

total 1083 2550 2502 3086 2759 1066 2301 1088

Table 9.8: Number of selected phonemes in testing dataset.

9.3.3 Speech Features

In TIMIT database, the speech signals are stored in wave files. Each wave
file records an occurrence of a sentence. A corresponding label file is given
to label out all the phonemes appearing in the sentence and mark out their
starting time and ending time. In our experiment, we use these label files
to pick out all the segments of the 19 selected phonemes from the database.
Then a feature vector is extracted from each segment for the classification
tasks.

The feature vectors contain 1 energy coefficient and 20 Mel-Frequency
Cepstral Coefficients (MFCCs). The features are extracted by the following
steps: The center 4K samples are taken out from the vowel segment since
many vowels last longer than 256 msec (The sampling frequency is 16 KHz
in TIMIT database). If the length of a segment is less than 4K, 0s are
added to the end of the sequence to make the length of the sequence to 4K.
A Hamming window is applied to the sequence and the power spectrum is
calculated. The power spectrum of the speech signals is then correlated with
a triangular filter bank. The filter bank has 20 filters and is designed to give
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approximately equal resolution on a mel-scale. The mel-scale is defined by:

Mel(f) = 2595 log10(1 +
f

100
) (9.1)

The center frequencies of each filter used in our experiments are:{100, 200,
300, 400, 500, 600, 700, 800, 900, 1000, 1150, 1320, 1520, 1750, 2000, 2300,
2640, 3040, 3500, 4000}. The filtered power spectrum magnitude coefficients
are accumulated in each filter band to obtain the 20 mel-scale filterbank
parameters. These mel-scale parameters are transformed into MFCCs in
the last step by the Discrete Cosine Transform (DCT). The DCT is defined
as:

ci =
√

2
N

N∑
j=1

mjcos(
πi

N
(j − 0.5)) (9.2)

MFCCs have been used by speech recognition applications. They give good
discrimination and lend themselves to a number of manipulations. In par-
ticular, the effect of inserting a transmission channel on the input speech is
to multiply the speech spectrum by the channel transfer function. In the log
cepstral domain, this multiplication becomes a simple addition which can be
removed by subtracting the cepstral mean from all input vectors. Neverthe-
less, this simple technique is very effective in practice where it compensates
for long-term spectral effects as those caused by different microphones and
audio channels [112].

9.4 Experiment Setup

The vowel recognition experiment is to examine the performances of the
feature extraction and classification algorithms investigated or proposed in
previous chapters. It includes two major parts – speaker dependent and
speaker independent. The class models of these algorithms are first trained
and tested on the 8 sub-directories (dr1 ∼ dr8) separately in speaker depen-
dent part. Then in speaker independent part, the algorithms are tested on
the whole database. The algorithms evaluated in the experiment are listed
as follows:

• LDA and PCA are used for both feature extraction and feature di-
mensionality reduction. Their results will be used as references for
MCE and GMCE training algorithms, SVM and RDSVM because
both LDA and PCA are popular algorithms for feature extraction and
feature dimensionality reduction. The classifiers used after both LDA
and PCA training are Mahalanobis distance classifiers.

• MCE and GMCE training algorithms are used for both feature ex-
traction and feature dimensionality reduction. Their performances will
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be compared to those of LDA and PCA. The classifiers used in both
MCE and GMCE training algorithms are also Mahalanobis distance
classifiers so that the results of MCE and GMCE training algorithms
are comparable to those of LDA and PCA.

• SVM is used for feature extraction. Feature dimension used in SVM
is full dimension because SVM is not suitable for feature dimension-
ality reduction. The SVM classifier used is “one vs. one” multi-class
classifier.

• RDSVM is used for feature extraction both in full dimensional feature
space and reduced-dimensional feature space. The classifier used is
“one vs. one” multi-class classifier.

9.5 Results Analysis

This section shows the results of a vowel recognition experiment and makes
corresponding analysis. The vowel recognition experiment consists of two
sub-experiments. One is a speaker dependent experiment and the other is a
speaker independent experiment. In the speaker dependent experiment, the
experiment results are organized in three groups, as shown in the following:

• Comparison between PCA, LDA, MCE and SVM – This group has two
major tasks. One is to analyse the performances of independent and
integrated feature extraction and classification algorithms. The other
is to analyse the performances of linear and non-linear classification
algorithms. In the first task, the performances of PCA and LDA, as in-
dependent feature extraction algorithms, are compared to that of MCE
training algorithm, an integrated feature extraction and classification
algorithm. The classifier used in PCA, LDA and MCE is minimum
distance classifier, which is a typical linear classifier, while SVM is a
non-linear classifier. Therefore in the second task, the performances
of LDA, PCA MCE and SVM are also compared and analysed.

• Analysis of GMCE training algorithm – This group analyses the per-
formances of two types of GMCE training algorithms. One employs
LD initialization criterion and the other employs PC initialization cri-
terion. Their performances are compared to those of LDA, PCA and
MCE training algorithm.

• Analysis of RDSVM – This group investigates the performance of
RDSVM. The performance of RDSVM is compared to those of LDA,
GMCE training algorithm and SVM.

In the speaker independent experiment, similar analysis is conducted on
the above three groups, i.e. comparison between independent and integrated
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feature extraction and classification algorithms, between linear and non-
linear classifiers, analysis of GMCE training algorithm and RDSVM. Apart
from this, the performances of the algorithms in the speaker independent
experiment are compared to those in the speaker dependent experiment.
The performance of each algorithm in the speaker dependent experiment
is represented by the average performances and maximum-minimum value
area over the 8 sub-directories.

In the eighth sub-directory dr8, accidentally, both the global and within
covariance matrices of the vowels’ features have two very close eigenvalues.
This brings significant difficulties to the application of PCA and LDA in high
dimensional feature spaces. It has some negative effects on MCE training
in high dimensional spaces as well. Since this problem is irrelevant to the
objective of our experiment and has little influence on the overall outcome of
the experiment, the four algorithms’ results dr8 in high dimensional spaces
(Dimension 16 to Dimension 21) are neglected. Therefore in this chapter
only the results from Dimension 3 to Dimension 15 will be shown in all the
figures corresponding to set sub-directory dr8.

9.5.1 Speaker Dependent Experiment

Comparison between PCA, LDA, MCE and SVM

In this group, we compare the performances of the four existing feature ex-
traction algorithms — PCA, LDA, MCE training algorithm and SVM. The
results of these four algorithms on the 8 sub-directories, dr1 ∼ dr8, are given
in Figure 9.1 ∼ Figure 9.8, respectively. The MCE training algorithms used
in this and the following experiments are alternative MCE training algo-
rithm and noted as MCE in the figures. Feature dimensionality reduction
is conducted in LDA, PCA and MCE training. The minimum dimension
used is 3 and the maximum is the full dimension (21). The horizontal axis
of the figures are dimensions. The vertical axis of the figures is the recog-
nition rates. This group includes two tasks. The first involves an analysis
of the performances of independent and integrated feature extraction and
classification algorithms. The performances of independent feature extrac-
tion algorithms, i.e. PCA and LDA are compared to that of the integrated
feature extraction and classification algorithm, i.e. MCE training algorithm
in the figures on all dimensions. The second task involves a comparison
between linear and non-linear classifiers. SVM, as a non-linear classifier, is
compared to the linear classifier, which is minimum distance classifier based
on Mahalanobis distance measure and employed in LDA, PCA and MCE
training. However, SVM uses parameter vectors directly and is unable to
conduct feature extraction and dimensionality reduction. Thus it has a sin-
gle classification result on each sub-directory of TIMIT database and its
results appear as single points on dimension 21 in each figure.
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Figure 9.1: Results of LDA, PCA, MCE and SVM on DR1

2. Results on /dr2

2 4 6 8 10 12 14 16 18 20 22
20

30

40

50

60

  −−− PCA
  −−− LDA
  −−− MCE
  −−− SVM

a) Training data in DR2

R
ec

og
ni

tio
n 

R
at

e(
%

)

2 4 6 8 10 12 14 16 18 20 22
25

30

35

40

45

50

  −−− PCA
  −−− LDA
  −−− MCE
  −−− SVM

b) Testing data in DR2

R
ec

og
ni

tio
n 

R
at

e(
%

)

Dimension 

Dimension 

Figure 9.2: Results of LDA, PCA, MCE and SVM on DR2
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3. Results on /dr3
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Figure 9.3: Results of LDA, PCA, MCE and SVM on DR3

4. Results on /dr4
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Figure 9.4: Results of LDA, PCA, MCE and SVM on DR4
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5. Results on /dr5
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Figure 9.5: Results of LDA, PCA, MCE and SVM on DR5

6. Results on /dr6
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Figure 9.6: Results of LDA, PCA, MCE and SVM on DR6
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7. Results on /dr7
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Figure 9.7: Results of LDA, PCA, MCE and SVM on DR7

8. Results on /dr8
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Figure 9.8: Results of LDA, PCA, MCE and SVM on DR8
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Observations from Figure 9.1 ∼ Figure 9.8 can be summarized as follows:

• Most figures show that in low-dimensional feature spaces (Dimension
3 ∼ Dimension 12) on the training data, LDA performs better than
PCA and MCE training algorithm. On the testing data, LDA performs
better than PCA and MCE training algorithm on low dimensions (from
dimension 3 to dimension 15).

• MCE training algorithm performs better than LDA and PCA in high-
dimensional feature spaces (Dimension 3 ∼ Dimension 12) on training
data. On the testing data, MCE training algorithm performs better
than PCA and LDA on high dimensions (from dimension 16 to dimen-
sion 21).

• PCA has the poorest performance in low dimensional feature spaces
(Dimension 3 ∼ Dimension 13 on the training data and Dimension
3 ∼ Dimension 15 on testing data). While in high dimensional fea-
tures spaces (Dimension 14 ∼ Dimension 21 on the training data and
Dimension 16 ∼ Dimension 21 on testing data), the performances of
PCA are close to those of LDA.

• In low dimensional feature spaces (Dimension 3 ∼ Dimension 13 on the
training data and Dimension 3 ∼ Dimension 15 on testing data) the
performances of MCE training algorithm are between those of LDA
and PCA.

• In most figures, the result curves of LDA are very flat over dimensions.
Those of PCA and MCE training algorithm drop rapidly with the
decrease of dimensions. The result curves on testing data in each
figure are not as smooth as those on training data.

• The performances of SVM on training data are poorer than those of
LDA, PCA and MCE training algorithm, which use linear minimum
distance classifier.

• SVM performs much better than LDA, PCA and MCE training algo-
rithm on testing data.

Analysis of GMCE Training Algorithm

In this section, the performance of GMCE training algorithm is investigated.
Two types of GMCE are used. One is GMCE training algorithm with linear
discriminant (LD) initialization criterion, which is denoted as GMCE+LD.
The other one is with principal component (PC) initialization criterion and
is denoted as GMCE+PC.
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GMCE with LD Initialization Criterion
1. Results on /dr1
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Figure 9.9: Results of GMCE+LD, MCE and LDA on DR1

2. Results on /dr2
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Figure 9.10: Results of GMCE+LD, MCE and LDA on DR2
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3. Results on /dr3
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Figure 9.11: Results of GMCE+LD, MCE and LDA on DR3

4. Results on /dr4
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Figure 9.12: Results of GMCE+LD, MCE and LDA on DR4



CHAPTER 9. EXPERIMENTS ON TIMIT DATABASE 97

5. Results on /dr5
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Figure 9.13: Results of GMCE+LD, MCE and LDA on DR5

6. Results on /dr6
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Figure 9.14: Results of GMCE+LD, MCE and LDA on DR6
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7. Results on /dr7
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Figure 9.15: Results of GMCE+LD, MCE and LDA on DR7

8. Results on /dr8
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Figure 9.16: Results of GMCE+LD, MCE and LDA on DR8
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GMCE with PC Initialization Criterion
1. Results on /dr1
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Figure 9.17: Results of GMCE+PC, MCE and PCA on DR1

2. Results on /dr2

2 4 6 8 10 12 14 16 18 20 22
20

30

40

50

60

  −−− GMCE+PC
  −−− PCA
  −−− MCE

a) Training data in DR2

R
ec

og
ni

tio
n 

R
at

e(
%

)

2 4 6 8 10 12 14 16 18 20 22
25

30

35

40

45

50

  −−− GMCE+PC

  −−− PCA

  −−− MCE

b) Testing data in DR2

R
ec

og
ni

tio
n 

R
at

e(
%

) Dimension 

Dimension 

Figure 9.18: Results of GMCE+PC, MCE and PCA on DR2
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3. Results on /dr3
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Figure 9.19: Results of GMCE+PC, MCE and PCA on DR3

4. Results on /dr4
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Figure 9.20: Results of GMCE+PC, MCE and PCA on DR4
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5. Results on /dr5
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Figure 9.21: Results of GMCE+PC, MCE and PCA on DR5

6. Results on /dr6
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Figure 9.22: Results of GMCE+PC, MCE and PCA on DR6
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7. Results on /dr7
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Figure 9.23: Results of GMCE+PC, MCE and PCA on DR7

8. Results on /dr8
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Figure 9.24: Results of GMCE+PC, MCE and PCA on DR8
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Observations from the results of GMCE training algorithm with LD
initialization criterion can be summarized as follows:

• With LD initialization criterion, the performances of GMCE training
algorithm are better than both LDA and MCE training algorithm over
all the dimensions.

• In high dimensional sub-spaces (Dimension 15 ∼ Dimension 21), the
performances of GMCE+LD are slightly better than those of MCE
training algorithm, which has better performances than LDA.

• In medium dimensional sub-spaces (Dimension 7 ∼ Dimension 15),
GMCE+LD has significantly better performances than both LDA and
MCE training algorithm.

• In low dimensional sub-spaces (Dimension 3 ∼ Dimension 7), the per-
formances of GMCE+LD are slightly better than those of LDA but
dramatically better than those of MCE training algorithm.

• Similar observations can be summarized from the results on all the
eight TIMIT sub-directories.

Observations from the results of GMCE training algorithm with PC initial-
ization criterion can be summarized as follows:

• With PC initialization criterion, the general performances of GMCE
training algorithm are not significantly improved.

• In high dimensional sub-spaces (Dimension 15 ∼ Dimension 21), the
performances of GMCE+PC are either very close or equal to those of
MCE training algorithm.

• In medium dimensional sub-spaces (Dimension 7 ∼ Dimension 15),
GMCE+PC has slightly better performances than MCE training al-
gorithm.

• In low dimensional sub-spaces (Dimension 3 ∼ Dimension 7), the per-
formances of GMCE+PC are poorer than those of MCE training al-
gorithm but better than those of PCA.

• Similar observations can be summarized from the results on all the
eight TIMIT sub-directories.

Analysis of RDSVM

In this section, we will investigate the performance of RDSVM on TIMIT
database. The results of RDSVM are compared to those of SVM, GMCE
training algorithm with LD initialization criterion and LDA.
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1. Results on /dr1
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Figure 9.25: Results of RDSVM on DR1

2. Results on /dr2
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Figure 9.26: Results of RDSVM on DR2
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3. Results on /dr3
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Figure 9.27: Results of RDSVM on DR3

4. Results on /dr4
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Figure 9.28: Results of RDSVM on DR4
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5. Results on /dr5
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Figure 9.29: Results of RDSVM on DR5

6. Results on /dr6
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Figure 9.30: Results of RDSVM on DR6
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7. Results on /dr7
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Figure 9.31: Results of RDSVM on DR7

8. Results on /dr8
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Figure 9.32: Results of RDSVM on DR8
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Observations from the results of RDSVM can be summarized as follows:

• Compared to SVM, the performance of RDSVM on full-dimensional
feature space is improved on training data. RDSVM’s performance
on testing data (on full-dimensional feature space) is also improved on
some sub-directories and remains the same on the rest.

• The performance of RDSVM on training data is poorer than that
of both GMCE+LD and LDA in both medium and high dimensional
feature spaces (dimension 12 ∼ dimension 21). In very low dimensional
feature spaces (dimension 3 and dimension 4) RDSVM performs better
on training data than LDA and GMCE+LD. On the rest dimensions,
the performance of RDSVM is between that of GMCE+LD and LDA.

• The general performance of RDSVM on testing data is much better
than that of both GMCE+LD and LDA on all dimensions. In some
sub-directories, the recognition rates of RDSVM are over 5 percent
ahead of those of GMCE+LD on average on all dimensions.

• The performance of RDSVM is very stable throughout all the dimen-
sions on both training and testing data. The performance of RDSVM
usually starts degrading only when the feature dimension is less than
5.

• The performance curves of RDSVM on the training data of all the
eight sub-directories are fairly smooth as those of GMCE+LD and
LDA. But The performance curves of RDSVM on the testing data are
not as smooth as those on the training data.

9.5.2 Speaker Independent Experiment

Analysis on Feature Extraction and Classification Algorithms

In this section, the performance of feature extraction and classification algo-
rithms, i.e. LDA, PCA, MCE, GMCE+LD, GMCE+PC, SVM and RDSVM
are analysed in the speaker independent experiment. Figure 9.33 compares
the performance of independent (LDA and PCA) and integrated (MCE) fea-
ture extraction and classification algorithms and that of linear (minimum
distance classifier) and non-linear SVM) classifiers. Figure 9.34 compares
the performance of LDA, MCE and GMCE with LD initialization crite-
rion. Figure 9.35 compares the performance of PCA, MCE and GMCE with
PC initialization criterion. Figure 9.36 compares the performance of LDA,
GMCE with LD initialization criterion, SVM and RDSVM.
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Figure 9.33: Results of LDA, PCA, MCE and SVM in speaker independent
experiment.
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Figure 9.34: Results of LDA, MCE and GMCE+LD in speaker independent
experiment.
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Figure 9.35: Results of PCA, MCE and GMCE+PC in speaker independent
experiment.
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Figure 9.36: Results of LDA, GMCE+LD, SVM and RDSVM in speaker
independent experiment.
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Observations from the recognition results can be summarized as follows:

• The performances of all the feature extraction algorithms, including
LDA, PCA and MCE training algorithm, are very stable over dimen-
sions in the speaker independent experiment. No significant degrad-
ing on the performances can be observed until the dimensionality is
reduced to be very low (< 8).

• The performances of PCA and LDA are nearly identical on high di-
mensions (≥ 10). But the performance of PCA degrades quickly on
low dimensions (< 10), while the performance of LDA is much more
stable on these dimensions.

• MCE training algorithm performs significantly better LDA and PCA
on most dimensions (dimension 7 ∼ dimension 21). Its performance
is poorer than that of LDA only on very low dimensions ( dimension
3 to 5).

• The performance of SVM is slightly better than those of LDA and
PCA on training data, but poorer than that of MCE. On testing data,
the performance of SVM is almost identical to that of MCE, which is
better than those of LDA and PCA.

• GMCE with LD initialization criterion performs better than LDA and
MCE on all dimensions. The performance of GMCE with PC initial-
ization criterion is very close to that of MCE training algorithm on
most dimensions.

• The performance of RDSVM is close to that of LDA but poorer than
that of GMCE on all dimensions.

• The overall performance of SVM and RDSVM, which are non-linear
classifiers, are poorer that those of linear classifiers in the speaker
independent experiment.

• All the algorithms have closer performances on training and testing
data in the speaker independent experiment than in speaker depen-
dent experiment. The performance curves in the speaker independent
experiment are smoother that those in the speaker dependent experi-
ment.

Speaker Independent Properties of the Algorithms

Figure 9.37 to Figure 9.42 and Table 9.9 compares the performances of the
algorithms investigated in the speaker dependent and independent experi-
ments. The performances of the algorithms in the speaker dependent exper-
iment is represented by their average performances and maximum-minimum
value area on the 8 sub-directories.
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Figure 9.37: The performances of LDA in speaker dependent and indepen-
dent experiments.
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Figure 9.38: The performances of PCA in speaker dependent and indepen-
dent experiments.
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Figure 9.39: The performances of MCE in speaker dependent and indepen-
dent experiments.
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Figure 9.40: The performances of GMCE+LD in speaker dependent and
independent experiments.
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Figure 9.41: The performances of GMCE+PC in speaker dependent and
independent experiments.
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Figure 9.42: The performances of RDSVM in speaker dependent and inde-
pendent experiments.



CHAPTER 9. EXPERIMENTS ON TIMIT DATABASE 115

Data Speaker Dependent Speaker
Set Maximum Average Minimum Independent

Training 52.84 49.43 47.85 46.32
Testing 49.44 46.75 44.65 46.67

Table 9.9: The performances of SVM in speaker dependent and independent
experiments.

Observations from these figures and table can be summarized as follows:

• The performance of LDA on training data in the speaker independent
experiment is poorer than that in the speaker dependent experiment,
especially on high dimensions. On testing data, the performance of
LDA in the speaker independent experiment is between the average
and the maximum performances of LDA in the speaker dependent
experiment.

• The performance curve of PCA on training data in the speaker inde-
pendent experiment is very flat. Hence PCA has better performances
in the speaker independent experiment than in the speaker dependent
experiment on low dimensions (Dimension 3 ∼ 10) and poorer perfor-
mances on high dimensions. On testing data, the performance of PCA
in the speaker independent experiment is much better than PCA’s
maximum performance in the speaker dependent experiment on low
dimensions (4 ∼ 13) and they are very close on the rest dimensions.

• The performances of MCE in the speaker independent and dependent
experiments have similar patterns to those of PCA: On training data,
MCE’s performance in the speaker independent experiment is better
than that in the speaker dependent experiment on low dimensions (3
∼ 11), but poorer on high dimensions. On testing data, the perfor-
mance of MCE in the speaker independent experiment is much better
than MCE’s maximum performance in the speaker dependent exper-
iment on most dimensions (Dimension 3 ∼ 16) and close on the rest
dimensions.

• The performance of GMCE with LD initialization criterion on training
data in the speaker independent experiments is poorer than that in the
speaker dependent experiment, while on testing data, GMCE+LD’s
performance in the speaker independent experiment is better than
it’s best performance in the speaker dependent experiment on high
dimensions (14 ∼ 21) and quite close on the rest dimensions (3 ∼ 13).

• On training data, the performance of GMCE with PC initialization cri-
terion is better than GMCE+PC’s average performance in the speaker
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dependent experiment on low dimensions (Dimension 3 ∼ 9), but
poorer on the rest dimensions. On testing data, GMCE+PC’s per-
formance in the speaker independent experiment is better than its
maximum performance in the speaker dependent experiment on some
dimensions (8 ∼ 16) and between the maximum and average on the
rest dimensions.

• The performance of SVM on training data in the speaker independent
experiment is poorer than that in the speaker dependent experiment.
On testing data, its performance in the speaker independent exper-
iment is slightly lower than the average performance in the speaker
dependent experiment.

• The overall performance of RDSVM in the speaker independent ex-
periment is poorer than that in the speaker dependent experiment.

9.6 Conclusion

In this chapter, we investigated the feature extraction and classification
algorithms discussed in Chapter 3, 4, 5, 6, 7 and 8 both in the speaker
dependent and independent experiments. Six algorithms are involved in
the investigation. They are LDA, PCA, MCE, GMCE training algorithms,
SVM and RDSVM. From the observation of the experiment’s results, the
following conclusion can be drawn:

• Feature Extraction – The results of feature extraction algorithms, i.e.
LDA, PCA, MCE and GMCE training algorithms, in TIMIT experi-
ment show that integrated feature extraction and classification algo-
rithms, i.e. MCE and GMCE training algorithms have generally better
performances than independent feature extraction and classification
algorithms, i.e. LDA and PCA. LDA and PCA have similar perfor-
mances. But LDA is more stable in low-dimensional feature spaces,
while PCA has better speaker independent properties. MCE training
algorithm performs better than LDA and PCA in high-dimensional
feature spaces. But its performance degrades rapidly with the de-
crease of feature dimensionality. GMCE training algorithm integrates
the advantages of both LDA and MCE and has the best performances
over all dimensions. The experiment results show that LD initializa-
tion criterion is better than PC initialization criterion. Both MCE
and GMCE training have fairly good speaker independent properties.

• Classification – The experiment results show that SVM and RDSVM,
as non-linear classification algorithms, have better generalization prop-
erties than those of linear classification algorithms, such as distance
classifier. However, the results in the speaker independent experiment
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show that SVM and RDSVM do not have good speaker independent
properties as linear classification algorithms do.

• Speaker Dependent and Independent – The performances of all these
algorithms in speaker dependent experiments are generally better than
those in speaker independent experiments. This is because the pro-
nouncation variations in speaker dependent experiments are less than
that in speaker independent experiments.

9.7 Summary of Chapter

In this chapter we first introduced the database used in our vowel classifica-
tion experiment — TIMIT database and the selection of vowels. The setup
of the experiment is also given. We then investigated six feature extraction
and classification algorithms, i.e. LDA, PCA, MCE and GMCE training
algorithms, SVM and RDSVM in speaker dependent and independent ex-
periments. The analysis over the experiment’s results is carried out and
corresponding conclusion is drawn.



Chapter 10

Conclusion

In this thesis, we have discussed independent and integrated feature extrac-
tion and classification algorithms, which include LDA, PCA and MCE train-
ing algorithm, and a non-linear classification algorithm, i.e. SVM. New algo-
rithms are proposed to mend the drawbacks of existing algorithms. The pro-
posed algorithms are: alternative MCE training algorithm, GMCE training
algorithm and RDSVM. All the algorithms concerned are evaluated on sev-
eral small databases including Deterding vowels database, GLASS database,
and et al. In Chapter 9, an experiment on a large database (TIMIT) is de-
signed and conducted to evaluate and compare the performances of all the
algorithms mentioned above. In the following sections, we will describe the
conclusions drawn from the results of these evaluations.

10.1 Independent and Integrated Feature Extrac-

tion and Classification Methods

Independent feature extraction and classification method conducts feature
extraction and classification separately. LDA and PCA are the two pop-
ular independent feature extraction algorithms. Integrated feature extrac-
tion and classification method conducts feature extraction and classification
jointly. In this thesis, MCE training algorithm is applied to integrated fea-
ture extraction and classification. An alternative MCE and GMCE training
algorithms are proposed to improve the performance of MCE training algo-
rithm in the integrated tasks.

Both independent and integrated feature extraction and classification al-
gorithms are investigated on some popular small and large scale databases.
The performances of these algorithms are compared and analysed in the fea-
ture spaces with different dimensionality. The results show that LDA and
PCA have similar performances in high-dimensional feature spaces. PCA,
however, is more sensitive to the feature dimensionality reduction than LDA.
The performance of PCA in low-dimensional feature spaces degrades faster
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than that of LDA. MCE training algorithm has better performance than
both LDA and PCA in high-dimensional feature spaces. An alternative
MCE training algorithm is proposed to further improve the performance of
MCE training algorithm. But the experiments show that the performance
of MCE training algorithm is highly dependent on the initialization of the
transformation matrix in the integrated feature extraction and classification
tasks. This problem leads to a rapid degradation on MCE’s performance in
low-dimensional feature spaces. This thesis thus proposes a GMCE train-
ing algorithm to mend this shortcoming of MCE training algorithm. The
experiment results show that GMCE training algorithm has very stable
performances even in very low-dimensional feature spaces and its overall
performance is the best among all the feature extraction and classification
algorithms investigated.

The speaker independent property of these algorithms is also investi-
gated. The performances of these algorithms in both speaker dependent
and independent experiments show that all the algorithms lose fitness to
training data to some extent in the speaker independent experiment. But
their generalization properties do not degrade. Some are even better. More
specifically, LDA and GMCE training algorithm lose fitness to training data
significantly on all dimensions. PCA and MCE training algorithm lose fit-
ness only on high dimensions, but have better fitness on low dimensions.
The generalization properties of LDA does not change significantly in the
speaker independent experiment. Its performance in the speaker indepen-
dent experiment is better than the average level of its performance in the
speaker dependent experiment, but poorer than the maximum level. PCA,
MCE and GMCE training algorithms have better generalization properties
in the speaker independent experiment. Their corresponding performances
are better than the maximum level of their performances in the speaker
dependent experiment on most dimensions and very close on the rest di-
mensions.

10.2 Linear and Non-linear Classification Meth-
ods

Most conventional classification algorithms, such as minimum distance, like-
lihood and Bayesian classifier, are linear classification methods. The decision
boundaries they generate are linear. SVM is a recently developed non-linear
classification algorithm. It maps the parameter vectors onto a high dimen-
sional feature space through a non-linear mapping and pursuits linear deci-
sion boundaries in the feature space. Thus the decision boundaries in the
parametric spaces become non-linear.

This thesis has investigates the performance of SVM and compared it
to the performance of a popular linear classification algorithm – minimum
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distance classifier based on Mahalanobis distance measure. A RDSVM al-
gorithm is proposed to adopt features extraction into SVM training. The
experiment results show that both SVM and RDSVM have better general-
ization properties than linear algorithms, but their fitness to training data
is not as good as that of linear algorithms. The performance of RDSVM
is very stable over all dimensions in feature dimensionality reduction tasks.
However, the results in the speaker independent experiment show that SVM
and RDSVM do not have good speaker independent properties as linear
classifiers do.

10.3 Future Work

In this thesis, we have investigated independent and integrated feature ex-
traction and classification algorithms, i.e. LDA, PCA and MCE training
algorithm and a non-linear classification algorithms, i.e. SVM. Three algo-
rithms, the alternative MCE, GMCE and RDSVM, are proposed to mend
the drawbacks of existing algorithms. All the algorithms concerned show
both merits and shortcomings in pattern recognition experiments. The ex-
periment results also show that the merits of some algorithms are comple-
mentary. For example, MCE training algorithm is suitable for thorough
optimization, while LDA is suitable for generalized optimization. SVM has
good generalization properties but is unable to select features, while feature
extraction algorithms is able to do that. The proposed algorithms in this
thesis, such as the GMCE training algorithm and RDSVM, are based on and
combine the complementary merits of different algorithms. The experiment
results show that they are significantly more effective than their individual
predecessors.

As discussed in Chapter 1, feature extraction is necessary because the
parameter vectors are often not suitable for pattern classification. Current
speech parameters used in speech recognition, such as MFCCs, are based on
the knowledge of physical mechanism of speech and no class discriminantions
is considered. Thus it would be interesting to integrate parameter and fea-
ture process extraction together. This is based on the idea that the speech
signals are integrations of various information, such as speakers’ characters,
speakers’ mood, dialect characters, phoneme characters and et. al. Current
parameter extraction methods, such as LPC and MFCC extractors, pack all
the information into speech parameters without discrimination. If feature
extraction is embeded into parameter extraction process, the speech features
will be more effective and efficient. A. Biem and et. al. [9, 10, 11] has done
some work in this area by adopting discriminative feature extraction into
filter bank design. However, integration of parameter and feature extraction
is a very wide area and far more work needs to be done.

Another interesting area is the application of the feature extraction and
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classification techniques investigated in continuous speech recognition. For
example, Hidden Markov Model (HMM) is the most popular technique in
continuous speech recognition. However, HMM uses the maximum likeli-
hood criterion, which requires the search of all possible path of and speech
input sequence. This search becomes extremely low efficient when the speech
sequence is very long. MCE criterion requires much less search than max-
imum likelihood. Thus it is possible reduce the number search paths by
embeding the MCE criterion into HMM and improve the efficiency of HMM.

Finally, speech signals are time-variant and have countless variations.
Linear classifiers have significant difficulties in discript the distributions of
speech classes. Non-linear classifiers have advantages in dealing with such
distributions. Thus it would be interesting to apply SVM classifiers to speech
recognition. A possible way would be to embed SVM into HMM framework,
since HMM provides an ideal framework for continuous speech recognition.



Bibliography

[1] S.Aeberhard, O. de Vel and D.Coomans, “Comparative Analysis of
Statistical Pattern Recognition Methods in High Dimensional Set-
tings”, Pattern Recognition, 27(8), pp. 1065-1077, 1994.

[2] M. Allerhand, Knowledge-Based Speech Pattern Recognition, Kogan
Page Ltd, London, 1987.

[3] H.Almuallim and T.G.Dietterich, “Efficient algorithms for identifying
relevant features”, Proceedings of the 9th Canadian Conference on
Artificial Intelligence, pages 38–45, Vancouver, BC,1992.

[4] H.C.Andrews, Introduction to Mathematical Techniques in Pattern
Recognition, Wiley-Interscience, a Division of John Wiley & Sons Inc.,
New York, 1972.

[5] T.W.Anderson, “Asymptotic theory for principal component analy-
sis”, Ann. Statist. Section, 3, pp 77-95, 1963.

[6] S.P.Banks, Signal Processing, Image Processing and Pattern Recogni-
tion, Prentice Hall, New York, 1990.

[7] R.E.Bellman, Dynamic Programming, Princeton University Press,
1957.

[8] A.Biem and S.Katagiri, “Feature Extraction Based on Minimum Clas-
sification Error/Generalized Probabilistic Descent Method”, Proceed-
ings of IEEE International Conference of Acoustics, Speech and Signal
Processing, Vol. 2, pp. 275-278, 1993.

[9] A.Biem and S.Katagiri, “Filter Bank Design Based on Discriminative
Feature Extraction”, Proceedings of IEEE International Conference of
Acoustics, Speech and Signal Processing, Vol. 1, pp. 485-488, 1994.

[10] A.Biem, E.McDermott, S.Katagiri, “A Discriminative Filter Bank
Model for Speech Recognition”, Proceedings of Eurospeech, 1995.

[11] A.Biem, “Discriminative Feature Extraction Applied to Speech Recog-
nition”, PhD Thesis, The University of Paris, pp. 119-121, 1997.

122



BIBLIOGRAPHY 123

[12] C.M.Bishop, Neural Networks for Pattern Recognition, Clarendon
Press, Oxford, 1995.

[13] E.L.Bocchieri and J.G.Wilpon, “Discriminative analysis for feature re-
duction in automatic speech recognition”, Proceedings of IEEE Inter-
national Conference of Acoustics, Speech and Signal Processing, vol.1,
pp. 501-504, 1992.

[14] B.E.Boser, I.M.Guyon and V.Vapnik, “A training algorithm for op-
timal margin classifiers”, In Haussler, D., editro, 5th Annual ACM
Workshop on COLT, pp.144-152, Pittsburgh, PA, 1992.

[15] L.Breiman, J.H.Friedman, R.A.Olshen and C.J.Stone, Classification
and Regression Trees, Wadsworth Inc., Belmont, California, 1984.

[16] H.Brunzell and J.Eriksson, “feature Reduction for Classification of
Multidimensional Data”, Pattern Recognition, 33, pp. 1741-1748,
2000.

[17] C.J.C.Burges, “A tutorial on support vector machines for pattern
recognition”, Data Mining and Knowledge Discovery, 2(2):955-974,
1998.

[18] P.Clarkson and P.J.Moreno, “On the use of Support Vector Machines
for Phonetic Classification”. proceedings of ICCASP ’99., 1999.

[19] N.A.Campbell, “Shrunken Estimators in Discriminant and Canonical
Variate Analysis”, Applied Statistics, Vol. 29, No. 1, pp. 5-14, 1980.

[20] P.C.Chang, S.H.Chen and B.H.Juang, “Discriminative Analysis of
Distortion Sequences in Speech Recognition”, Proceedings of IEEE
International Conference of Acoustics, Speech and Signal Processing,
Vol. 1, pp. 549-552, 1991.

[21] W.Chou, B.H.Juang and C.H.Lee, “Segmental GPD Training of HMM
based Speech Recognizer”, Proceedings of IEEE International Confer-
ence of Acoustics, Speech and Signal Processing, Vol. 1, pp. 473-476,
1992.

[22] W.Chou, “Minimum Error Rate Training for Designing Tree-
Structured Probability Density Function”, Proceedings of IEEE In-
ternational Conference of Acoustics, Speech and Signal Processing,
pp. 1507-1510, 1997.

[23] C.Cortes and V.Vapnik, Support vector networks, Machine Learning,
20, pp.273-297, 1995.



BIBLIOGRAPHY 124

[24] G.W.Cottrell, “Principal Componants Analysis of Images via Back
Propagation”, SPIE Proceedings in Visual Communication and Image
Processing, Vol. 1001, pp. 1070-1077, 1988.

[25] B.N.Datta, Numerical Linear Algebra and Applications, Brooks/Cole
Publishing Company and An International Thomson Publishing Com-
pany, New York, 1995.

[26] P.Devijver and J.Kittler, Pattern Recognition: A Statistical Approach,
Prentice-Hall, Englewood Cliffs, New Jersy, 1982.

[27] R.P.W.Dubi and E.Backer, “Discriminant analysis in a non-
probabilistic context based on fuzzy labels”, in Pattern Recognition
and Artificial Intelligence, Edited by Gelsema, E.S. and Kanal, L.N.,
Elsevier Science Publishers B.V., pp 229-235, 1988.

[28] R.O.Duda and P.E.Hart, Pattern Classification and Scene Analysis,
John Wiley & Sons Press, New York, 1973.

[29] R.O.Duda, P.E.Hart and D.G.Stork Pattern Classification, John Wi-
ley & Sons Press, Secong Edition, New York, 2001.

[30] R.Fletcher, Practical Methods for Optimization, John-Wiley and Sons,
and edition, 1987.

[31] B.N.Flury, “Common principal components in k groups”, Journal of
American Statistical Association, 79, pp892-898.

[32] N.Freitas, M.Milo, P.Clarkson, M.Niranjan and A.Gee, “Sequential
Support Vector Machines”, IEEE International Workshop on Neural
Networks for Signal Processing (NNSP99). Winsconsin, USA. 1999.

[33] H.P.Friedman and J.Rubin, “On Some Invariant Criteria for Grouping
Data”, American Statistical Association Journal, pp. 1159-1178, 1967.

[34] K.Fu, VLSI for Pattern Recognition and Image Processing, Springer-
Verlag, New York, 1984.

[35] K.Fukunaga and D.R.Olsen, “An Algorithm for Finding Intrinsic Di-
mensionality of Data”, IEEE Transactions on Computers, C-20(2),
pp. 176-183, 1971.

[36] K.Fukunaga, Introduction to Statistical pattern Recognition, Second
Edition, Academic Press, Inc., San Diego, 1990.

[37] A.Ganapathiraju, J.Hamaker and J.Picone, “Support Vector Ma-
chines for Speech Recognition”, Proceedings ICSLP, Sydney, Aus-
tralia, 1998.



BIBLIOGRAPHY 125

[38] F.Girosi, M.Jones and T.Poggio, “Priors, stabilizers and basis func-
tions: from regularization to radial, tensor and additive splines”, A.I.
Memo No.1430, MIT, 1993.

[39] M.A.Girshick, “On the sampling theory of roots of determinantal
equations”, Ann. Math. Statist., 10, pp 203-224, 1939.

[40] R.C.Gonzalez and M.G.Thomason, Syntactic Pattern Recognition, An
Introduction, Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1978.

[41] J.C.Gower, “Some distance properties of latent root and vector meth-
ods used in multivariate analysis”, Biometrika, 53, pp 325-338, 1966.

[42] T.J.Hastie, R.Tibshirani, “Flexible Discriminant Analysis by Optimal
Scoring”, AT&T Bell Labs Technical Report, December, 1993.

[43] T.J.Hastie, A.buja and R.Tibshirani, “Penalized Discriminant Analy-
sis”, AT&T Bell Labs Technical Report, December, 1993.

[44] T.J.Hastie and R.Tibshirani, “Nonparametric regression and classi-
fication part II – nonparametric classification”, in From Statistics
to Neural Networks - Theory and Pattern Recognition Applications,
Edited by Cherkassky, V., Friedman, J.H. and Wechsler, H., NATO
ASL Series, pp 70-82, 1993.

[45] T.J.Hastie and R.Tibshirani, “Nonparametric regression and classifi-
cation part I – nonparametric regression”, in From Statistics to Neural
Networks - Theory and Pattern Recognition Applications, Edited by
Cherkassky, V., Friedman, J.H. and Wechsler, H., NATO ASL Series,
pp 62-69, 1993.

[46] T.J.Hastie, R.Tibshirani and A.Buja “Flexible Discriminant and Mix-
ture Models”, Proceedings of Neural Networks and Statistics Confer-
ence, Edinburgh, Oxford University Press, 1995.

[47] T.J.Hastie, R.Tibshirani, “Discriminant Analysis by Gaussian Mix-
tures”, AT&T Bell Labs Technical Report, December, 1994.

[48] M.Hotelling, “Analysis of a Complex of Statistical Variables into Prin-
cipal Components”, Journal of Educational Psychology, 24, pp. 498-
520, 1933.

[49] A.K.Jain, “Advances statistic pattern recognition”, in Pattern Recog-
nition Theory and Applications, Edited by P.A.Devijver and Kittler,
NATO ASI Series, Springer-Verlag, New York, 1986.



BIBLIOGRAPHY 126

[50] A.K.Jain and M.D.Ramaswami, “Classifier design with parzen win-
dow”, in Pattern Recognition and Artificial Intelligence, Edited by
E.S.Gelsema and L.N.Kanal, Elsevier Science Publishers B.V., New
York, 1988.

[51] A.Jain, Fundmentals of Digital Image Processing, Prentice-Hall, En-
glewood Cliffs, New Jersy, 1989.

[52] T.Joachims, “Making large-scale SVM learning practical”, in
Scholkopf, B., Burges, C.J.C. and Smola, A.J., editors, Advancess in
Kernel Methods - Support Vector Learning, MIT Press, Cambirdge,
USA, 1998.

[53] I.T.Jolliffe, Principal component analysis, Springer-Verlag, New York,
1986.

[54] B.H.Juang and S.Katagiri, “Discriminative Learning for Minimum Er-
ror Classification”,IEEE Transactions on Signal Processing, Vol. 40,
No. 12, December, 1992.

[55] N.Kambhatla, “Local Models and Gaussian Mixture Models for
Statistal Data Processing”, PhD Thesis, Oregon Graduate Institute
of Science and Technology, 1996.

[56] S.Katagiri, C.H.Lee and B.H.Juang, “A Generalized Probabilistic De-
scent Method”, Proceedings of the Acoustic Society of Japan, Fall
Meeting, pp. 141-142, 1990.

[57] I.Komori and S.Katagiri, “GPD Training of Dynamic Programming-
based Speech Recognizer”, Journal of Acoustical Society of Japan(E),
Vol. 13, No. 6, pp. 341-349, 1992.

[58] W.J. Krzanowski, “Principal component analysis in the presence of
group structure”, Applied Statistics, 33, pp164-168, 1984.

[59] N.Kumar and A.G.Andreou, “A generalization of Linear Discrimi-
nant Analysis in Maximum Likelihood Framework”, Proceedings of
the Joint Statistical Meeting, Statistical Computing section, Chicago,
Aug 4-8, 1996.

[60] N. Kumar and A.G. Andreou, “On generalizations of linear discrim-
inant analysis”, Technical Report, JHU/ECE-9607, Johns Hopkins
University, 1996.

[61] T.K.Leen, “Dynamics of Learning in Linear Feature-Discovery Net-
works”, Network: Computation in Neural Systems, Vol. 2, pp. 85-105,
1991.



BIBLIOGRAPHY 127

[62] C.J.Leggetter, Improved acoustic modelling for HMMs using linear
transformations, PhD Thesis, Unversity of Cambridge, 1995.

[63] C.S.Liu, C.H.Lee, W.Chou and B.H.Juang, “A Study on Minimum
Error Discriminative Training for Speaker Recognition”, Journal of
Acoustical Society of America, Vol. 97, No. 1, pp. 637-648, Jan. 1995.

[64] K.V.Mardia, J.T.Kent and J.M.Bibby, Multivariate Analysis, Aca-
demic Press, Harcourt Brace & Co., New York, 1979.

[65] E.McDermott and S.Katagiri, “Prototype-Based Minimum Classifi-
cation Error/Generalized Probabilistic Descent for Various Speech
Units”, Computer Speech and Language, Vol. 8, No. 8, pp. 351-368,
1994.

[66] E.McDermott and S.Katagiri, “String-Level MCE for Continuous
Phoneme Recognition”, Procceedings of Eurospeech’97, Vol. 1, pp. 123-
126, 1997.

[67] E.McDermott and S.Katagiri, “Prototype-Based Discriminative
Training for Various Speech Units”, International Conference on
Acoustics, Speech and Signal Processing, Vol. 1, pp. 417-420, 1992.

[68] S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K.-R. Muller. “Fisher
Discriminant Analysis with Kernels”, Proceedings of IEEE Neural Net-
works for Signal Processing Workshop, 1999.

[69] S.Mika, B.Scholkopf, A.Smola, K.-R.Muller, M.Scholz, and G.Ratsch,
“Kernel PCA and de-noising in feature spaces”, in Advances in Neural
Information Processing Systems, 1999.

[70] H.Niemann, Pattern Analysis, Springer series in information sciences,
Springer-Verlag, Berlin, 1981.

[71] E.Oja, Subspace Methods of Pattern Recognition, John Wiley and Sons
Inc., New York, 1983.

[72] E.E.Osuna, R.Freund and F.Girosi, “Support vector machine: training
and applications”, A.I. Memo No. 1602, C.B.C.L. Paper No. 144, MIT,
1997.

[73] E.E.Osuna, R.Freund and F.Girosi, “Training support vector machine:
an application to face detection”, Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 130-136, 1997.

[74] E.E.Osuna, R.Freund and F.Girosi, “An improved training algorithm
for support vector machines”, IEEE Workshop on Neural Networks
for Signal Processing, pp. 24-26, Amelia Island, FL, USA, September,
1997.



BIBLIOGRAPHY 128

[75] K.K.Paliwal, “Dimensionality Reduction of the Enhanced Feature Set
for the HMM-Based Speech Recognizer”, Digital Signal Processing,
No. 2, pp. 157-173, 1992.

[76] K.K.Paliwal, M.Bacchiani and Y.Sagisaka, “Simultaneous Design of
Feature Extractor and Pattern Classifier Using the Minimum Clas-
sification Error Training Algorithm”, Proceedings of IEEE Workshop
on Neural Networks for Signal Processing, Boston, USA, pp. 67-76,
September, 1995.

[77] K.Pearson, “On lines and planes of closet fit to systems of points in
space”, Phil. Mag., No.6, Vol 2, pp559-572, 1901.

[78] W.L.Poston and D.J.Marchette, “Recursive Dimensionality Reduction
Using Fisher’s Linear Discriminant”, Pattern Recognition, Vol. 31,
No. 7, pp. 881-888, 1998.

[79] D.Rainton and S.Sagayama, “Minimun Error Classification Training
of HMMs-Implementation Details and Experimental Results”, Journal
of Acoustical Society of Japan(E), Vol. 13, No. 6, pp. 379-387, 1992.

[80] C.R. Rao, “The use and interpretation of principal component analysis
in applied research”, Sankhya A, 26, pp 329-358, 1964.

[81] T. Robinson, Dynamic Error Propogation Networks, PhD Thesis,
Cambridge University Engineering Department, February 1989.

[82] V.Roth and V.Steinhage, “Nonlinear discriminant analysis using ker-
nel functions”, Technical Report, Nr IAI-TR-99-7, ISSN 0944-8535,
University Bonn, 1999.

[83] F.E.Shaudys and T.K.Leen, “Feature selection for improved classifica-
tion”, International Conference on Neural Networks, Baltimore, 1992.

[84] M.Scherf and W.Brauer, “Feature selection by means of a feature
weighting approach”, Rechnical Report No. FKI-221-97, Forschungs-
berichte Kunstliche Intelligenz, Institut fur Informatik, Technische
Universitat Munchen, 1997.

[85] B.Scholkopf, C.Gurges and V.Vapnik, “Extracting support data for a
given task”, Proceedings of First International Conference on Knowl-
edge Discovery and Data Mining, Menlo Park, 1995.

[86] B.Scholkopf, C.Gurges and V.Vapnik, “Incorporating invariances in
support vector learning machines”, International Conference on Arti-
ficial Neural Networks – ICANN’96, pp. 47-52, Berlin, 1996.



BIBLIOGRAPHY 129

[87] B.Scholkopf, P.Bartlett, A.Smola and R.Williamson, “Support vector
regression with automatic accuracy control”, Proceedings of 8th In-
ternational Conference on Artificial Neural Netwoks, Perspectives in
Neural Computing, pp.111-116, Berlin, 1998.

[88] B.Scholkopf, A.Smola and K.-R.Muller, “Nonlinear component analy-
sis as a kernel eigenvalue problem”, Neural Computaton, 10:1299-1319,
1998.

[89] A.J.Smola and B.Scholkopf, “A tutorial on support vector regres-
sion”, NeuroCOLT2 Technical Report Series NC2-TR-1998-030, ES-
PRIT working group on Neural and Computational Learning Theory
”NeuroCOLT 2”, 1998.

[90] A.J.Smola, B.Scholkopf and K.Muller, “General cost functions ofr sup-
port vector regression”, In Downs, T., Frean, M. and Gallagher, M.,
editors, Proceedings of the Ninth Australian Conference on Neural Net-
works, pp.79-83, Brisbane, Australia, 1998.

[91] A.J.Smola, B.Scholkopf, “On a kernael-based method for pattern
recognition, regression, approximation and operator inversion”, Al-
gorithmica, 1998.

[92] R.A.Sukkar and J.G.Wilpon, “A Two-pass Classifier for Utterance
Rejection in Keyword Spooting”, Proceedings of IEEE International
Conference of Acoustics, Speech and Signal Processing, Vol. 2, pp. 451-
454, 1993.

[93] D.X.Sun, “Feature Dimension Reduction Using Reduced-Rank Maxi-
mum Likelihood Estimation For Hidden Markov Model”, Proceedings
of Internation Conference on Spoken Language Processing, Philadel-
phia, USA, pp. 244-247, 1996.

[94] B. Tian and M.R. Azimi-Sadjadi, “Comparison of two different PNN
training approaches for satellite cloud data classification”, IEEE
Transactions on Neural Networks, vol 12, no. 1, pp. 164-168, 2001.

[95] “The DARPA TIMIT Acoustic-Phonetic Continuous
Speech Corpus (TIMIT)”, [On-line], Available at URL:
http://www.ldc.upenn.edu/readme files/timit.readme.html

[96] V.Vapnik and A.Lerner, “Pattern recognition using generalized por-
trait method”, Automation and Remote Control, 24, 1963.

[97] V.Vapnik and A.Chervonenkis, “A note on class of perceptrons”, Au-
tomation and Remote Control, 25, 1964.



BIBLIOGRAPHY 130

[98] V.Vapnik, Estimation of Dependences Based on Empirical Data,
Springer-Verlag, Berlin, 1982.

[99] V.Vapnik, The Nature of Statistical Learning Theory, Springer, N.Y.,
1995.

[100] V.Vapnik, Statistical Learning Theory, Wiley, N.Y., 1998.

[101] V.Vapnik, S.Golowich and A.J.Smola, “Support vector method for
function approximation, regression estimation, and signal processing”,
In Mozer, M., Jordan, M. and Petsche, T., editors, Advances in Neural
Information Processing Systems 9, pp. 281-187, Cambridge, MA, 1997,
MIT Press.

[102] R.J.Vanderbei, ”LOQO: An interior point code for quadratic program-
ming”, Optimization Methods and Software, vol. 11, pp. 451-484,1999.

[103] X.Wang and K.Paliwal, “A modified minimum classification error
training algorithm for dimensionality reduction”, Journal of VLSI Sig-
nal Processing Systems, vol 32, pp. 19-28, April 2002.

[104] X.Wang and K.Paliwal, “Feature extraction and dimensionality reduc-
tion algorithms and their application in vowel recognition”, Submitted
to Pattern Recognition, April 2002.

[105] X.Wang and K.Paliwal, “Discriminative learning and informative
learning in pattern recognition”, 9th International Conference on Neu-
ral Information Processing, Singapore, November 2002.

[106] X.Wang and K.Paliwal, “Feature extraction for integrated pattern
recognition systems”, Fourth Workshop on Signal Processing and Ap-
plications, Brisbane, Australia, December 2002.

[107] X.Wang and K.Paliwal, “Generalized minimum classification error
training algorithm for dimensionality reduction”, Microelectronic En-
gineering Research Conference 2001, Brisbane, Australia, 2001.

[108] X.Wang and K.Paliwal, “Using minimum classification error training
in dimensionality reduction”, Proceedings of the 2000 IEEE Workshop
on Neural Networks for Signal Processing X, pp. 338-345, Sydney,
2000.

[109] X.Wang, K.Paliwal and J. Chen, “Extension of minimum classifica-
tion error training algorithm”, Microelectronic Engineering Research
Conference 1999, Brisbane, Australia, 1999.

[110] J.Werner, Optimization Theory and Application, Friedr. Vieweg &
Sohn, Braunschweig/Weisbaden, 1984.



BIBLIOGRAPHY 131

[111] J.Yang and G.A.Dumont, “Classification of Acoustical Emmission Sig-
nals via Hebbian Feature Extraction”, IEEE proceedings of the IJCNN,
Piscataway, New Jersy, Vol. 1, pp. 113-118, 1991.

[112] S.Young, D.Kershaw, J.Odell, D.Ollason, V.Valtchev and
P.Woodland, “The HTK Book (for version 2.2)”, Entropic, 1999.


